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The nonlinear Schrodinger equation

Jean Bourgain, Periodic nonlinear Schrodinger equation and invariant
measures, Comm. Math. Phys. 166 (1994), no.1, 1-26.

The Cauchy problem for the nonlinear Schrédinger equation :
s) { ity + Ugy + ululP 2 =0,
u(z,0) = ¢(x) € H*(T).

o u=u(z,t): TxI—C, T=R/2rZ, I is an interval.

@ ¢ is a given function.
H(T) == {¢ € LA(T) : 3, cn(1 + [n])*|o(n)? < 1}.
o p>2.
o The scale transformation: uy(z,t) = \/®=2u(Az, \2t).
@ The scale critical index s, :=1/2—2/(p — 2).

@ The focusing case.
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The nonlinear Schrodinger equation (sequel)

Conservation quantities: L?-norm N(¢) and Hamiltonian (energy) H(¢):
N(u(t)) = N(¢), H(u(t)) =H(¢),

1 27
N() = ]2 = /0 6(z) e,
) 1 27 27
H(0) = [0:13: = 0l = 5- /0 o) Pz == [ Jota) e

Theorem 1 (Bourgain ’93)

Let p=4. Then, (S) is global well-posed (GWP) in H*(T) with s > 0.

.

Theorem 2 (Bourgain '93)

Let p > 4. Then, (S) is local well-posed (LWP) in H*(T) with
s > max(sy,0), where s, :=1/2—2/(p —2).
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Main result

Theorem 3

Let 4 < p < 6. The (L?-truncated) Gibbs measure of (S) is invariant
under the flow.

Corollary 4
Let 4 <p<6 and 0 < s <1/2. Then, (S) with almost every ¢ € H*(T)
is GWP.

Strategies
@ Prove LWP of (S) and (TS).

@ Construct the Gibbs measures p and py of (S) and (TS)
respectively.

| \

@ Show invariance of up.
© Prove GWP of (S) for almost all ¢ € H*(T) when 4 < p < 6.

@ Prove invariance of pu.
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Notations |

° ¢ denotes the Fourier coefficients. qb( )= 27r f027r e~ "¢ (x)dx

° = {6 Jylu(@)|%dz < 00}, 6]l == (5 Jo~ [¢(x )!qdfv)l/q-

° We (Sometlmes) abbreviate || - || as || - ||4-

e ¢ denotes the Holder conjugate of ¢, Le., 1/q+1/¢ =1.

o H¥(T):={¢ € LX(T) : 3,z (1 + In])*[6(n)[* < oo},

lles == (O ezl + ‘nQ28’¢(n)|2)1/2'

H{(T) :={¢ € H*(T) : $(0) = 0}.

By i={¢ € H(T): |¢]u+ < R}.

Ey :=span{e™® : |n| < N} = C?N+1 = R22N+1),

En = span{e™® : 0 # |n| < N} = C?N 2 RV,

For ¢ € Ey, we identify ¢ and a® := {an}n<n through

o(x) = Z|n\§N e p(n).

o €% denotes the free propagation of the Schrédinger equation, i.e.,
(:c t) = €92 ¢ solves (18t + 82)u =0, u(z,0) = ¢(z).
M P(2) 1= 1, eq €T 0 G(n).
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Notations 11

e X <Y means X <CY for some C > 1.
o X <Y means %X <Y.
@ X ~Y means X <Y and Y < X.
o The capital letters L, M, My, N denote dyadic numbers, e.g.,
L, M, My, N € 2N,
° SNO(2) =X <N em"’”(/ﬁ\(n). Define S 59 := 0.
o Py:=Sy— Sy
o Ar:=) 1 e (n) for some interval I C R.
o Apn:={(nA\)€ZxR:N/2<|n|<N, (A+n?)~ L}
o Ary:={(n,A) €I xR:(\+n?) ~ L} for some interval I C R.
e O(t) and @y (t) denote the flow map of (S) and (7'S) respectively.
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NLS and truncated NLS

The Cauchy problem for the NLS:
s) { ity + gy + ululP? =0,

u(z,0) = ¢(x) € H¥(T).
The finite dimensional model equation:

g + Uge + Sy (uluP~%) =0,

{ u(z,0) = ¢(z) € En.
First of all, we show that these Cauchy problems are locally well-posed.
There is essentially no change in the argument (cf. Bourgain ’93).

(TS)

@ The Strichartz estimates on T.
@ The Bourgain spaces.

@ Related estimates.

@ Proof of LWP.
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The Strichartz estimates |

Proposition 5

(L* Strichartz estimate)

i 2
e @l s 12y S 9llge  for ¢ € L(T).

Proof

Py o = [ (20 (0 dtdo

T2
Z // i(n1+na—ns— n4):c —i(n?+n2—nZ-—n2 t¢(n1)(E(nZ)&)\(ng’)a(nthd:ﬁ

Here, nq +ng — n3 —ng = 0 and n? + n3 — nZ — n? = 0 are equivalent to
(n1 = n3 and ng = ny) or (n; = ng and ny = ng). Thus, it is equal to

> 16(m)Plé(na)* = 8172

ni,n2

Ol

M. Okamoto (Kyoto Univ.)

NLS and invariant measures

8/26-30, 2013 11 / 62



The Strichartz estimates 11

Proposition 6 (Almost L® Strichartz estimate)

152
1Sxe %l aey S N6z for ¢ € L(T).

We can not remove the loss N¢, which cause difficulties on T.

02 02 02
“enazSNQSHgfz(T?) = ||€ZtazSN¢|€ltazSN¢|2||%$I(T2)

. . —~ >~ PN 2

|| 3o etmmmatnaresittnd i) Fng) (s

ni,n2z,ns, Lt’ﬁf
In;|<N

I

~ = 2
=S| Y dean)dn —m +m)|
n,AEZ (n1,n2)€l(n,\)

Inj| < N, |[n—ny +ng| <N, }

where I'(n, A ::{n,n €72
(,3) (1, m2) A=-—n?+n3—(n—n+ng)?
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The Strichartz estimates 111

Proof (sequel).

From Hoélder’s inequality,
12
e SN lISs g2y < sup #T(n, N)|$lI5.
i (n,\)€Z2

Note that for every n, A € Z and (ni,n2) € I'(n, \)
A4 n? = —2(n1 —n)(ng — na).
. log N
By Lemma 7 (below), sup(, yez2 #1'(n, A) $ e loslos N < N¥, which
concludes the proof. O

v

Lemma 7 (divisor counting (see Theorem 317 in Hardy and Wright

“An introduction to the Theory of numbers”))

log A
“the number of divisors of A” < C'exp ( — ) for A eN.

loglog A
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The Bourgain spaces I

Definition 8 (The Bourgain spaces)

For s,b € R, we define
2s 2\2b|~ 2 L2
fulles i= (3 [ 0 n2)pam, Par) ™

nez
For an interval I C R, we define ||u|| s := inf{||v]| ysp : u =v on I}.
I

v

Proposition 9 (Linear estimates)

Let se R, 1/2<b<1,0<T <1. Also, let 0 <0 <1—b. Then,

t
Hezt8§¢”Xs,b S H(pHHS? ez(lt—t')BgG(x7 t/)dt/ /S T(SHGHXS’b_IJ'_S.
0 [=T,T]

[~T,T]
v

See, for the proof, Lemma 2.11 and Proposition 2.12 in T. Tao
“Nonlinear Dispersive Equations, local and global analysis, CBMS 106.”
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The Bourgain spaces 11

Thanks to Proposition 9, it suffices to prove
(1) el | -0 S el
) ™ = ool xan S (fullis + olBed )l — vl xe

for 0 < b <1/2 <b.
(S) is equivalent to

t
(3) w(z,t) = % () —I—i/ =2 (| uP=2) (2, ¢')dt .
0
Let ©(u) denote the right hand side of (3). (1) and ( ) imply
1OWllxee < Clloae + Plul

[ "'7']
10(w) =O()llxse < (fullyss +lvlyer P72 llu— 0] o
[=7.7] [=7.7] [=7,7] [=7.7]

© is a contraction mapping on X, where

s 1
M= fue XP0 i llull o < 2C06lne}, CCIolme)" 727" < 4,

and b is chosen closely to 1/2.

M. Okamoto (Kyoto Univ.) NLS and invariant measures 8/26-30, 2013 15 / 62



The case p =41

Proposition 10

el S lullxo.s-

Write

U = Z Qru, ]:[QLU] (’I’L, )‘) = UX(A\4n2)~L-
L

||U||%g,z = Jluulz, S D 1Quu- Qroullge,.

Ly L2<Iy
Let Ly = 2'Ly. Tt is reduced to show that
(4) 1Qru - QZZLUHLf,x S 2*511;3/8HQLuHL?J(21L)3/8||Q21LUHL?@
for some € > 0. Put Uy := Qru/||Qrul|g2 . (4) is equivalent to
| > / Uz (1, AUz (n = ma, A = M|, S 20/8-9tp3/4,
n,A

ni1€Z
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The case p =411

Proof (sequel).

By the Cauchy-Schwartz inequality, it is sufficient to show

(5) sup  #T(n, \) S 2B/472N 32,
(n,A\)EZXR

L(n,A) :={(n1,\1) EZ xR : |\ -|—n%| SL I A-M+(n-— n1)2| < QZL}.
Since
A=A+ (A=) =—-2n2+2nn; —n?+0(2'L),

m:”iv T2 o),

we have
#I(n,\) < 21721372,

which shows (5) with e = 1/8. O
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The case p = 4 111

The LA-Strichartz estimate and the transference principle! show
(6) lullgs . < lfull oo

for any b > 1/2.
Thanks to Proposition 10, (6) and the fractional chain rule, we obtain

laalul?[| om0 < 1105 (ulul®)l| o575 S 105 (ulul*)]| /s
Lt,u:

< Nl 103ulzy . < llaloslullxes
if 3/8 < b; < 1/2 < b. Similarly,
lulul® = oo xa -0 S (lull xo0 + [0l x00)* [l = 0]l a0,
which shows LWP for p = 4.

By the L2-conservation law, we can extend the local solution obtained
above to global one.

!See Lemma 2.9 in T. Tao “Nonlinear Dispersive Equations, local and global
analysis, CBMS 106.”
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Related estimates |

Forb>1/2 and q > 6,
1Pyullgg S NY273/0| Pyl xos.

Proof.
It suffices to show the following:
., 02 _
(7) e Pyl g, S NY2¥4%| Pyg 2
because of the transference principle. Interpolating Proposition 6 with
09 )
€% Py || g, < N2 1% Py || oo 2 < N2 Pybll 2,

we obtain (7). O

v
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Related estimates 11

Lemma 12

For2<q<6andb>1/2,
(8) 1Pyull s, S N9 Pyul xo0,
9) 1Pag ullzp, S LO-O2NOD)
where  =3/q—1/2,1/¢ =1-1/q,
F[Pap nul(A,n) = WA, n)XN<|n|<2NX(A—n2)~L-

The estimate (9) follows from duality argument.
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Proof of Theorem 2 1

We only consider the case where p > 4 is even for simplicity.
Put w := ul|u|P~2. Write

(10) w =" (SaulSpulP"? = SprjaulSprpulP?)
M
Without loss of generality, we may assume M 2 N. One may write for
complex values z, w
2|2P7? = wlwP7? = (2 = w)pi(z, w) + (2 = W)p2(z, w),
where ¢; satisfy |[Vp;| < (2] + |w|)P~3. Substituting in (10) with
z = Syu and w = Syy/ou, we get

w = Z (PMu - 01(Smu, Syrjau) + Puyu - 2 (Syu, SM/gu)) )
M

M. Okamoto (Kyoto Univ.) NLS and invariant measures 8/26-30, 2013



Proof of Theorem 2 I1

Putting vy == p1(Symu, Syreu) and vy /g := 0, we write again
oM = (oM — UM/2) ot (v — 01/2) = Z (v, — UM1/2)~
M <M
Since 1 is Lipschitz continuous, we have
UM, — Uary 2 = Panu- 1 + Pau o + Payy ot - 3 + Py, jou - 1y,

where 1; = 1; (S, u, Sr, 2, Sar, sau) satisfy
93] < (1Sanul + |8, ol + 1Sy jau)P 2.
Hence, we have to estimate

Z Z Z NeL™™ HPAL,N(PMU - Pryu- ¢)“L§$ )

L,N M>N M1<M '
where v denotes one of ¥ and s.
Decompose the interval [M/2, M] as follows:

M/2M,
MM = | I, L=+ 0E-1)M, Y+ kM.
k=1
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Proof of Theorem 2 III

Then, one has Pyju = ZkM:/fMl Apu, where Ajp =3, einTh(n).
The functions

’w]k = A[ku . PMlu . ¢(SM1u, SMl/Qua SM1/4u)
have essentially disjoint supported Fourier transform of varying k.
Thus, one has to estimate the following:

M/2My "
S Y vt (X @) -
LN MZN Mi<M =1
Choose 2 < p; < 6. From (9) in Lemma 12 with ¢ = py,
e 1-6)/2 3 ye(1-0) 3 1
7l 22, ) S DO D gy 0= o = 5

Thanks to Holder’s inequality, we get

lwrll o < Anullen [ Panyw - llpyp /o1 —p) -
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Proof of Theorem 2 IV

By the orthogonality and (8) in Lemma 12, we have
M/2M; M/2M,y

(X 1asald) 50500 fanulo)

k=1 k=1
< M Parul os ~ MO M Pagu .
Let po > 6 and 1 > 2/p; + 1/pe. Holder’s inequality and Lemma 11
imply

1/2

||PM1U'?/)”p1p’1 /(p1—p}) ~ S ||PM1U||L3"2||¢H(1 2/p1—1/p2)~ 1

1/2-3 +
S M2 Pyl e 10l (1)

Taking ps such that p3 > 6 and (p — 3)/p3 <1 —2/p;1 — 1/p2, we have

1580 ull (p—3)(1-2/p1—1/p2) 2
1/2—3/ps+e—
S Y Pl S0 My Puyul e S Jullyes
M2§M1 MQSMI
provided that s > 1/2 — 3/ps.
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Proof of Theorem 2 V

We therefore have
1/2—3/pa+
||PM1U w”mm /(p1—p}) ~ <M/ fprte= SHPMlu”XSbHu|

Combing it with above estimates, we obtain

Xsb'

]l xe-er S Nl s |l xon [l Beas
provided that
2<p1<67 p2267 p3267

2 1 -3 2 1
1>+, 222y =2~
P11 D2 b3 P11 D2
>1 3 >1 3
§>———, §>-——.

2 p3 2 p

We can choose p1, p2, ps which satisfy the all conditions if
s >max(1/2 —2/(p —2),0).
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Remarks on well-posednes

@ The existence time 7 depends on ||¢||gs. More precisely, one has
Clp,s)
T+ [0l
o This existence time 7 does not depend on N even if we consider the
truncated equation (T'S).

T >

@ The constant Ci(p, s) does not depend on s for p < 6. This fact is
however not of importance for the sequel.

e For p >4, 5,50 > max(sy,0), the same calculation shows

lualal? 2| om0 S Nl xconllual5eg o

In general case, some more technicalities are needed because the
nonlinear term u|u|P~2 is not smooth.
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The finite dimensional approximation I

Lemma 13

Let A<p<6,s>0,¢pc HT), ||¢||lg: < A. Assume the solution uy
of (TS) with data Sy¢ satisfies

lun ()]s < A for |t| < T.
Then, (S) is WP on [=T,T] and there is the approximation for |t| <T
and 0 < sg < s
(11 Ju(t) — un(@®)lm=o < exp(C(p,s)(1+ A)PIT) AN
provided that the expression on the right hand side of (11) remains < 1.

We will only consider ¢ > 0. Let 7 be the existence time given by LWP.
Note that
Cp,s)

T A ATES

Assume for ¢ < tg we obtain
u(t) —un(t)|| g0 <6 < 1.
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The finite dimensional approximation II

Thanks to LWP, the IVPs
10+ O%u + u|uP2 =0,  wlmgy, = ul(to),
10w + 0%v +vluP"2 =0, w(ty) = un(to)
are WP for ¢ € [to,to + 7]. Moreover, we have
(12) [u(t) —v(@)][e0 < 2||u(to) — v(to)|[m=0 < 20.
Compare uy and v on [tg,to + 7]. From LWP, one has
[ollx S llv(to)llzso S CA, lunlx S lun(to)llaso S CA,

where X := X ﬁg”i’o 4, for some b >1/2. Write

t ,
v(t) —un(t) =i / RT (N aY, T = v|o|P~2 — Sy (un|un[P~2).
0

By I' = (v|v[P~2 — Sy (v[v[P~2)) + Sn (v[v[P~2 — un|un|P~2), the same
argument in the proof of LWP implies

é —2 _
lv —unllx < 7°(lv = Snollxllvl ™ + o — unllx (Jollx + llun]|x)* =)
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The finite dimensional approximation III

Thanks to the choice of 7, we get
(13) v —unllx <llv=Snvlx S N*°[lo(to)l|ms < CAN®T.
From (12) and (13), we obtain

lo(t) — un(t)||mso <20+ CAN®OT3 to <t <to+T.
Break the interval [0,¢] up in subintervals of length 7. For t; := jr
(j=0,...,[T/7]) , denoting ||u(t;) — un(t;)|ms0 by J;, we have

do < N¥O7%A,  0; <261 +CAN®,
which implies
6 < 2980+ (29 —1)CAN®™™* < O AN*0~*,
By the lower bound of 7, we obtain
() — un ()] oo < exp(C(1 4 A)PSIT)AN=S  0<t<T.
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Basic terminology of probability theory

o We call a measure space (2, F, P) a probability space if P(Q2) = 1.

e Let X : QO — R be a random variable (i e., X is measurable ). We
define its expected value to be E[X fQ ) if X € LY(Q).
We call a measure A on (R, B(R )) the d791‘r7bm70n of X if
AMA) = P(X71(A)) for all A € B(R).

o We call a r.v. real Gaussian if its distribution is given by
6*12/2/\/%@;.

@ The r.v.s X, Y are independent if for all A, B € B(R) the following
equality holds:

P(Xe€AY eB)=P(X e AP €B).
o We call ar.v. g complex Gaussian if there exist independent real
Gaussian g1, go such that g = g1 + igo.

e If XY are independent r.v.s, one has F[XY]| = E[X]|E[Y].
o If X, Y are independent r.v. and g, h are measurable, then g(X,Y)
and h(X,Y) are independent. Especially, eX and ¥ are

independent.
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The Gibbs measure of (S) I

Recall our Cauchy problem:
(S) i + g + ululP 7 =0,
u(z,0) = ¢(z) € H¥(T).

The Hamiltonian is formally conserved:
9 1 2 1 2
H(®) =[|0x0|72 — = p:/a%l—/ Pdz.
(@) =10:61% = 21l = 5 [ 10soPas - = [Tiopas

For s < 1/2, we denote by H§(T) the set {¢ € H*(T) : $(0) = 0}.
Let p be the image measure under the map X :Q — Hi(T)

o X (o) im 30 22D v
n#0

where the {g,} are independent complex Gaussian random variables.

Since the random Fourier series _, 9"7(1 ©) gine ig in

Ho = HS(T) a.s., we may consider p as a measure on Hj.
s<1/2 0 ) Y P
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The Gibbs measure of (S) II

Proposition 14
Let s < 1/2. There exist constants C,c > 0 such that for all
Ny € 2890} X > 1 one has
s 2(1—s
p({@ € HE(T) : ||(1 = Snp)@llrs > A}) < Cexp(—eXNG' ™).
In particular, p(H*(T)) = 1.

Proof.
For Ny > 1, we set
ANO = {w eN: ”(1 — SNO)X(W)HHS > )\}
Note that p({¢ € Hi(T) : (1 — Sn)éll= > A}) = P(Any).
Let 6 be a real number such that 0 < § < 1/2 — s. Next, we set

= {weQ: |PvX (W)l > 3(N70+ (NT1No) %)}
Then, An, C Uysn, A holds.

| A\
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The Gibbs measure of (S) III

Proof (sequel).

From Lemma 15 (below), we have
ANO Z P A/ Z CeXp(ClN—CQ)\2(Nz(l_s)_za—i-Ng(l_s))),

N>N0 NZNO
The choice of # implies 1 < 2(1 — s) — 26 and thus
P(An,) < Cexp(—cA2NZU™9), O

|
.

Lemma 15

Let A be a finite subset of N. For A > 0, we have

Z lgn(W)[2 > X) < ear#th—e2,
neA

Noting that E[el9n"/4] = 2, we have
P(E e [9n(@)[? > A) = P([T, ey el @F/4 > eV
S €_>\/4E[Hn€1\ elgn‘2/4] — €_>\/4 HnEA E[e‘gn|2/4] < e_)‘/42#A‘
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The Gibbs measure of (S) IV

Let us define
F(8) == exp(l10l70)x(16),2<B)

where B is the L2-cutoff.

Let 1 < g < 2. Then, we have f € Li(dp) for p < 6 and arbitrary B and
for p =6 and sufficiently small B.

We set
dp(9) := f(¢)d*aodp().
where ag denotes &5\(0) and d?ag = dagdag.

o Lemma 16 shows that this measure p is well-defined and a measure

on H := ﬂ0<8<1/2 H3(T).
o If p<6, fe Li(dp) for all 1 < ¢ < co.
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The Gibbs measure of (S) V

Proposition 17

Let 0 < s < 1/2. There ezist constants C,c > 0 such that for all A > 1
one has

w({¢ € HX(T) : ||gllms > A}) < Ce™V.

| \

Proof.

Set Ay :={¢ € H5(T) : ||¢||lgs > A}. Using Proposition 14 and Lemma
16, we can write

H(Ay) = /A dp= [ 1@)dando(o)

<es( [ o o) ([ e ap)"”
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Proof of Lemma 16 1

Note that
LW€L¥®H¢/ mweH:UP>MMA<w¢n/gOMA<w,
0 1

where g(A) := P({w € Q: [|[X(w)[|zr > 7, [X(w)]|2 < B}),

X(w) = 3,20 9n(w)e™ /n, and v == (p(log A)/q)"/*.
Let s :=1/2—1/p. By H*(T) — LP(T), we have

g\ < P({w € Q1 [|X@) s > 7/Co, | X(@)llz2 < BY)
Set N := ky'/*, where x > 0 is small number to be fixed. Then,
fweQ: [X@)lus >7/Cs |X(@)lz2 < BY C AU Ag
with
Ay = {w € Q. |Sn X (@)l > 7/4Cs, | X(@)l12 < B},
Ay :i={w € Q:||(1 = Sny) X (W) || s > v/4Cs}.
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Proof of Lemma 16 II

Since

1SN X (W)l[ms < CNG|| X (W)l 12 < OB,
Ay =0 if k = (5C,C)~Y/*B~1/5, This fixes the parameter .
On the other hand, thanks to Proposition 14,
P(A2) = p({¢ € Hy(T) - [|[(1 = Sy )@l s > 7/4Cs})
< Cexp(—c'yQNg(lfs)) = C’exp(_cfﬁ/sB—?(l—S)/S)'
Therefore, we obtain
g(\) < Cexp(—c(p/q)" =2 (log X/ (P=2) p=2(p+2)/(P=2))

If2<p<6,by4/(p—2)>1, g()) is integrable on [1,00) for all B > 0.
If p =16, g()\) is bounded by C\—¢/aB*, Thus, for sufficiently small B,
g()\) is integrable on [1, c0).
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The Gibbs measure of (TS) I

(TS) {iUt+%h“*'SNUNUP%::o,

u(z,0) = ¢(x) € En.
We identify ¢ € Ey and a? := {an}in<n € C2N+1 through

O(x) =D 1 1<n e a,,, where a, := ¢(n).
The Hamiltonian of (TS) is given by

1 2 5 1 2
H = Opp|“dr — — Pdx,
w0 =g [ outbdn == [T joraa
P
_ 1 [27 .
Hy(aV,aN) = Z n2]an]2—/ Z e"%ay,| dx.
[n[<N IO i<y

Since (TS) is ODE, this Hamiltonian is rigorously conserved.
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The Gibbs measure of (TS) II

As in NLS, we define the following measures. Let py be image measure
on Eng = span{e™® : 0 # |n| < N} = C?N =~ ]R4N under the map

b Xyw) = 3 9@ gine
0#£|n|<N
This measure also has the following explicit formula:

l 2 2
e 3 Zozmsn ol g2g, g2,

de = 1 .
-5 n?lan|? 7o 2
fc2Ne 2 &0#|n|<N d al...d an

|
N

Remark

If we replace the distribution of real and imaginary parts of g, with
\/%76_5‘2, (namely Rg,,, Sg,, = N(0,1/4/2)) then

e~ L0AnI<N ”2|a”|2d2a1 .. d%an
f(c2N e Loin| <N n2|an|2d2a1 . d2aN‘

We may replace the coefficient 1/2 with 1.

dpn =
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The Gibbs measure of (TS) III

Let Vv := [Jozp<n (=00, an] X (=00, B,] and
N =A{0 € Eno : [Togn<nRd(n), S¢(n)) € Vy}. The independence

implies

pn(UN)
=P( () {weQ:Rga(w)/n € (—00,an],Ign(w)/n € (—o0, Bu]})
0#|n|<N
[I P®Rou/n < an)P(Sga/n < Ba)
0#|n|<N
- 11 3 / T @R gy
0N 2 00,0m] X (=00,6n]
1 21, 12 N
= HN/ e 2 Lo#in|<n 1 lan] d2a1 R anN, KN = (27T)_2N H]4
Vy e
2
n? 4
We have used the equality: P(Rgy,/n < ay,) = \/% ff‘go e~ 2% dr.
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The Gibbs measure of (TS) IV

We set o

dun (9) == (9)d*aodpn () = sve NNy cmy T dan.
In|<N

Recall that f(¢) = exp(3[|8l[7,) x| . <B)-
e Since (TS) is ODE, uy is invariant under the flow (Proposition 19
below).
@ The measures py and py are natural restrictions to En of p and p,

respectively. Thus, for U € Hy and V' € ‘H, we have
p(SyU) = pn(U N Eng),  u(Sy'V) = un(V N Ey),
SyU :=={¢ € Ho: Snyg € U}.

Let 0 < s < 1/2. If U is an open set in H*(T), one has
p(U) < liminf o0 un (U N EN). Moreover, if V is a closed set in
H*5(T), one has u(V) > limsupy_,o un(V N EN).
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The Gibbs measure of (TS) V

Proof of Lemma 18.

Define Uy = Sy'U := {u € H*(T) : Syu € U}. The inclusion

U Climinfy_yoo Uy := UNZl ﬂMZN Uy holds because U is open set.
Let fy be fv := xvy - f- Then, liminfy_,o fv > xv - f. By Fatou’s
lemma, one gets

lim inf Ex) = liminf 4(Uy) = lim inf d?aod
fwinfun (U N Ey) = liminf p(Un) = liminf - fvdaodp

> / lim inf fxd?agdp > / fd%agdp = p(U).
s N—oo U
Defining Vy := {u € H*(T) : Syu € V'}, one has

V D limsupy_,o VN := Nn>1 Un>n Vi because V' is closed. The
desired estimate follows from a similar argument. O

v
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Invariance of the measure py 1

Proposition 19

The measure jun s invariant under the flow ®n(t) of (TS).

Proof.

Set a™ (t) := {an(t)}nj<n, Where u(z,t) = 2ln|<N e"%q,(t). (TS) can

be written as

2
(14) i0pan (t) — na,(t) + 1/0 e~ Sy (ululP~2) (z, t)dx = 0.

2
(14) can be written in a Hamiltonian format as follows:
0H OH
Oran, = —ziaa:f O, =i 8@5

with
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Invariance of the measure puy I1

Proof (sequel).

Since

0 OHy 0 ,OHn\\
an:N <8an(_z oa, )+ 3@(1 day, )> =0,

we can apply the Liouville theorem for Hamiltonian to conclude that
the measure da’da® is invariant under the flow of (TS).
Let A be a Borel set of En. Then,

s at,a N
,uN(A) = K,N/AB_QHN( a N)X{”aNH2<B}d(I daN, KN 271' QNHJ

We can write

D(t)(A) = {(a",aN) : (aV,aN) = dn(£)(b",6V), IBN, V) € A}.
By change of variables (a’V ,aN) = ®(t)(bN,bN) and the invariance of
da™NdaN under @y (t), we get the Jacobian of this variable change is one. |
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Invariance of the measure py II1

Proof (sequel).
Thanks to the conservation laws

Hy(@n(£)(6N,5N)) = Hy(6V,5Y), |96V |2 = 6V
We therefore obtain

_1 oV o _
un(2(t)(A)) = ry [D o’ 2N o o <y da™ da™

Ll NN __
:HN/Ae 2 Hn(b v”N>X{HbN”12SB}dede

= un(2(t)(A)),
which completes the proof. []
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Invariance of u (p=4) I

Let {s;j}jen be a increasing sequence of real numbers such that s; > 0
and lim; 0 s; = 1/2. Note that H = (;Z, H*(T).

Let p = 4. The measure p is invariant nuder the flow of (S). More
precisely, for every p-measurable A, pu(®(t)A) = u(A) holds.

By the reversibility of the flow, it suffices to prove for every ¢t € R and
every p-measurable set A C H, one has the inequality

(15) 1(®(t)(A) = pu(A).
It suffices to prove (15) for closed sets of H*(T).
Indeed, by the regularity of the bounded Borel measure, 3{V},} such that

V,, is a closed set of H*(T), V,, C A, p(A4) = li_>m w(Vy).
Hence, if we can prove (15) for the sets V,,, we have
p(A) = Tim pu(V;) < limsup p(D(t)V,) < p(@()A).
n—00 n—00
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Invariance of p (p =4) 11

Fix sg,s with sg < s and 5,50 € {s;}jen. Let us next show that it
suffices to prove (15) for subsets of H which are bounded in H*(T) and
are compacts of H*0(T).

Indeed, from Proposition 17, for every closed set A of H, one has

0 < u(A) — w(ANBY)) = (AU BY) — n(BY))
< u(H*(T)) — p(BY)) = p(H*(T)\BY)) < Ce,

which implies
p(A) = lim p(AnBY).
R—oo

AN Bg) is compact of H*(T). If we can prove (15) for compacts which
are bounded in H*(T) then
plA) < limsup p(B(O(AN BYY) < u(@(2)(4))
—00
Thus, it suffices to prove (15) for subsets of H which are compacts in
H?*(T) and bounded in H*(T).
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Invariance of pu (p = 4) 111

Let us now fix ¢t € R and K C H, a bounded set of H*(T) which is a
compact in H*(T). Fix ¢ > 0. Thanks to GWP and Lemma 13, we have
(16) @x(t)((K+BL)NEy) C On(t)(SvK)+BSY © @(t)(K)+Bye.,
provided that N > 1.

Since ®(t)(K) is compact of H*(T) and Bé‘gs) is closed, ®(t)(K) + Bécg)
is a closed set of H*°(T).

By Lemma 18, (16), and Proposition 19, we obtain

p(®(t)(K) + BS9)) > limsup un (@(£) (K) + BEY) N Ex)

N—o00
> liminf oy (@ (8) (K + BEY) 1 Ey)
—00
= liminf puy ((K + BY)) N Ey)
N—o00
> u(K + BE) > p(K).
By letting e — 0, we obtain the desired inequality u(®(¢)(K)) > u(K).
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Improved bounds for (TS) I

Let us denote by ®n(t) the smooth flow map of (TS) which is defined
globally.

Proposition 21

ForvVi>1,0<s<1/2, 3 a set Eé\,’s C En such that
un(En\El ) <277,
and for ¢ € Elz.v,s one has the bound
1@ ()]l s < C(i + log(1 + [¢]))"/>.

. . —iq —i
Moreover, for Ny < Ns, we have the inclusion ENys C By s

|

Proof.
We will consider only the positive value of ¢. The analysis for ¢ < 0 is
the same. For 0 < s < 1/2, and i,j € Z, we set

B (Dy) :={¢ € En : |@llu- < Ds(i + )2, |8l < B},
where the number Dg > 1 will be fixed later.
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Improved bounds for (TS) II

Proof (sequel).

Thanks to LWP, there exists 7 € (0, 1] such that
Cp,s)

(17) T > (Ds(i+j)1/2)cl(p’s)7
(18) O (t)(BY (Ds)) € Bi,(CD,) for 0 <t < 7.
Next, we set

[27 /7]

5.0 (D ﬂ O (—k7)(BY (D).

Using Proposition 19 and (17), we can write

[2¢/7] N

pn(EN\ER (Ds)) < D un(Bn\&n(=k7) (B (Ds)))
k=0
= ([2'/7) + Dun (En\By,(Ds)).

M. Okamoto (Kyoto Univ.) NLS and invariant measures 8/26-30, 2013 52 / 62



Improved bounds for (TS) III

Proof (sequel).

Let us observe that
un(EN\BY (Ds)) = p({¢ € H(T) : ||Snellms > Ds(i+ 5)"/?})

< u({p € H*(T) : ||gllas > Dsli + 5)'/2}).
(1

Using Proposition 17 and (17), we can write

(19)
MN(EN\Bj\’]j (D,)) < CQiDgl(p’S) (i + Z')Cl(Pﬁ)/?e—CDf(Hj) < 9—(i+7)
»S - - 9
provided that Dg; > 1 depending on s,p but dependent of 7, j, N
Thanks to (18), for ¢ € E}/_, the solution u(t) of (TS) with data ¢
satisfies '
u(t)|| s < CDs(i +§)2, 0<t <2

Next, we set Zly , := N1 Eé{,js(D ). From (19),

un(EN\El,s) < Z/‘N (EN\EX,(Ds)) < 27°. O
g=
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Improved bounds for (TS) IV

Proposition 22

For every 0 < s <1/2,0<s9<s,teR,ieN, there exists i1 € N such
that for every N > 1, if ¢ € Eé\/,s then one has ®n(t)¢p € Elj\ﬁz

Proof.

Again, we can suppose ¢t > 0. Set u(t) := ®n(t)p. If ¢ € E?V,sv for j € N,
we have |
BN )|l < Cs(i+ 7)Y, 0<t; <2

Let jo € N, depending on ¢, be such that for every j > 1, 2/ +t < 2/+Jo,
Then, we get
(20)
1N (t)u®) s = PN (E+ t)llms < Cs(i+ 5+ 5o) />, 0<ty <2
Interpolating between (20) with and L2-conservation implies
1@ (t)u(t) oo < C(Csli+ 5+ 7)) 02, 1<t <27,
where § =1 — sg/s.
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Improved bounds for (TS) V

Proof (sequel).
Since 0 < 0 < 1, for jo > 1,
C(Csli+j + 1)) 707 < Dy (i + j + jo)>.

Thus,
1@ (t1)u(t)m0 < Dy (i 44 +40)'/2, 0<t1 <27,
which implies u(t) € Eﬁgg’] (Dy,) for every j > 1. Therefore, we obtain

i
u(t) € Exle O

Remark

| A\

The number ¢; in Proposition 22 is the same for every 1, i.e., it depends
only on t, s, s1. This fact is however not of importance for the sequel.

v
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A set is of full y-measure

For every i € Nand 0 < s < 1/2, we set
B = B
By Lemma 18 and Proposition 21, we have
u(ZL) > lim sup pn(Elys) = limsup(uy(Ex) —27°) = p(H(T)) — 277,

N—o0

where :’S denotes the closure of = in H*(T). Next, we set
oo

s = U
i=1

Let {s;j}jen be a increasing sequence of real numbers such that s; > 0

and lim;_,~ s; = 1/2. Then, we set

o0

(21) B,

[1]
[I]

%
s*

The set = is of full y-measure, since every =g is of full y-measure and
the intersection in (21) is countable.
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Global well-posedness of NLS 1

Proposition 23

For every ¢ € E, the local solution of (S) given by Theorem 2 is globally
defined. Moreover, for every t € R, ®(t)(Z) = E.

Proof.

Let us fix ¢ € 25,0 < 5 < 1/2, 0<so<s T > 0. Thus, there exists a
sequence {¢y} such that ¢y € = N,.s Where NNy is tending to infinity,
¢r — ¢ in H*(T). Thanks to Prop031tion 21,

@, () Bxll s < Ci(i +log(L + [£])"/2.
Applying Lemma 13 with A = C,(i 4 log(1 + T))'/2, we have
12(t)¢ — P (B)Prell re0 < 1
provided that k is sufficiently large. It implies
@)@l oo < 24 = C(i +log(1 + T))"/2,
which shows the global well-posedness of (S).

| A
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Global well-posedness of NLS 11

Proof (sequel).

Let us show the inclusion

(22) o(t)(E) C E.

Fix ¢ € =. It suffices to show that for every sg € {s;};jen, we have
O(t)(E) C Eg,.

Let us take s € {s;},en with so < s < 1/2. By ¢ € Ej, there exists i € N

such that ¢ € Ei. Let again ¢y € Eﬁ\,k,s be a sequence which tends to ¢
in H°(T). Thanks to Proposition 22, there is i; € N such that
Oy, (t)or € Eﬁ\zlsg. From Lemma 13, we obtain

O(t)p € T

Hence, ®(t)¢ € Es,, which proves (22). Since the flow ®(t) is reversible,
(22) implies ®(t)(Z2) = E. O

v
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Global well-posedness of NLS III

Proposition 24 (a continuity of ®(t))

Let ¢ € = and {¢r} C E be a sequence such that ¢, — ¢ in H*(T).
Then, for every t € R, ®(t)¢r — ®(t)¢ in H*(T). In particular, for
every closed set A in H*(T), one has

P(t)(ANE)=P(t)(ANE)NE,
where ®(t)(ANE) denotes the closure in H*(T) of ®(t)(ANZE).

|

Proof.
Since ¢ € = and the construction of =, for every 1" > 0 there exists
A > 1 such that
sup [|[®(t)¢llms < A.
lt|<T
Let us denote by 7 the local existence time in LWP associated A. Then,
by the continuity of the flow on [—7, 7],

O(t)pr, — P(t)p in H(T), |t] < 7.
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Global well-posedness of NLS IV

Proof (sequel).

Next, we cover the interval [T, T] by intervals of size 7 and we apply
the continuity of the flow established in LWP at each step. Therefore,
we obtain that

O(t)¢p — @(t)¢ in H*(T), [t <T.

Since ®(t)(Z) C Z, it is clear that
P(t)(ANE)C P(t)(ANE)NE

Next, let us fix u € ®(t)(ANE) N E. Then, there exists a sequence
{1} € ANE such that ug := ®(t)¢pr — v in H*(T). From
ug, ®(—t)u € E and the continuity of ®(t), ¢pp = ®(—t)up — ®(—t)u in
H?(T). Since A is closed, ®(—t)u € A. Thus, we get
ueP(t)(ANE). O

v
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Invariance of p (4 < p <6) 1

Let 4 < p < 6. The measure y is invariant nuder the flow of the (S).
More precisely, for every p-measurable A, u(®(t)A) = u(A) holds.

As in the proof of Theorem 20, it suffices to prove the inequality

(23) p(@()(K)) = u(K).

for subsets K of = which are compacts in H*°(T) and bounded in H*(T).
Let us now fix t € R and K C Z, a bounded set of H*(T) which is a
compact in H*(T).

There exists Ry such that {®(t1)(K) : [t1] < |t|} C BI(%S(?).
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Invariance of u (4 < p <6) 11

Proof of Lemma 26.

If not, then for all k& > 0 there exists t; € R and ¢ € K such that

lti] < |t| and ||®(tx)ok||mso > k. Since K is a compact set in H*0(T),
there exists a subsequence {¢y, } C {¢1} and ¢ € K such that ¢, — ¢
in H*(T). Proposition 24 implies ®(ty,)pr, — ®(ty,)¢ in H*(T), which
contradicts to the unboundedness of {®(t;)¢x}. O

Set,
C(p, s0)

(14 Rg)C1(p:s0)”

To 1=

It suffices to show that
(24) W(K) < p(@(t)K),  |t] < 7o.
Indeed, once (24) is established, it suffices to cover [0,¢] by intervals of

size 19 and to apply (24) at each step.
The proof of (24) is the same as Theorem 20.
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