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Review
Periodic defocusing cubic nonlinear Schrodinger equation,

{ —i0pu + Au = |ul?u,

(NLS)
u(0,x) == ug(x).
Perturbation Property
VI,
PToy model ¢ Toymodel | _____. Construction
g, (1) b,(t) < of Aset
Lemma Finite A
2.3 truncation + Proposition
! 2.1
NLS FNLS 3 RFNLS
u(r.x) a,(t) (1)
Fourier Resonant
transform

truncation
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® The frequency set A



Properties of A

Initial data : r,(0) = 0 whenever n ¢ A

Closure : (n1,n2,n3) € I'pes(n),ny,no,ng € A=necA
3! of spouse and children

3! of sibling and parents

Nondegeneracy : Sibling of n # spouse of n
Faithfullness

Intragenerational equality : n,n’ € Aj = 1,(0) = r,,/(0)

Remark
One can choose the initial data which satisfies the first and last
properties.



Proposition 1
Given parameters 6 < 1, K > 1, we can find an NV > 1 and a
set of frequencies A C Z? with

A=AMUAU---UAyN disjoint union
which satisfies Property 11y — Property VI, and also,

ZTLEAN ‘n‘Qs > E
ZHEAI ’n’2s ~ 62

In addition, given any R > C(K,0), we can ensure that A
consists of N - 2V~ disjoint frequencies n satisfying |n| > R.



e Identify the frequency n € Z? with the Gaussian integers
Zli| c C
n = (ny,ng) <> ny + ing.

e S=1{0,1,1414,i}, Sy ={1,i} and Sy = {0,1 + i}.
e For 1 <j <N, define ¥; c CcN-1

5= S x 5N
Definition

YX=X1U---UXpn
We call XJ; the j-th generation of X.



Combinatorial Nuclear Family

F C ¥ UX; 1 : Combinatorial nuclear family connecting
generations X, X1

F .= {(21, Ty Rj—1, W, B4, ,ZN_l) TWw e S}

For each F', we call Fy, F; : Parents, Fpy, F14; : Children
For any 1 < j < N and any x € Xj,

3! spouse in ¥; and 3! two children in ;4.

Forany 1 <j < N and any y € X1,

d! sibling in 341 and 3! two parents in 3J;.

The sibling of an element = € ¥; is never equal to its
spouse.



Consider ¥ < Z2

e (Placement of initial generation) f; : ¥ — C
e (Angle of each nuclear family) For each 1 < j < N and F,
an angle 0(F) € R/2nZ.

Placement Functions f;

If1<j< N and f; : ¥ — C has already been constructed.
Then we define fj41:¥;41 — C by

14+ eiG(F) 1— eiG(F)

P = Sy + 22
14+ eiG(F) 1— eiO(F)

() = T gy - L

Complete Placement Function f

f(x):= fi(z), ifxel.



Example

Let R be a large integer and all the angles §(F') = 7/2. Then,
e First generation

fl(zl, o ,zN_l) =Rz--2zn_1 € {R,iR, —R, —iR}

e Second generation

14 1—i
fa(Frii) = —— fi(F1) = ——f;(£F)
1+2 1—2
:R —2|—21Z2ZN_1_|_R 22‘1"22"‘«2]\[_1

=R(1+i)2-znv-1=2(1+))Ra1 - 2y-1

Similarly,
fQ(Fo) :R‘O'ZQ'-'ZN,1 =0.



Example - Continued

e Inductively, j-th generation

f](z].) Tt 7ZN—1) = RZ]_ T ZN-—-1
€ {0,(1+ i) 'Ryi(1L+4) R, —(1 40y IR, —i(1 4+ i)y IR}

Analysis of Example

e For each nuclear family {Fy, Fi, F14i, Fi},

o [f(F1)| = |f(F})]
o Fy— 0, but |[f(Fiu)| = V2|f(F)|

e The only single element
(144, ,1+i) ey — (1+)NVN IR

Consequently, for solution to RFNLS,

mass : Fl,Fi — F07F1+i but energy . FlaFi — F1+i



From simple calculation, we have

Z In|?* = # of nonzero n - 22N "3RS = 9s(N=3)+22s
nEf(EN_z)

and

Z [n|?* = 4 of nonzero n - 22R?* = 225 TN=3R2s,
n€ f(X3)

In this example, there is a norm by

2s
Znef(EN—2) i — 95(N=3)4+2—(2s+N=3) _ 9(s—1)(N—5)
Yones(sg) M - '



Theorem - Good Placement Function
Let N >3, s>1,and R := R(N) be a large integer. Then,
3f1 : X1 — C and 30(F) for each F, with the properties :

e (Nondegenerarcy) f : injective

e (Integrality) f(X) C Z[i]

e (Magnitude) |f(z)] ~y R for all z € ¥

e (Closure and Faithfullness) z,y, z are distinct

f(x), f(y), f(2) : form a right-angled triangle = {z,y,2} C F

e (Norm explosion)

S 1 S— - S
DR el W (e

nef(ZN_g) nEf(Zg)



Proof

Remark
We see that A := f(X) with generations A; := f;(3;), obey all
the required properties.

Reduction of conditions

e Integrality condition : f(X) C Z[i]| = f(X) C Q[i]
e Magnitude condition :

|f(x)| ~v R = f(z) #0, VzeX

Now the following remains:
e Injectivity
o f(xr)#0forallz € X
e Closure and Faithfulness
e Norm explosion



Norm explosion

e Norm explosion

Since

Snesya M1
(f1,0(F)) : e > g 2T
{ 2 onef(Sny) |n|? 2

is open set, it is either empty or has positive measure.

Norm explosion

By perturbation argument in the previous example, we do not
need to consider this condition, and it suffices to show that the
set where the other conditions fail is a measure zero set.



Injectivity
Need to show that for z € ¥,y € ¥, j > j

x,y € ¥ distinct = f(x) # f(y)

Use the mathematical induction on j
e j=1: Clear
e j>1
e zeX; = 3F :={z,a,pp},pp €X;_1: parents of =
e Induction hypothesis = f(p) # f(p)
e Definition of f = f(x) lies on the circle depending on

f(p), f(p'), and 6(F)
e y # a2’ = O(F) does not influence the value of f(y)

= One can choose a point f(y) on some circle unequal to
f(z)

o y=1'= f(y) = f(2') is diametrically opposite to f(x)

e Hence, f(z) # f(y)



Non-zero / Closure and Faithfulness

Non-zero

e z €31 = fi(z)# 0 for almost every f;

e x€Xjforj>1
= f(x) lies on the circle depending on two parents and
O(F)
= f(z) # 0 for almost every angle 6(F)

Closure and Faithfulness

For j, > jy > j., x € Xj,,y € Xj,, 2 € X, : distinct,
Need to show {z,y,z} ¢ F

= f(z), f(y), f(z) do not form a right-angled triangle



Closure and Faithfulness

Use the mathematical induction
e j, =1: Clear
o j,>1
e xeX; = 3F :={za, pp} pp €%, _1: parents of x
e Injectivity and Definition of f = f(z) freely lies on the
circle C' with diameter f(p), f(p’), with the location on this
circle determined by the angle 6(F)
e Either y or z in FF (WLOG y € F) = y = 2’ or not
o y#a' = f(z) lies outside of C = O(F) does not influence the

value of f(z)
e y=21' = f(z) should lie on C to form a right-angled triangle



Closure and Faithfulness

Lemma
The circle C' contains no elements of A; U---UA;_ other than

f(F)

eueAU---UAj 1 = f(u) does not lie on C
- f(p), f(©)), f(u) form a right-angled triangle
(Contradiction to the induction hypothesis)

e uel;, = 3IF :={q,q, u,u'} such that f(F’) lies on C’
= f(q), f(¢') does not lie on C' by induction hypothesis
= ('’ is not coincident to C
= for almost every 0(F’), f(u) does not lie on C
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Consider the Toy Model System

Oebj = —ilb;|*b; + 2ib; (b5 1 + b5

General Remarks about (Toy Model)

e (Toy Model) is globally well-posed in 1?(7Z)
e (Toy Model) has a number of symmetries

Phase invariance : b;(t) < b, ()
Scaling symmetry : b;(t) < Ab(A\%t)
Translation symmetry : b;(t) < b;(t —
Space translation symmetry : b; )
Time reversal symmetry : b;(t)
Space reflection symmetry : b;(¢
Sign symmetry : b;(t) <= €;b;(t), €;

(t
>
) <

1)

|| @A

(Toy Model)



Unstable behavior in (Toy Model)

Let N > 1 be fixed integer and let ¥ ¢ CV
Si={reCV:|z*=1}
Assume that b;(tp) =0 for j < 0and j > N
e S(t): ¥ — ¥ : smooth flow defined by
S(8)bj(to) := b;(t +to)
o T;:={(b1, -+ ,bn) € X:|bj| =1;b, =0 for all k # j}

Theorem - Instability for (Toy Model)

Let N > 6. Given any ¢ > 0, there exists a point x3 within ¢ of
T3 (using the usual metric on X), a point zy_o within e of
Tn—2, and a time ¢ > 0 such that S(t)zs = zn_2.



2D Cubic NLS

Consider the 2D cubic NLS

i0¢by = |b1|?by — 2b1b3,
i0¢by = |b2|?by — 2b203.

Hamilonian system
)
H (b1,b2,b1,b2) = |b1!4 \52\4 — (biby + by b3)
Since b; = |bjle?,

1 1
H(|b1]?,01, |ba|?, 62) = §|b114 + 5|b2|4 — 2|b1|2|ba)? cos(26; — 26,)



2D Cubic NLS

Mass conservation law : M = |by|? + |ba|?
New coordinates change

()~ )= D 38) -
(=)~ )@ -Ca

Then the Hamiltonian is rewritten as

and

H (Ko, K1, ¢0,¢1) = H(Ko, K1, o)
1

= SIKG + (K1 — Ko)?] = 2Ko(K1 — Ko) cos 200

2



2D Cubic NLS

In new variables,
* Yo = *59% = —2(2Ko — 1)(§ + cos 2¢)
* Y = 8671?17 —1+ 2Ko(3 + cos2¢0)

° Koza—%—élKo(l—Ko)stpo
.Kl 87901_0(:>Klsitl)

and we also have
° @0—0<:>K0—2org00—70r%7r
° Ko 6—%—0<:>K0—00r10rg00

| ’

wola
o

|3



2D Cubic NLS

When go():%’r(: sin2¢0:—73)
) dKO
Ky =—-2v3Ky(l — K, Y = _924/3dt
0 V3EK( 0):>Ko(1—K0) V3
Ko _ —2/3t
TR,
1 —
(2 C11)

Going back to the original solutions,

‘ 2
$1=—1= 1 =0 =—t, leg—t
Hence, from K = |b1|? (C2 = 1 & |b1(0)]? = %)’
e_itw e—itw2
0= e M e

where w = €2™/3 is a cube root of unity.



Slider solution

T'1 T2 Tj T_,‘+1



Target

A target (M,d, R) : M : subset of 3, d : semi-metric on X,
R > 0 : radius

(M1,d1,R1) —» (MQ,dQ,RQ) & Vg € My Jxq1 € My such
that di(x1,y1) < Ry for all y; € ¥ and Jys € ¥ with
da(z2,y2) < Rg such that y; hits yo

Incoming target (M ,d;, R;) : located near the stable
manifold of T}

Ricochet target (M]O, d?, RO) located very near T; itself
Outgoing target (M ]+ , dj, R+) : located near the unstable
manifold of T,



Ingredients

Ingredients : See the reference

° (TranSItIVItY) (Mladlle) - (M27d2aR2)7

(Ma,dg, Ro) — (M3, ds, R3) = (My,dy, Ry) - (M3, ds3, R3)
e (Sec. 3.6) (M ,d;,Ry) — (MJ,d},RY),3<j<N -2

(

e (Sec. 3.8) (M]O,d?,RO) (M;F,d7,R7),3< N <N -2
e (Sec. 3.10) (M}, dS,R}) — (M}, ,,d
3<KN<N-2

Hence, we have

_+17 R]'_+1)7

(Mi?7dg7R0) (MN 2>dN QaR[])V—2)7 (*)

which implies directly the proof of Theorem
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