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The nonlinear Schrödinger equation

Jean Bourgain, Periodic nonlinear Schrödinger equation and invariant
measures, Comm. Math. Phys. 166 (1994), no.1, 1-26.

The Cauchy problem for the nonlinear Schrödinger equation :

(S)

{
iut + uxx + u|u|p−2 = 0,

u(x, 0) = ϕ(x) ∈ Hs(T).

u = u(x, t) : T× I → C, T = R/2πZ, I is an interval.

ϕ is a given function.

Hs(T) := {ϕ ∈ L2(T) :
∑

n∈Z(1 + |n|)2s|ϕ̂(n)|2 < 1}.
p > 2.

The scale transformation: uλ(x, t) = λ2/(p−2)u(λx, λ2t).

The scale critical index s∗ := 1/2− 2/(p− 2).

The focusing case.
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The nonlinear Schrödinger equation (sequel)

Conservation quantities: L2-norm N(ϕ) and Hamiltonian (energy) H(ϕ):

N(u(t)) = N(ϕ), H(u(t)) = H(ϕ),

N(ϕ) := ∥ϕ∥2L2 =
1

2π

∫ 2π

0
|ϕ(x)|2dx,

H(ϕ) := ∥∂xϕ∥2L2 −
2

p
∥ϕ∥pLp =

1

2π

∫ 2π

0
|∂xϕ(x)|2dx− 1

πp

∫ 2π

0
|ϕ(x)|pdx.

.
Theorem 1 (Bourgain ’93)
..

.

. ..

.

.

Let p = 4. Then, (S) is global well-posed (GWP) in Hs(T) with s ≥ 0.

.
Theorem 2 (Bourgain ’93)
..

.

. ..

.

.

Let p > 4. Then, (S) is local well-posed (LWP) in Hs(T) with
s > max(s∗, 0), where s∗ := 1/2− 2/(p− 2).
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Main result
.
Theorem 3
..

.

. ..

.

.

Let 4 ≤ p ≤ 6. The (L2-truncated) Gibbs measure of (S) is invariant
under the flow.

.
Corollary 4
..

.

. ..

.

.

Let 4 < p ≤ 6 and 0 < s < 1/2. Then, (S) with almost every ϕ ∈ Hs(T)
is GWP.

.
Strategies
..

.

. ..

.

.

...1 Prove LWP of (S) and (TS).

...2 Construct the Gibbs measures µ and µN of (S) and (TS)
respectively.

...3 Show invariance of µN .

...4 Prove GWP of (S) for almost all ϕ ∈ Hs(T) when 4 < p ≤ 6.

...5 Prove invariance of µ.
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Notations I

ϕ̂ denotes the Fourier coefficients. ϕ̂(n) := 1
2π

∫ 2π
0 e−inxϕ(x)dx.

Lq(T) := {ϕ :
∫
T |u(x)|

qdx <∞}, ∥ϕ∥Lq := ( 1
2π

∫ 2π
0 |ϕ(x)|qdx)1/q.

We (sometimes) abbreviate ∥ · ∥Lq as ∥ · ∥q.
q′ denotes the Hölder conjugate of q, i.e., 1/q + 1/q′ = 1.

Hs(T) := {ϕ ∈ L2(T) :
∑

n∈Z(1 + |n|)2s|ϕ̂(n)|2 <∞},
∥ϕ∥Hs := (

∑
n∈Z(1 + |n|)2s|ϕ̂(n)|2)1/2.

Hs
0(T) := {ϕ ∈ Hs(T) : ϕ̂(0) = 0}.

B
(s)
R := {ϕ ∈ Hs(T) : ∥ϕ∥Hs ≤ R}.

EN := span{einx : |n| ≤ N} ∼= C2N+1 ∼= R2(2N+1).

EN,0 := span{einx : 0 ̸= |n| ≤ N} ∼= C2N ∼= R4N .

For ϕ ∈ EN , we identify ϕ and aN := {an}|n|≤N through

ϕ(x) =
∑

|n|≤N einxϕ̂(n).

eit∂
2
x denotes the free propagation of the Schrödinger equation, i.e.,

u(x, t) = eit∂
2
xϕ solves (i∂t + ∂2x)u = 0, u(x, 0) = ϕ(x).

eit∂
2
xϕ(x) :=

∑
n∈Z e

i(nx−n2t)ϕ̂(n).
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Notations II

X . Y means X ≤ CY for some C > 1.

X ≪ Y means 1
CX ≤ Y .

X ∼ Y means X . Y and Y . X.

The capital letters L,M,M1, N denote dyadic numbers, e.g.,
L, M, M1, N ∈ 2N.

SNϕ(x) :=
∑

|n|≤N einxϕ̂(n). Define S1/2ϕ := 0.

PN := SN − SN/2.

∆I :=
∑

n∈I e
inxϕ̂(n) for some interval I ⊂ R.

ΛL,N := {(n, λ) ∈ Z× R : N/2 < |n| ≤ N, ⟨λ+ n2⟩ ∼ L}.
ΛL,I := {(n, λ) ∈ I × R : ⟨λ+ n2⟩ ∼ L} for some interval I ⊂ R.
Φ(t) and ΦN (t) denote the flow map of (S) and (TS) respectively.
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NLS and truncated NLS

The Cauchy problem for the NLS:

(S)

{
iut + uxx + u|u|p−2 = 0,

u(x, 0) = ϕ(x) ∈ Hs(T).
The finite dimensional model equation:

(TS)

{
iut + uxx + SN (u|u|p−2) = 0,

u(x, 0) = ϕ(x) ∈ EN .

First of all, we show that these Cauchy problems are locally well-posed.
There is essentially no change in the argument (cf. Bourgain ’93).

...1 The Strichartz estimates on T.

...2 The Bourgain spaces.

...3 Related estimates.

...4 Proof of LWP.
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The Strichartz estimates I

.
Proposition 5 (L4 Strichartz estimate)
..

.

. ..

.

.

∥eit∂2
xϕ∥L4

t,x(T2) . ∥ϕ∥L2 for ϕ ∈ L2(T).

.
Proof.
..

.

. ..

.

.

(2π)2∥eit∂2
xϕ∥4L4

t,x(T2) =

∫
T2

(eit∂
2
xϕ)2 · (eit∂2

xϕ)2dtdx

=
∑

n1,...,n4

∫∫
ei(n1+n2−n3−n4)xe−i(n2

1+n2
2−n2

3−n2
4)tϕ̂(n1)ϕ̂(n2)ϕ̂(n3)ϕ̂(n4)dtdx.

Here, n1 + n2 − n3 − n4 = 0 and n21 + n22 − n23 − n24 = 0 are equivalent to
(n1 = n3 and n2 = n4) or (n1 = n4 and n2 = n3). Thus, it is equal to∑

n1,n2

|ϕ̂(n1)|2|ϕ̂(n2)|2 = ∥ϕ∥4L2 .
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The Strichartz estimates II
.
Proposition 6 (Almost L6 Strichartz estimate)
..

.

. ..

.

.

∥SNeit∂
2
xϕ∥L6

t,x(T2) . N ε∥ϕ∥L2 for ϕ ∈ L2(T).

We can not remove the loss N ε, which cause difficulties on T.
.
Proof.
..

.

. ..

.

.

∥eit∂2
xSNϕ∥6L6

t,x(T2) = ∥eit∂2
xSNϕ|eit∂

2
xSNϕ|2∥2L2

t,x(T2)

=
∥∥∥ ∑
n1,n2,n3,
|nj |≤N

ei(n1−n2+n3)xe−i(n2
1−n2

2+n2
3)tϕ̂(n1)ϕ̂(n2)ϕ̂(n3)

∥∥∥2
L2
t,x

=
∑
n,λ∈Z

∣∣∣ ∑
(n1,n2)∈Γ(n,λ)

ϕ̂(n1)ϕ̂(n2)ϕ̂(n− n1 + n2)
∣∣∣2,

where Γ(n, λ) :=
{
(n1, n2) ∈ Z2 :

|nj | ≤ N, |n− n1 + n2| ≤ N,

λ = −n21 + n22 − (n− n1 + n2)
2

}
.
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The Strichartz estimates III

.
Proof (sequel).
..

.

. ..

.

.

From Hölder’s inequality,

∥eit∂2
xSNϕ∥6L6

t,x(T2) ≤ sup
(n,λ)∈Z2

#Γ(n, λ)∥ϕ∥6L2 .

Note that for every n, λ ∈ Z and (n1, n2) ∈ Γ(n, λ)

λ+ n2 = −2(n1 − n)(n1 − n2).

By Lemma 7 (below), sup(n,λ)∈Z2 #Γ(n, λ) . e
c

logN
log logN . N ε, which

concludes the proof.

.
Lemma 7 (divisor counting (see Theorem 317 in Hardy and Wright
“An introduction to the Theory of numbers”))
..

.

. ..

.

.

“the number of divisors of A” ≤ C exp
( c logA

log logA

)
for A ∈ N.
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The Bourgain spaces I

.
Definition 8 (The Bourgain spaces)
..

.

. ..

.

.

For s, b ∈ R, we define

∥u∥Xs,b :=
(∑

n∈Z

∫
⟨n⟩2s⟨λ+ n2⟩2b|û(n, λ)|2dλ

)1/2
.

For an interval I ⊂ R, we define ∥u∥
Xs,b

I
:= inf{∥v∥Xs,b : u = v on I}.

.
Proposition 9 (Linear estimates)
..

.

. ..

.

.

Let s ∈ R, 1/2 < b ≤ 1, 0 < T ≤ 1. Also, let 0 ≤ δ ≤ 1− b. Then,

∥eit∂2
xϕ∥Xs,b . ∥ϕ∥Hs ,

∥∥∥∥∫ t

0
ei(t−t′)∂2

xG(x, t′)dt′
∥∥∥∥
Xs,b

[−T,T ]

. T δ∥G∥
Xs,b−1+δ

[−T,T ]

.

See, for the proof, Lemma 2.11 and Proposition 2.12 in T. Tao
“Nonlinear Dispersive Equations, local and global analysis, CBMS 106.”
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The Bourgain spaces II

Thanks to Proposition 9, it suffices to prove

∥u|u|p−2∥Xs,−b1 . ∥u∥p−1
Xs,b ,(1)

∥u|u|p−2 − v|v|p−2∥Xs,−b1 . (∥u∥p−2
Xs,b + ∥v∥p−2

Xs,b)∥u− v∥Xs,b(2)

for 0 < b1 < 1/2 < b.
(S) is equivalent to

(3) u(x, t) = eit∂
2
xϕ(x) + i

∫ t

0
ei(t−t′)∂2

x(u|u|p−2)(x, t′)dt′.

Let Θ(u) denote the right hand side of (3). (1) and (2) imply

∥Θ(u)∥
Xs,b

[−τ,τ ]
≤ C∥ϕ∥Hs + τ δ∥u∥p−1

Xs,b
[−τ,τ ]

,

∥Θ(u)−Θ(v)∥
Xs,b

[−τ,τ ]
≤ τ δ(∥u∥

Xs,b
[−τ,τ ]

+ ∥v∥
Xs,b

[−τ,τ ]
)p−2∥u− v∥

Xs,b
[−τ,τ ]

.

Θ is a contraction mapping on Xτ , where

Xτ := {u ∈ Xs,b
[−τ,τ ] : ∥u∥Xs,b

[−τ,τ ]

≤ 2C∥ϕ∥Hs}, (2C∥ϕ∥Hs)p−2τ δ <
1

4
,

and b is chosen closely to 1/2.
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The case p = 4 I

.
Proposition 10
..

.

. ..

.

.

∥u∥L4
t,x

. ∥u∥X0,3/8 .

.
Proof.
..

.

. ..

.

.

Write
u =

∑
L

QLu, F [QLu](n, λ) = uχ⟨λ+n2⟩∼L.

∥u∥2L4
t,x

= ∥uu∥L2
t,x

.
∑
L1

∑
L2≤L1

∥QL1u ·QL2u∥L2
x,t
.

Let L1 = 2lL2. It is reduced to show that

(4) ∥QLu ·Q2lLu∥L2
t,x

. 2−εlL3/8∥QLu∥L2
t,x
(2lL)3/8∥Q2lLu∥L2

t,x

for some ε > 0. Put UL := QLu/∥QLu∥L2
t,x
. (4) is equivalent to∥∥∥ ∑

n1∈Z

∫
ÛL(n1, λ1)Û2lL(n− n1, λ− λ1)dλ1

∥∥∥
L2
n,λ

. 2(3/8−ε)lL3/4.
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The case p = 4 II

.
Proof (sequel).
..

.

. ..

.

.

By the Cauchy-Schwartz inequality, it is sufficient to show

sup
(n,λ)∈Z×R

#Γ(n, λ) . 2(3/4−2ε)lL3/2,(5)

Γ(n, λ) := {(n1, λ1) ∈ Z× R : |λ1 + n21| . L, |λ− λ1 + (n− n1)
2| . 2lL}.

Since

λ = λ1 + (λ− λ1) = −2n21 + 2nn1 − n2 +O(2lL),

n1 =
n±

√
−n2 − 2λ

2
+O(2l/2L1/2),

we have
#Γ(n, λ) . 2l/2L3/2,

which shows (5) with ε = 1/8.
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The case p = 4 III

The L4-Strichartz estimate and the transference principle1 show

(6) ∥u∥L4
t,x

. ∥u∥X0,b

for any b > 1/2.
Thanks to Proposition 10, (6) and the fractional chain rule, we obtain

∥u|u|2∥Xs,−b1 ≤ ∥∂sx(u|u|2)∥X0,−3/8 . ∥∂sx(u|u|2)∥L4/3
t,x

. ∥u∥2L4
t,x
∥∂sxu∥L4

t,x
. ∥u∥2X0,b∥u∥Xs,b

if 3/8 ≤ b1 < 1/2 < b. Similarly,

∥u|u|2 − v|v|2∥Xs,−b1 . (∥u∥X0,b + ∥v∥X0,b)2∥u− v∥Xs,b ,

which shows LWP for p = 4.
By the L2-conservation law, we can extend the local solution obtained
above to global one.

1See Lemma 2.9 in T. Tao “Nonlinear Dispersive Equations, local and global
analysis, CBMS 106.”
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Related estimates I

.
Lemma 11
..

.

. ..

.

.

For b > 1/2 and q ≥ 6,

∥PNu∥Lq
t,x

. N1/2−3/q+ε∥PNu∥X0,b .

.
Proof.
..

.

. ..

.

.

It suffices to show the following:

(7) ∥eit∂2
xPNϕ∥Lq

t,x
. N1/2−3/q+ε∥PNϕ∥L2

because of the transference principle. Interpolating Proposition 6 with

∥eit∂2
xPNϕ∥L∞

t,x
. N1/2∥eit∂2

xPNϕ∥L∞
t L2

x
. N1/2∥PNϕ∥L2 ,

we obtain (7).
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Related estimates II

.
Lemma 12
..

.

. ..

.

.

For 2 < q < 6 and b > 1/2,

∥PNu∥Lq
t,x

. N ε(1−θ)∥PNu∥X0,b ,(8)

∥PΛL,N
u∥L2

t,x
. L(1−θ)/2N ε(1−θ)∥u∥Lq′ ,(9)

where θ = 3/q − 1/2, 1/q′ = 1− 1/q,

F [PΛL,N
u](λ, n) = û(λ, n)χN<|n|≤2Nχ⟨λ−n2⟩∼L.

The estimate (9) follows from duality argument.

M. Okamoto (Kyoto Univ.) NLS and invariant measures 8/26-30, 2013 20 / 62



Proof of Theorem 2 I

We only consider the case where p > 4 is even for simplicity.
Put w := u|u|p−2. Write

(10) w =
∑
M

(
SMu|SMu|p−2 − SM/2u|SM/2u|p−2

)
Without loss of generality, we may assume M & N . One may write for
complex values z, w

z|z|p−2 − w|w|p−2 = (z − w)φ1(z, w) + (z − w)φ2(z, w),

where φj satisfy |∇φj | . (|z|+ |w|)p−3. Substituting in (10) with
z = SMu and w = SM/2u, we get

w =
∑
M

(
PMu · φ1(SMu, SM/2u) + PMu · φ2(SMu, SM/2u)

)
.
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Proof of Theorem 2 II

Putting vM := φ1(SMu, SM/2u) and v1/2 := 0, we write again

vM = (vM − vM/2) + · · ·+ (v1 − v1/2) =
∑

M1≤M

(vM1 − vM1/2).

Since φ1 is Lipschitz continuous, we have

vM1 − vM1/2 = PM1u · ψ1 + PM1u · ψ2 + PM1/2u · ψ3 + PM1/2u · ψ4,

where ψj = ψj(SM1u, SM1/2u, SM1/4u) satisfy
|ψj | . (|SM1u|+ |SM1/2u|+ |SM1/4u|)p−3.
Hence, we have to estimate∑

L,N

∑
M&N

∑
M1≤M

N sL−b1
∥∥PΛL,N

(PMu · PM1u · ψ)
∥∥
L2
t,x
,

where ψ denotes one of ψ1 and ψ2.
Decompose the interval [M/2,M ] as follows:

[M2 ,M ] =

M/2M1∪
k=1

Ik, Ik := [M2 + (k − 1)M1,
M
2 + kM1].
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Proof of Theorem 2 III

Then, one has PMu =
∑M/2M1

k=1 ∆Iku, where ∆Iϕ :=
∑

n∈I e
inxϕ̂(n).

The functions

wIk := ∆Iku · PM1u · ψ(SM1u, SM1/2u, SM1/4u)

have essentially disjoint supported Fourier transform of varying k.
Thus, one has to estimate the following:∑

L,N

∑
M&N

∑
M1≤M

N sL−b1
(M/2M1∑

k=1

∥ŵIk∥
2
L2(ΛL,Ik

)

)1/2
.

Choose 2 < p1 < 6. From (9) in Lemma 12 with q = p1,

∥ŵIk∥L2(ΛL,Ik
) . L(1−θ)/2M

ε(1−θ)
1 ∥wIk∥Lp′1

, θ =
3

p1
− 1

2
.

Thanks to Hölder’s inequality, we get

∥wIk∥Lp′1
≤ ∥∆Iku∥Lp1∥PM1u · ψ∥p1p′1/(p1−p′1)

.
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Proof of Theorem 2 IV

By the orthogonality and (8) in Lemma 12, we have(M/2M1∑
k=1

∥∆Iku∥
2
L2

)1/2
.M

ε(1−θ)
1

(M/2M1∑
k=1

∥∆Iku∥
2
X0,b

)1/2

.M
ε(1−θ)
1 ∥PMu∥X0,b ∼M

ε(1−θ)
1 M−s∥PMu∥Xs,b .

Let p2 ≥ 6 and 1 > 2/p1 + 1/p2. Hölder’s inequality and Lemma 11
imply

∥PM1u · ψ∥p1p′1/(p1−p′1)
. ∥PM1u∥Lp2∥ψ∥(1−2/p1−1/p2)−1

.M
1/2−3/p2+ε−s
1 ∥PM1u∥Xs,b∥SM1u∥

p−3
(p−3)(1−2/p1−1/p2)−1 .

Taking p3 such that p3 ≥ 6 and (p− 3)/p3 ≤ 1− 2/p1 − 1/p2, we have

∥SM1u∥(p−3)(1−2/p1−1/p2)−1

.
∑

M2≤M1

∥PM2u∥p3 .
∑

M2≤M1

M
1/2−3/p3+ε−s
2 ∥PM2u∥Xs,b . ∥u∥Xs,b

provided that s > 1/2− 3/p3.
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Proof of Theorem 2 V

We therefore have

∥PM1u · ψ∥p1p′1/(p1−p′1)
.M

1/2−3/p2+ε−s
1 ∥PM1u∥Xs,b∥u∥p−3

Xs,b .

Combing it with above estimates, we obtain

∥w∥Xs,−b1 . ∥u∥Xs,b∥u∥Xs,b∥u∥p−3
Xs,b ,

provided that

2 < p1 < 6, p2 ≥ 6, p3 ≥ 6,

1 >
2

p1
+

1

p2
,

p− 3

p3
≤ 1− 2

p1
− 1

p2
,

s >
1

2
− 3

p3
, s >

1

2
− 3

p2
.

We can choose p1, p2, p3 which satisfy the all conditions if
s > max(1/2− 2/(p− 2), 0).
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Remarks on well-posednes

The existence time τ depends on ∥ϕ∥Hs . More precisely, one has

τ >
C(p, s)

(1 + ∥ϕ∥Hs)C1(p,s)
.

This existence time τ does not depend on N even if we consider the
truncated equation (TS).

The constant C1(p, s) does not depend on s for p < 6. This fact is
however not of importance for the sequel.

For p ≥ 4, s, s0 > max(s∗, 0), the same calculation shows

∥u|u|p−2∥Xs,−b1 . ∥u∥Xs,b∥u∥p−2

Xs0,b
.

.
Remark
..

.

. ..

.

.

In general case, some more technicalities are needed because the
nonlinear term u|u|p−2 is not smooth.
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The finite dimensional approximation I

.
Lemma 13
..

.

. ..

.

.

Let 4 ≤ p ≤ 6, s > 0, ϕ ∈ Hs(T), ∥ϕ∥Hs ≤ A. Assume the solution uN
of (TS) with data SNϕ satisfies

∥uN (t)∥Hs ≤ A for |t| ≤ T .

Then, (S) is WP on [−T, T ] and there is the approximation for |t| ≤ T
and 0 < s0 < s

(11) ∥u(t)− uN (t)∥Hs0 < exp(C(p, s)(1 +A)C1(p,s)T )AN s0−s

provided that the expression on the right hand side of (11) remains < 1.

We will only consider t > 0. Let τ be the existence time given by LWP.
Note that

τ >
C(p, s)

(1 +A)C1(p,s)
.

Assume for t ≤ t0 we obtain

∥u(t)− uN (t)∥Hs0 < δ < 1.
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The finite dimensional approximation II

Thanks to LWP, the IVPs

i∂tu+ ∂2xu+ u|u|p−2 = 0, u|t=t0 = u(t0),

i∂tv + ∂2xv + v|v|p−2 = 0, v(t0) = uN (t0)

are WP for t ∈ [t0, t0 + τ ]. Moreover, we have

(12) ∥u(t)− v(t)∥Hs0 ≤ 2∥u(t0)− v(t0)∥Hs0 < 2δ.

Compare uN and v on [t0, t0 + τ ]. From LWP, one has

∥v∥X . ∥v(t0)∥Hs0 . CA, ∥uN∥X . ∥uN (t0)∥Hs0 . CA,

where X := Xs0,b
[t0,t0+τ ] for some b > 1/2. Write

v(t)− uN (t) = i

∫ t

0
ei(t−t′)∂2

xΓ(t′)dt′, Γ := v|v|p−2 − SN (uN |uN |p−2).

By Γ = (v|v|p−2 − SN (v|v|p−2)) + SN (v|v|p−2 − uN |uN |p−2), the same
argument in the proof of LWP implies

∥v − uN∥X . τ δ(∥v − SNv∥X∥v∥p−2
X + ∥v − uN∥X(∥v∥X + ∥uN∥X)p−2).
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The finite dimensional approximation III

Thanks to the choice of τ , we get

(13) ∥v − uN∥X < ∥v − SNv∥X . N s0−s∥v(t0)∥Hs ≤ CAN s0−s.

From (12) and (13), we obtain

∥v(t)− uN (t)∥Hs0 ≤ 2δ + CAN s0−s, t0 ≤ t ≤ t0 + τ.

Break the interval [0, t] up in subintervals of length τ . For tj := jτ
(j = 0, . . . , [T/τ ]) , denoting ∥u(tj)− uN (tj)∥Hs0 by δj , we have

δ0 < N s0−sA, δj < 2δj−1 + CAN s0−s,

which implies

δj < 2jδ0 + (2j − 1)CAN s0−s < C2jAN s0−s.

By the lower bound of τ , we obtain

∥u(t)− uN (t)∥Hs0 ≤ exp(C(1 +A)C1(p,s)T )AN s0−s, 0 ≤ t ≤ T.
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Basic terminology of probability theory

We call a measure space (Ω,F , P ) a probability space if P (Ω) = 1.
Let X : Ω → R be a random variable (i.e., X is measurable.). We
define its expected value to be E[X] :=

∫
ΩX(ω)dP (ω) if X ∈ L1(Ω).

We call a measure λ on (R,B(R)) the distribution of X if
λ(A) = P (X−1(A)) for all A ∈ B(R).
We call a r.v. real Gaussian if its distribution is given by
e−x2/2/

√
2πdx.

The r.v.s X,Y are independent if for all A,B ∈ B(R) the following
equality holds:

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B).

We call a r.v. g complex Gaussian if there exist independent real
Gaussian g1, g2 such that g = g1 + ig2.

If X,Y are independent r.v.s, one has E[XY ] = E[X]E[Y ].
If X,Y are independent r.v. and g, h are measurable, then g(X,Y )
and h(X,Y ) are independent. Especially, eX and eY are
independent.
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The Gibbs measure of (S) I

Recall our Cauchy problem:

(S)

{
iut + uxx + u|u|p−2 = 0,

u(x, 0) = ϕ(x) ∈ Hs(T).
The Hamiltonian is formally conserved:

H(ϕ) =∥∂xϕ∥2L2 −
2

p
∥ϕ∥pLp =

1

2π

∫ 2π

0
|∂xϕ|2dx− 1

πp

∫ 2π

0
|ϕ|pdx.

For s < 1/2, we denote by Hs
0(T) the set {ϕ ∈ Hs(T) : ϕ̂(0) = 0}.

Let ρ be the image measure under the map X : Ω → Hs
0(T)

ω 7→ X(ω) :=
∑
n̸=0

gn(ω)

n
einx,

where the {gn} are independent complex Gaussian random variables.
.

.

. ..

.

.

Since the random Fourier series
∑

n ̸=0
gn(ω)

n einx is in
H0 :=

∩
s<1/2H

s
0(T) a.s., we may consider ρ as a measure on H0.
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The Gibbs measure of (S) II

.
Proposition 14
..

.

. ..

.

.

Let s < 1/2. There exist constants C, c > 0 such that for all
N0 ∈ 2N∪{0}, λ ≥ 1 one has

ρ({ϕ ∈ Hs
0(T) : ∥(1− SN0)ϕ∥Hs > λ}) ≤ C exp(−cλ2N2(1−s)

0 ).

In particular, ρ(Hs(T)) = 1.

.
Proof.
..

.

. ..

.

.

For N0 ≥ 1, we set

AN0 := {ω ∈ Ω : ∥(1− SN0)X(ω)∥Hs > λ}.
Note that ρ({ϕ ∈ Hs

0(T) : ∥(1− SN0)ϕ∥Hs > λ}) = P (AN0).
Let θ be a real number such that 0 < θ < 1/2− s. Next, we set

A′
N := {ω ∈ Ω : ∥PNX(ω)∥Hs > λ

2 (N
−θ + (N−1N0)

1−s)}.
Then, AN0 ⊂

∪
N≥N0

A′
N holds.
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The Gibbs measure of (S) III
.
Proof (sequel).
..

.

. ..

.

.

From Lemma 15 (below), we have

P (AN0) ≤
∑

N≥N0

P (A′
N ) ≤

∑
N≥N0

C exp(c1N−c2λ2(N2(1−s)−2θ+N
2(1−s)
0 )).

The choice of θ implies 1 < 2(1− s)− 2θ and thus

P (AN0) ≤ C exp(−cλ2N2(1−s)
0 ).

.
Lemma 15
..

.

. ..

.

.

Let Λ be a finite subset of N. For λ > 0, we have

P (
∑
n∈Λ

|gn(ω)|2 > λ) < ec1#Λ−c2λ.

Noting that E[e|gn|
2/4] = 2, we have

P (
∑

n∈Λ |gn(ω)|2 > λ) = P (
∏

n∈Λ e
|gn(ω)|2/4 > eλ/4)

≤ e−λ/4E[
∏

n∈Λ e
|gn|2/4] = e−λ/4

∏
n∈ΛE[e|gn|

2/4] < e−λ/42#Λ.
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The Gibbs measure of (S) IV

Let us define
f(ϕ) := exp(1p∥ϕ∥

p
Lp)χ{∥ϕ∥L2≤B},

where B is the L2-cutoff.
.
Lemma 16
..

.

. ..

.

.

Let 1 ≤ q ≤ 2. Then, we have f ∈ Lq(dρ) for p < 6 and arbitrary B and
for p = 6 and sufficiently small B.

We set
dµ(ϕ) := f(ϕ)d2a0dρ(ϕ).

where a0 denotes ϕ̂(0) and d2a0 := da0da0.

Lemma 16 shows that this measure ρ is well-defined and a measure
on H :=

∩
0<s<1/2H

s(T).
If p < 6, f ∈ Lq(dρ) for all 1 ≤ q <∞.
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The Gibbs measure of (S) V

.
Proposition 17
..

.

. ..

.

.

Let 0 ≤ s < 1/2. There exist constants C, c > 0 such that for all λ ≥ 1
one has

µ({ϕ ∈ Hs(T) : ∥ϕ∥Hs > λ}) ≤ Ce−cλ2
.

.
Proof.
..

.

. ..

.

.

Set Aλ := {ϕ ∈ Hs(T) : ∥ϕ∥Hs > λ}. Using Proposition 14 and Lemma
16, we can write

µ(Aλ) =

∫
Aλ

dρ =

∫
Aλ

f(ϕ)da0dρ(ϕ)

≤ BeB
(∫

Aλ∩Hs
0(T)

f2(ϕ)dρ(ϕ)
)1/2(∫

Aλ∩Hs
0(T)

dρ
)1/2

≤ Cρ(Aλ ∩Hs
0(T)) ≤ Ce−cλ2

.
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Proof of Lemma 16 I

Note that

|f |q ∈ L1(dρ) ⇔
∫ ∞

0
ρ({ϕ ∈ H : |f |q > λ})dλ <∞ ⇔

∫ ∞

1
g(λ)dλ <∞,

where g(λ) := P ({ω ∈ Ω : ∥X(ω)∥Lp > γ, ∥X(ω)∥L2 ≤ B}),
X(ω) =

∑
n̸=0 gn(ω)e

inx/n, and γ := (p(log λ)/q)1/p.
Let s := 1/2− 1/p. By Hs(T) ↪→ Lp(T), we have

g(λ) ≤ P ({ω ∈ Ω : ∥X(ω)∥Hs > γ/Cs, ∥X(ω)∥L2 ≤ B})
Set N0 := κγ1/s, where κ > 0 is small number to be fixed. Then,

{ω ∈ Ω : ∥X(ω)∥Hs > γ/Cs, ∥X(ω)∥L2 ≤ B} ⊂ A1 ∪A2

with

A1 := {ω ∈ Ω : ∥SN0X(ω)∥Hs > γ/4Cs, ∥X(ω)∥L2 ≤ B},
A2 := {ω ∈ Ω : ∥(1− SN0)X(ω)∥Hs > γ/4Cs}.
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Proof of Lemma 16 II

Since
∥SN0X(ω)∥Hs ≤ CN s

0∥X(ω)∥L2 ≤ CκsγB,

A1 = ∅ if κ = (5CsC)
−1/sB−1/s. This fixes the parameter κ.

On the other hand, thanks to Proposition 14,

P (A2) = ρ({ϕ ∈ Hs
0(T) : ∥(1− SN0)ϕ∥Hs > γ/4Cs})

≤ C exp(−cγ2N2(1−s)
0 ) = C exp(−cγ2/sB−2(1−s)/s).

Therefore, we obtain

g(λ) ≤ C exp(−c(p/q)4/(p−2)(log λ)4/(p−2)B−2(p+2)/(p−2)).

If 2 < p < 6, by 4/(p− 2) > 1, g(λ) is integrable on [1,∞) for all B > 0.
If p = 6, g(λ) is bounded by Cλ−c/qB4

. Thus, for sufficiently small B,
g(λ) is integrable on [1,∞).
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The Gibbs measure of (TS) I

(TS)

{
iut + uxx + SN (u|u|p−2) = 0,

u(x, 0) = ϕ(x) ∈ EN .

We identify ϕ ∈ EN and aN := {an}|n|≤N ∈ C2N+1 through

ϕ(x) =
∑

|n|≤N einxan, where an := ϕ̂(n).
The Hamiltonian of (TS) is given by

HN (ϕ) :=
1

2π

∫ 2π

0
|∂xϕ|2dx− 1

πp

∫ 2π

0
|ϕ|pdx,

HN (aN , aN ) =
∑

|n|≤N

n2|an|2 −
1

πp

∫ 2π

0

∣∣∣∣∣∣
∑

|n|≤N

einxan

∣∣∣∣∣∣
p

dx.

Since (TS) is ODE, this Hamiltonian is rigorously conserved.
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The Gibbs measure of (TS) II

As in NLS, we define the following measures. Let ρN be image measure
on EN,0 := span{einx : 0 ̸= |n| ≤ N} ∼= C2N ∼= R4N under the map

ω 7→ XN (ω) :=
∑

0 ̸=|n|≤N

gn(ω)

n
einx.

This measure also has the following explicit formula:

dρN =
e−

1
2
∑

0 ̸=|n|≤N n2|an|2d2a1 . . . d
2aN∫

C2N e
−1
2
∑

0 ̸=|n|≤N n2|an|2d2a1 . . . d2aN

.

.
Remark
..

.

. ..

.

.

If we replace the distribution of real and imaginary parts of gn with
1√
π
e−x2

, (namely ℜgn,ℑgn = N(0, 1/
√
2)) then

dρN =
e−

∑
0̸=|n|≤N n2|an|2d2a1 . . . d

2aN∫
C2N e

−
∑

0̸=|n|≤N n2|an|2d2a1 . . . d2aN
.

We may replace the coefficient 1/2 with 1.
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The Gibbs measure of (TS) III

Let VN :=
∏

0̸=|n|≤N (−∞, αn]× (−∞, βn] and

UN = {ϕ ∈ EN,0 :
∏

0̸=|n|≤N (ℜϕ̂(n),ℑϕ̂(n)) ∈ VN}. The independence
implies

ρN (UN )

= P
( ∩
0̸=|n|≤N

{ω ∈ Ω : ℜgn(ω)/n ∈ (−∞, αn],ℑgn(ω)/n ∈ (−∞, βn]}
)

=
∏

0 ̸=|n|≤N

P (ℜgn/n < αn)P (ℑgn/n < βn)

=
∏

0 ̸=|n|≤N

n2

2π

∫
(−∞,αn]×(−∞,βn]

e−
n2

2 (x2
n+y2n)dxndyn

= κN

∫
VN

e−
1
2
∑

0̸=|n|≤N n2|an|2d2a1 . . . d
2aN , κN := (2π)−2N

N∏
j=1

j4.

We have used the equality: P (ℜgn/n < αn) =
|n|√
2π

∫ αn

−∞ e−
n2

2 x2

dx.
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The Gibbs measure of (TS) IV

We set

dµN (ϕ) := f(ϕ)d2a0dρN (ϕ) = κNe
−HN (aN ,aN )χ{∥aN∥l2≤B}

∏
|n|≤N

d2an.

Recall that f(ϕ) = exp(1p∥ϕ∥
p
Lp)χ{∥ϕ∥L2≤B}.

Since (TS) is ODE, µN is invariant under the flow (Proposition 19
below).
The measures ρN and µN are natural restrictions to EN of ρ and µ,
respectively. Thus, for U ∈ H0 and V ∈ H, we have

ρ(S−1
N U) = ρN (U ∩ EN,0), µ(S−1

N V ) = µN (V ∩ EN ),

S−1
N U := {ϕ ∈ H0 : SNϕ ∈ U}.

.
Lemma 18
..

.

. ..

.

.

Let 0 ≤ s < 1/2. If U is an open set in Hs(T), one has
µ(U) ≤ lim infN→∞ µN (U ∩ EN ). Moreover, if V is a closed set in
Hs(T), one has µ(V ) ≥ lim supN→∞ µN (V ∩ EN ).
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The Gibbs measure of (TS) V

.
Proof of Lemma 18.
..

.

. ..

.

.

Define UN = S−1
N U := {u ∈ Hs(T) : SNu ∈ U}. The inclusion

U ⊂ lim infN→∞ UN :=
∪

N≥1

∩
M≥N UM holds because U is open set.

Let fN be fN := χUN
· f . Then, lim infN→∞ fN ≥ χU · f . By Fatou’s

lemma, one gets

lim inf
N→∞

µN (U ∩ EN ) = lim inf
N→∞

µ(UN ) = lim inf
N→∞

∫
Hs

fNd
2a0dρ

≥
∫
Hs

lim inf
N→∞

fNd
2a0dρ ≥

∫
U
fd2a0dρ = µ(U).

Defining VN := {u ∈ Hs(T) : SNu ∈ V }, one has
V ⊃ lim supN→∞ VN := ∩N≥1 ∪M≥N VM because V is closed. The
desired estimate follows from a similar argument.
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Invariance of the measure µN I

.
Proposition 19
..

.

. ..

.

.

The measure µN is invariant under the flow ΦN (t) of (TS).

.
Proof.
..

.

. ..

.

.

Set aN (t) := {an(t)}|n|≤N , where u(x, t) =
∑

|n|≤N einxan(t). (TS) can
be written as

(14) i∂tan(t)− n2an(t) +
1

2π

∫ 2π

0
e−inxSN (u|u|p−2)(x, t)dx = 0.

(14) can be written in a Hamiltonian format as follows:

∂tan = −i∂HN

∂an
, ∂tan = i

∂HN

∂an
with

HN (aN , aN ) =
∑

|n|≤N

n2|an|2 −
1

πp

∫ 2π

0

∣∣∣ ∑
|n|≤N

einxan

∣∣∣pdx.
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Invariance of the measure µN II

.
Proof (sequel).
..

.

. ..

.

.

Since ∑
|n|≤N

( ∂

∂an
(−i∂HN

∂an
) +

∂

∂an
(i
∂HN

∂an
)
)
= 0,

we can apply the Liouville theorem for Hamiltonian to conclude that
the measure daNdaN is invariant under the flow of (TS).
Let A be a Borel set of EN . Then,

µN (A) = κN

∫
A
e−

1
2HN (aN ,aN )χ{∥aN∥l2≤B}da

NdaN , κN := (2π)−2N
N∏
j=1

j4.

We can write

Φ(t)(A) = {(aN , aN ) : (aN , aN ) = ΦN (t)(bN , bN ), ∃(bN , bN ) ∈ A}.
By change of variables (aN , aN ) = Φ(t)(bN , bN ) and the invariance of
daNdaN under ΦN (t), we get the Jacobian of this variable change is one.
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Invariance of the measure µN III

.
Proof (sequel).
..

.

. ..

.

.

Thanks to the conservation laws

HN (ΦN (t)(bN , bN )) = HN (bN , bN ), ∥Φ(t)bN∥l2 = ∥bN∥l2 .
We therefore obtain

µN (Φ(t)(A)) = κN

∫
Φ(t)(A)

e−
1
2HN (aN ,aN )χ{∥aN∥l2≤B}da

NdaN

= κN

∫
A
e−

1
2HN (bN ,bN )χ{∥bN∥l2≤B}db

NdbN

= µN (Φ(t)(A)),

which completes the proof.
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Invariance of µ (p = 4) I

Let {sj}j∈N be a increasing sequence of real numbers such that s1 > 0
and limj→∞ sj = 1/2. Note that H =

∩∞
j=1H

sj (T).
.
Theorem 20
..

.

. ..

.

.

Let p = 4. The measure µ is invariant nuder the flow of (S). More
precisely, for every µ-measurable A, µ(Φ(t)A) = µ(A) holds.

By the reversibility of the flow, it suffices to prove for every t ∈ R and
every µ-measurable set A ⊂ H, one has the inequality

(15) µ(Φ(t)(A)) ≥ µ(A).

It suffices to prove (15) for closed sets of Hs(T).
Indeed, by the regularity of the bounded Borel measure, ∃{Vn} such that

Vn is a closed set of Hs(T), Vn ⊂ A, µ(A) = lim
n→∞

µ(Vn).

Hence, if we can prove (15) for the sets Vn, we have

µ(A) = lim
n→∞

µ(Vn) ≤ lim sup
n→∞

µ(Φ(t)Vn) ≤ µ(Φ(t)A).
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Invariance of µ (p = 4) II

Fix s0, s with s0 < s and s, s0 ∈ {sj}j∈N. Let us next show that it
suffices to prove (15) for subsets of H which are bounded in Hs(T) and
are compacts of Hs0(T).
Indeed, from Proposition 17, for every closed set A of H, one has

0 ≤ µ(A)− µ(A ∩B(s)
R ) = µ(A ∪B(s)

R )− µ(B
(s)
R )

≤ µ(Hs(T))− µ(B
(s)
R ) = µ(Hs(T)\B(s)

R ) ≤ Ce−cR2
,

which implies

µ(A) = lim
R→∞

µ(A ∩B(s)
R ).

A ∩B(s)
R is compact of Hs0(T). If we can prove (15) for compacts which

are bounded in Hs(T) then

µ(A) ≤ lim sup
R→∞

µ(Φ(t)(A ∩B(s)
R ) ≤ µ(Φ(t)(A)).

Thus, it suffices to prove (15) for subsets of H which are compacts in
Hs0(T) and bounded in Hs(T).
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Invariance of µ (p = 4) III

Let us now fix t ∈ R and K ⊂ H, a bounded set of Hs(T) which is a
compact in Hs0(T). Fix ε > 0. Thanks to GWP and Lemma 13, we have

(16) ΦN (t)((K+B(s0)
ε )∩EN ) ⊂ ΦN (t)(SNK)+B

(s0)
Cε ⊂ Φ(t)(K)+B

(s0)
2Cε ,

provided that N ≫ 1.

Since Φ(t)(K) is compact of Hs0(T) and B(s0)
2Cε is closed, Φ(t)(K) +B

(s0)
2Cε

is a closed set of Hs0(T).
By Lemma 18, (16), and Proposition 19, we obtain

µ(Φ(t)(K) +B
(s0)
2Cε) ≥ lim sup

N→∞
µN ((Φ(t)(K) +B

(s0)
2Cε) ∩ EN )

≥ lim inf
N→∞

µN (ΦN (t)((K +B(s0)
ε ) ∩ EN )

= lim inf
N→∞

µN ((K +B(s0)
ε ) ∩ EN )

≥ µ(K +B(s0)
ε ) ≥ µ(K).

By letting ε→ 0, we obtain the desired inequality µ(Φ(t)(K)) ≥ µ(K).
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Improved bounds for (TS) I

Let us denote by ΦN (t) the smooth flow map of (TS) which is defined
globally.
.
Proposition 21
..

.

. ..

.

.

For ∀ i ≥ 1, 0 < s < 1/2, ∃ a set Ξi
N,s ⊂ EN such that

µN (EN\Ξi
N,s) ≤ 2−i,

and for ϕ ∈ Ξi
N,s one has the bound

∥ΦN (t)ϕ∥Hs ≤ C(i+ log(1 + |t|))1/2.
Moreover, for N1 ≤ N2, we have the inclusion Ξi

N1,s
⊂ Ξi

N2,s
.

.
Proof.
..

.

. ..

.

.

We will consider only the positive value of t. The analysis for t < 0 is
the same. For 0 < s < 1/2, and i, j ∈ Z, we set

Bi,j
N,s(Ds) := {ϕ ∈ EN : ∥ϕ∥Hs ≤ Ds(i+ j)1/2, ∥ϕ∥L2 ≤ B},

where the number Ds ≫ 1 will be fixed later.
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Improved bounds for (TS) II

.
Proof (sequel).
..

.

. ..

.

.

Thanks to LWP, there exists τ ∈ (0, 1] such that

τ >
C(p, s)

(Ds(i+ j)1/2)C1(p,s)
,(17)

ΦN (t)(Bi,j
N,s(Ds)) ⊂ Bi,j

N,s(CDs) for 0 ≤ t ≤ τ .(18)

Next, we set

Ξi,j
N,s(Ds) :=

[2j/τ ]∩
k=0

ΦN (−kτ)(Bi,j
N,s(Ds)).

Using Proposition 19 and (17), we can write

µN (EN\Ξi,j
N,s(Ds)) ≤

[2i/τ ]∑
k=0

µN (EN\ΦN (−kτ)(Bi,j
N,s(Ds)))

= ([2i/τ ] + 1)µN (EN\Bi,j
N,s(Ds)).
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Improved bounds for (TS) III
.
Proof (sequel).
..

.

. ..

.

.

Let us observe that

µN (EN\Bi,j
N,s(Ds)) = µ({ϕ ∈ Hs(T) : ∥SNϕ∥Hs > Ds(i+ j)1/2})

≤ µ({ϕ ∈ Hs(T) : ∥ϕ∥Hs > Ds(i+ j)1/2}).
Using Proposition 17 and (17), we can write
(19)

µN (EN\Bi,j
N,s(Ds)) ≤ C2iDC1(p,s)

s (i+ i)C1(p,s)/2e−cD2
s(i+j) ≤ 2−(i+j),

provided that Ds ≫ 1 depending on s, p but dependent of i, j,N .
Thanks to (18), for ϕ ∈ Ξi,j

N,s, the solution u(t) of (TS) with data ϕ
satisfies

∥u(t)∥Hs ≤ CDs(i+ j)1/2, 0 ≤ t ≤ 2j .

Next, we set Ξi
N,s :=

∩∞
j=1 Ξ

i,j
N,s(Ds). From (19),

µN (EN\Ξi
N,s) ≤

∞∑
j=1

µN (EN\Ξi,j
N,s(Ds)) ≤ 2−i.
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Improved bounds for (TS) IV
.
Proposition 22
..

.

. ..

.

.

For every 0 < s < 1/2, 0 < s0 < s, t ∈ R, i ∈ N, there exists i1 ∈ N such
that for every N ≥ 1, if ϕ ∈ Ξi

N,s then one has ΦN (t)ϕ ∈ Ξi+i1
N,s0

.

.
Proof.
..

.

. ..

.

.

Again, we can suppose t > 0. Set u(t) := ΦN (t)ϕ. If ϕ ∈ Ξi
N,s, for j ∈ N,

we have
∥ΦN (t)ϕ∥Hs ≤ Cs(i+ j)1/2, 0 ≤ t1 ≤ 2j .

Let j0 ∈ N, depending on t, be such that for every j ≥ 1, 2j + t ≤ 2j+j0 .
Then, we get
(20)
∥ΦN (t1)u(t)∥Hs = ∥ΦN (t+ t1)ϕ∥Hs ≤ Cs(i+ j + j0)

1/2, 0 ≤ t1 ≤ 2j .

Interpolating between (20) with and L2-conservation implies

∥ΦN (t1)u(t)∥Hs0 ≤ C(Cs(i+ j + j1))
(1−θ)/2, 1 ≤ t1 ≤ 2j ,

where θ = 1− s0/s.
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Improved bounds for (TS) V

.
Proof (sequel).
..

.

. ..

.

.

Since 0 < θ < 1, for j0 ≫ 1,

C(Cs(i+ j + j1))
(1−θ)/2 ≤ Ds0(i+ j + j0)

1/2.

Thus,

∥ΦN (t1)u(t)∥Hs0 ≤ Ds0(i+ j + j0)
1/2, 0 ≤ t1 ≤ 2j ,

which implies u(t) ∈ Ξi+j0,j
N,s0

(Ds0) for every j ≥ 1. Therefore, we obtain

u(t) ∈ Ξi+j0
N,s0

.

.
Remark
..

.

. ..

.

.

The number i1 in Proposition 22 is the same for every i, i.e., it depends
only on t, s, s1. This fact is however not of importance for the sequel.
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A set is of full µ-measure

For every i ∈ N and 0 < s < 1/2, we set

Ξi
s :=

∪
N≥1

Ξi
N,s.

By Lemma 18 and Proposition 21, we have

µ(Ξi
s) ≥ lim sup

N→∞
µN (Ξi

N,s) = lim sup
N→∞

(µN (EN )− 2−i) = µ(Hs(T))− 2−i,

where Ξi
s denotes the closure of Ξi

s in Hs(T). Next, we set

Ξs :=
∞∪
i=1

Ξi
s.

Let {sj}j∈N be a increasing sequence of real numbers such that s1 > 0
and limj→∞ sj = 1/2. Then, we set

(21) Ξ :=

∞∩
j=1

Ξsj .

The set Ξ is of full µ-measure, since every Ξs is of full µ-measure and
the intersection in (21) is countable.
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Global well-posedness of NLS I

.
Proposition 23
..

.

. ..

.

.

For every ϕ ∈ Ξ, the local solution of (S) given by Theorem 2 is globally
defined. Moreover, for every t ∈ R, Φ(t)(Ξ) = Ξ.

.
Proof.
..

.

. ..

.

.

Let us fix ϕ ∈ Ξi
s, 0 < s < 1/2, 0 < s0 < s, T > 0. Thus, there exists a

sequence {ϕk} such that ϕk ∈ Ξi
Nk,s

where Nk is tending to infinity,
ϕk → ϕ in Hs(T). Thanks to Proposition 21,

∥ΦNk
(t)ϕk∥Hs ≤ Cs(i+ log(1 + |t|))1/2.

Applying Lemma 13 with A = Cs(i+ log(1 + T ))1/2, we have

∥Φ(t)ϕ− ΦNk
(t)ϕk∥Hs0 < 1

provided that k is sufficiently large. It implies

∥Φ(t)ϕ∥Hs0 < 2A = C(i+ log(1 + T ))1/2,

which shows the global well-posedness of (S).
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Global well-posedness of NLS II

.
Proof (sequel).
..

.

. ..

.

.

Let us show the inclusion

(22) Φ(t)(Ξ) ⊂ Ξ.

Fix ϕ ∈ Ξ. It suffices to show that for every s0 ∈ {sj}j∈N, we have

Φ(t)(Ξ) ⊂ Ξs0 .

Let us take s ∈ {sj}j∈N with s0 < s < 1/2. By ϕ ∈ Ξs, there exists i ∈ N
such that ϕ ∈ Ξi

s. Let again ϕk ∈ Ξi
Nk,s

be a sequence which tends to ϕ
in Hs(T). Thanks to Proposition 22, there is i1 ∈ N such that
ΦNk

(t)ϕk ∈ Ξi+i1
Nk,s0

. From Lemma 13, we obtain

Φ(t)ϕ ∈ Ξi+i1
s0 .

Hence, Φ(t)ϕ ∈ Ξs0 , which proves (22). Since the flow Φ(t) is reversible,
(22) implies Φ(t)(Ξ) = Ξ.
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Global well-posedness of NLS III
.
Proposition 24 (a continuity of Φ(t))
..

.

. ..

.

.

Let ϕ ∈ Ξ and {ϕk} ⊂ Ξ be a sequence such that ϕk → ϕ in Hs(T).
Then, for every t ∈ R, Φ(t)ϕk → Φ(t)ϕ in Hs(T). In particular, for
every closed set A in Hs(T), one has

Φ(t)(A ∩ Ξ) = Φ(t)(A ∩ Ξ) ∩ Ξ,

where Φ(t)(A ∩ Ξ) denotes the closure in Hs(T) of Φ(t)(A ∩ Ξ).

.
Proof.
..

.

. ..

.

.

Since ϕ ∈ Ξ and the construction of Ξ, for every T > 0 there exists
Λ ≥ 1 such that

sup
|t|≤T

∥Φ(t)ϕ∥Hs ≤ Λ.

Let us denote by τ the local existence time in LWP associated Λ. Then,
by the continuity of the flow on [−τ, τ ],

Φ(t)ϕk → Φ(t)ϕ in Hs(T), |t| ≤ τ .
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Global well-posedness of NLS IV

.
Proof (sequel).
..

.

. ..

.

.

Next, we cover the interval [−T, T ] by intervals of size τ and we apply
the continuity of the flow established in LWP at each step. Therefore,
we obtain that

Φ(t)ϕk → Φ(t)ϕ in Hs(T), |t| ≤ T .

Since Φ(t)(Ξ) ⊂ Ξ, it is clear that

Φ(t)(A ∩ Ξ) ⊂ Φ(t)(A ∩ Ξ) ∩ Ξ.

Next, let us fix u ∈ Φ(t)(A ∩ Ξ) ∩ Ξ. Then, there exists a sequence
{ϕk} ⊂ A ∩ Ξ such that uk := Φ(t)ϕk → u in Hs(T). From
uk,Φ(−t)u ∈ Ξ and the continuity of Φ(t), ϕk = Φ(−t)uk → Φ(−t)u in
Hs(T). Since A is closed, Φ(−t)u ∈ A. Thus, we get
u ∈ Φ(t)(A ∩ Ξ).
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Invariance of µ (4 < p ≤ 6) I

.
Theorem 25
..

.

. ..

.

.

Let 4 ≤ p ≤ 6. The measure µ is invariant nuder the flow of the (S).
More precisely, for every µ-measurable A, µ(Φ(t)A) = µ(A) holds.

As in the proof of Theorem 20, it suffices to prove the inequality

(23) µ(Φ(t)(K)) ≥ µ(K).

for subsets K of Ξ which are compacts in Hs0(T) and bounded in Hs(T).
Let us now fix t ∈ R and K ⊂ Ξ, a bounded set of Hs(T) which is a
compact in Hs0(T).
.
Lemma 26
..

.

. ..

.

.

There exists R0 such that {Φ(t1)(K) : |t1| ≤ |t|} ⊂ B
(s0)
R0

.
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Invariance of µ (4 < p ≤ 6) II

.
Proof of Lemma 26.
..

.

. ..

.

.

If not, then for all k > 0 there exists tk ∈ R and ϕk ∈ K such that
|tk| ≤ |t| and ∥Φ(tk)ϕk∥Hs0 > k. Since K is a compact set in Hs0(T),
there exists a subsequence {ϕkl} ⊂ {ϕk} and ϕ ∈ K such that ϕkl → ϕ
in Hs0(T). Proposition 24 implies Φ(tkl)ϕkl → Φ(tkl)ϕ in Hs0(T), which
contradicts to the unboundedness of {Φ(tk)ϕk}.

Set

τ0 :=
C(p, s0)

(1 +R0)C1(p,s0)
.

It suffices to show that

(24) µ(K) ≤ µ(Φ(t1)K), |t1| ≤ τ0.

Indeed, once (24) is established, it suffices to cover [0, t] by intervals of
size τ0 and to apply (24) at each step.
The proof of (24) is the same as Theorem 20.
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