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Abstract of the paper

We prove an abstract Strichartz estimate, which implies previously unknown

endpoint Strichartz estimates for the wave equation (in dimension n ≥ 4) and

the Schrödinger equation (in dimension n ≥ 3).

Three other applications are discussed: local existence for a nonlinear wave

equation; and Strichartz-type estimates for more general dispersive equations

and for the kinetic transport equation.
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Let: (X, dx) measure space, H Hilbert space,

Suppose: ∀t ∈ R, we have an operator U(t) : H → L2(X) which obeys

• Energy estimate:∥∥U(t)f
∥∥

L2 ≤ C
∥∥f

∥∥
H

, ∀t, ∀f ∈ H, (1)

• Decay estimate (one of the following): ∃σ > 0 s.t.∥∥U(t)U(s)∗g
∥∥

L∞ ≤ C|t − s|−σ
∥∥g

∥∥
L1 ∀t 6= s, ∀g ∈ L1 ∩ L2(X) (2)

(untruncated decay), or∥∥U(t)U(s)∗g
∥∥

L∞ ≤ C(1 + |t − s|)−σ
∥∥g

∥∥
L1 ∀t, s, ∀g ∈ L1 ∩ L2(X) (3)

(truncated decay), where U(s)∗ : L2(X) → H is the adjoint of U(s).
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In particular, we consider the following cases:

X = Rn, H = L2(Rn), and

(i) Schrödinger case:

[U(t)f ](x) = [eit∆f ](x) =
1

(4πit)n/2

∫
Rn

e−
|x−y|2

4it f(y) dy.

(ii) Wave case:

[U(t)f ](x) = [e−it|∇|PNf ](x) = F−1
[
e−it|·|φNFf

]
(x),

where N ∈ 2Z and PN is a Littlewood-Paley projection to {|ξ| ∼ N}.

• U(t) satisfies (1), and

[Schrödinger case] for n ≥ 1, U(t) satisfies (2) with σ = n
2 .

[wave case] for n ≥ 2, U(t) satisfies (3) with σ = n−1
2 .
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Definition 1.1. We say that the exponent pair (q, r) is σ-admissible if

2 ≤ q, r ≤ ∞, (q, r, σ) 6= (2,∞, 1), and

1
q

+
σ

r
≤ σ

2
. (4)

If equality holds in (4) we say that (q, r) is sharp σ-admissible, otherwise

nonsharp σ-admissible.

In particular, when σ > 1 the endpoint

P = (2,
2σ

σ − 1
)

is sharp σ-admissible.



5



6

Theorem 1.2. If U(t) obeys (1) and (2), then the estimates∥∥U(t)f
∥∥

Lq
t Lr

x
≤ C

∥∥f
∥∥

H
, (5)

∥∥ ∫
R

U(s)∗F (s) ds
∥∥

H
≤ C

∥∥F
∥∥

Lq′
t Lr′

x
, (6)

∥∥∫ t

−∞
U(t)U(s)∗F (s) ds

∥∥
Lq

t Lr
x
≤ C

∥∥F
∥∥

Leq′
t Ler′

x

(7)

hold for all sharp σ-admissible exponent pairs (q, r), (q̃, r̃), where q′ is the

Hölder conjugate of q (i.e. 1
q + 1

q′ = 1).

Furthermore, if the decay hypothesis is strengthened to (3), then (5)–(7)

hold for all (sharp and nonsharp) σ-admissible (q, r) and (q̃, r̃).

• Result on endpoint cases (i.e. σ > 1 and (q, r) or (q̃, r̃) = P ) is new.
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Corollary 1.3 (wave case). Suppose that n ≥ 2 and (q, r) and (eq, er) are

n−1
2

-admissible pairs with r, er < ∞. If u is a (weak) solution to the problem

(

(−∂2
t + ∆)u(t, x) = F (t, x), (t, x) ∈ [0, T ] × Rn,

u(0, ·) = f, ∂tu(0, ·) = g

for some data f, g, F and time 0 < T < ∞, then

‚

‚u
‚

‚

Lq([0,T ];Lr)
+

‚

‚u
‚

‚

C([0,T ];Ḣγ)
+

‚

‚∂tu
‚

‚

C([0,T ];Ḣγ−1)

≤ C
`

‚

‚f
‚

‚

Ḣγ +
‚

‚g
‚

‚

Ḣγ−1 +
‚

‚F
‚

‚

Leq′ ([0,T ];Ler′ )

´

,
(9)

under the assumption

1

q
+

n

r
=

n

2
− γ =

1

eq′
+

n

er′
− 2. (10)

The constant C > 0 in (9) is independent of f, g, F, T . Conversely, if (9) holds for

all f, g, F, T , then (q, r) and (eq, er) must be n−1
2

-admissible and (10) must hold.

Furthermore, when r = ∞ the estimate (9) holds with the Lr norm replaced

with the Besov norm Ḃ0
r,2, and similarly for er = ∞.
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Corollary 1.4 (Schrödinger case). Suppose that n ≥ 1 and (q, r) and

(q̃, r̃) are sharp n
2 -admissible pairs. If u is a (weak) solution to the problem{

(i∂t + ∆)u(t, x) = F (t, x), (t, x) ∈ [0, T ] × Rn,

u(0, ·) = f

for some data f, F and time 0 < T < ∞, then∥∥u
∥∥

Lq([0,T ];Lr)
+

∥∥u
∥∥

C([0,T ];L2)
≤ C

(∥∥f
∥∥

L2 +
∥∥F

∥∥
Leq′ ([0,T ];Ler′ )

)
, (11)

where the constant C > 0 is independent of f, F, T . Conversely, if (11) holds

for all f, F, T , then (q, r) and (q̃, r̃) must be sharp n
2 -admissible.
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§3. Proof of (5) and (6) for (q, r) 6= P

First of all, we see that the estimate (5) follows from (6) by duality.

(∵) For any test function G : R × X → C, we have∣∣∣ ∫
R

∫
X

[U(t)f ](x)G(t, x) dx dt
∣∣∣

=
∣∣∣ ∫

R
〈U(t)f, G(t)〉L2 dt

∣∣∣ =
∣∣∣ ∫

R
〈f, U(t)∗G(t)〉H dt

∣∣∣
=

∣∣∣〈f,

∫
R

U(t)∗G(t) dt〉H
∣∣∣ ≤ ∥∥f

∥∥
H

∥∥ ∫
R

U(t)∗G(t) dt
∥∥

H

≤ C
∥∥f

∥∥
H

∥∥G
∥∥

Lq′
t Lr′

x
,

which implies (5). 2
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Since∥∥ ∫
R

U(s)∗F (s) dt
∥∥2

H
=

∫
R

∫
R
〈U(s)∗F (s), U(t)∗F (t)〉H ds dt,

(6) follows from the bilinear form estimate∣∣∣ ∫
R

∫
R
〈U(s)∗F (s), U(t)∗G(t)〉H ds dt

∣∣∣ ≤ C
∥∥F

∥∥
Lq′

t Lr′
x

∥∥G
∥∥

Lq′
t Lr′

x
. (13)

In fact, (6) is equivalent to (13). (TT ∗ method)

It then suffices to prove (13) for

2 ≤ q, r ≤ ∞, 1
q + σ

r = σ
2 , (q, r) 6= (2, 2σ

σ−1 ) under (1), (2) [Untruncated],

2 ≤ q, r ≤ ∞, 1
q + σ

r ≤ σ
2 , (q, r) 6= (2, 2σ

σ−1 ) under (1), (3) [Truncated].



12Case (i): Untruncated decay (2)

By the energy estimate (1), we have ‖U(t)∗F (t)‖H ≤ C‖F (t)‖L2

uniformly in t, which implies∥∥U(t)U(s)∗F (s)
∥∥

L2 ≤ C
∥∥F (s)

∥∥
L2 .

Using Riesz-Thorin theorem to interpolate this inequality and (2), we have

‖U(t)U(s)∗F (s)‖Lr ≤ C|t − s|−σ(1− 2
r )

∥∥F (s)
∥∥

Lr′

for any 2 ≤ r ≤ ∞. Therefore,

LHS of (13) ≤
∫

R

∫
R

∣∣〈U(t)U(s)∗F (s), G(t)〉L2

∣∣ ds dt

≤
∫

R

∫
R

∥∥U(t)U(s)∗F (s)
∥∥

Lr

∥∥G(t)
∥∥

Lr′ ds dt

≤ C

∫
R

∫
R
|t − s|−σ(1− 2

r )
∥∥F (s)

∥∥
Lr′

∥∥G(t)
∥∥

Lr′ ds dt. (A)



13• Hardy-Littlewood-Sobolev inequality (cf. Stein [2], Section V.1.2)

Let 1 < p1, p2 < ∞, 0 < λ < n be such that 1
p1

+ 1
p2

+ λ
n = 2. Then,∣∣∣ ∫

Rn

∫
Rn

f(ξ)g(η)
|ξ − η|λ

dξ dη
∣∣∣ ≤ C

∥∥f
∥∥

Lp1

∥∥g
∥∥

Lp2
.

Now, since (q, r) is sharp σ-admissible, we see that

1
q

+
σ

r
=

σ

2
⇔ 1

q′
+

1
q′

+ σ
(
1 − 2

r

)
= 2.

If q < ∞, the nonendpoint assumption (q, r) 6= (2, 2σ
σ−1 ) implies

0 < σ
(
1 − 2

r

)
< 1.

We apply the Hardy-Littlewood-Sobolev inequality to (A) and obtain (13).

The case q = ∞ follows directly from (A). 2
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Since (3) ⇒ (2), proof is reduced to Case (i) if (q, r) is sharp σ-admissible.

We consider nonsharp σ-admissible exponents, namely,

2 ≤ q, r ≤ ∞,
1
q

+
σ

r
<

σ

2
.

The same argument as Case (i) shows

LHS of (13) ≤ C

∫
R

∫
R

(
1 + |t − s|

)−σ(1− 2
r )∥∥F (s)

∥∥
Lr′

∥∥G(t)
∥∥

Lr′ ds dt

for any 2 ≤ r ≤ ∞ instead of (A). Applying Young’s inequality, we have

LHS of (13) ≤ C
∥∥(1 + | · |)−σ(1− 2

r )
∥∥

Lq/2(R)

∥∥F
∥∥

Lq′
t Lr′

x

∥∥G
∥∥

Lq′
t Lr′

x

whenever σ(1 − 2
r ) q

2 > 1 ⇔ 1
q + σ

r < σ
2 .

This concludes the proof of (5) and (6) when (q, r) 6= P . 2
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§4. Proof of (5) and (6) for endpoint cases: Step I

Now, we consider the remaining endpoint case

(q, r) = P = (2,
2σ

σ − 1
), σ > 1. (20)

Note that 2 < r < ∞. Since P is sharp σ-admissible and (3) implies (2),

we only consider the case of untruncated decay (2).

• The same argument as in §3 is not valid. In fact, the Hardy-Littlewood-

Sobolev inequality is not applicable because σ(1 − 2
r ) = 1.

To show (13), we first decompose LHS dyadically as

LHS of (13) ≤
∑
j∈Z

∣∣∣ ∫∫
2j≤|s−t|<2j+1

〈U(s)∗F (s), U(t)∗G(t)〉H ds dt
∣∣∣.
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By symmetry it suffices to show∑

j∈Z
|Tj(F,G)| ≤ C

∥∥F
∥∥

Lq′
t Lr′

x

∥∥G
∥∥

Lq′
t Lr′

x
, (22)

where

Tj(F,G) =
∫∫

t−2j+1<s≤t−2j

〈U(s)∗F (s), U(t)∗G(t)〉H ds dt. (21)

The goal of Step I is the following two-parameter family of estimates:

Lemma 4.1. Assume (20). The estimate

|Tj(F,G)| ≤ C2−j{σ−1−σ( 1
a + 1

b )}∥∥F
∥∥

L2
t La′

x

∥∥G
∥∥

L2
t Lb′

x
(23)

holds (uniformly) for all j ∈ Z and all ( 1
a , 1

b ) in a neighborhood of ( 1
r , 1

r ).

• Since σ − 1 − σ( 1
r + 1

r ) = 0, we have (22) with
∑

j replaced by supj .
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• First of all, we note that for the estimate of Tj(F,G) we may assume

that F,G are supported on a time interval of length O(2j).

(∵) We decompose F as F (s) =
∑
l∈Z

χ[l2j ,(l+1)2j)(s)F (s), and assume that

(23) holds (uniformly) for F,G supported in time on an O(2j) interval.

Then, t is restricted to [(l+1)2j , (l+3)2j) whenever s ∈ [l2j , (l+1)2j),

since the integral in s, t is restricted to {t−2j+1 < s ≤ t−2j}. Therefore,

|Tj(F, G)| ≤
X

l∈Z

˛

˛Tj(χ[l2j ,(l+1)2j)F, χ[(l+1)2j ,(l+3)2j)G)
˛

˛

≤ C2−j{σ−1−σ( 1
a

+ 1
b
)}

X

l∈Z

‚

‚χ[l2j ,(l+1)2j)F
‚

‚

L2
t La′

x

‚

‚χ[(l+1)2j ,(l+3)2j)G
‚

‚

L2
t Lb′

x

≤ C2−j{...}
„

X

l∈Z

‚

‚χ[l2j ,(l+1)2j)F
‚

‚

2

L2
t La′

x

«1/2„

X

l∈Z

‚

‚χ[(l+1)2j ,(l+3)2j)G
‚

‚

2

L2
t Lb′

x

«1/2

≤ C2−j{σ−1−σ( 1
a

+ 1
b
)}‚

‚F
‚

‚

L2
t La′

x

‚

‚G
‚

‚

L2
t Lb′

x
. 2



18• We shall prove (23) for the exponents

(i) a = b = ∞,

(ii) 2 ≤ a < r, b = 2

(iii) 2 ≤ b < r, a = 2

The lemma will then follow by interpolation and the fact that 2 < r < ∞.
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Case (i) a = b = ∞

From the estimate (A) (with r = ∞) and the restriction to {t − 2j+1 <

s ≤ t − 2j}, we have

|Tj(F,G)| ≤ C2−σj
∥∥F

∥∥
L1

t L1
x

∥∥G
∥∥

L1
t L1

x
.

Recall that F,G are restricted in time to an interval of length O(2j). We

apply Hölder’s inequality in time to obtain

|Tj(F,G)| ≤ C2−(σ−1)j
∥∥F

∥∥
L2

t L1
x

∥∥G
∥∥

L2
t L1

x
,

which is the desired estimate.



20

Case (ii) 2 ≤ a < r, b = 2

Note that Case (iii) is parallel to (ii).

We bring the integration in s inside the inner product in (21) to obtain

|Tj(F,G)| ≤
∫

R

∣∣〈∫ t−2j

t−2j+1
U(s)∗F (s) ds, U(t)∗G(t)〉H

∣∣ dt

≤
∫

R

∥∥∫ t−2j

t−2j+1
U(s)∗F (s) ds

∥∥
H

∥∥U(t)∗G(t)
∥∥

H
dt

≤ sup
t∈R

∥∥∫
R

U(s)∗
[
χ(t−2j+1,t−2j ](s)F (s)

]
ds

∥∥
H
·
∫

R

∥∥U(t)∗G(t)
∥∥

H
dt.

Since 2 ≤ a < r, we can take q(a) such that (q(a), a) is sharp σ-admissible

and (q(a), a) 6= P . By the nonendpoint Strichartz estimate (6) proved in §3

and Hölder’s inequality in t, we obtain



21∥∥ ∫
R

U(s)∗
[
χ(t−2j+1,t−2j ](s)F (s)

]
ds

∥∥
H

≤ C
∥∥χ(t−2j+1,t−2j ]F

∥∥
L

q(a)′
t La′

x

≤ C2j( 1
q(a)′ −

1
2 )∥∥F

∥∥
L2

t La′
x

,

uniformly in t.

By the energy estimate (1) and Hölder’s inequality in t, we have∫
R

∥∥U(t)∗G(t)
∥∥

H
dt ≤ C

∥∥G
∥∥

L1
t L2

x
≤ C2j/2

∥∥G
∥∥

L2
t L2

x
.

Combining these estimates, we have

|Tj(F,G)| ≤ C2j/q(a)′
∥∥F

∥∥
L2

t La′
x

∥∥G
∥∥

L2
t L2

x
.

This is nothing but (23), since

1
q(a)′

= 1 − 1
q(a)

= 1 − σ
(1
2
− 1

a

)
= −

(
σ − 1 − σ

(1
a

+
1
2
))

. 2



22§5. Proof of (5) and (6) for endpoint cases: Step II

• If we apply Lemma 4.1 directly for a = b = r, then we obtain

|Tj(F,G)| ≤ C
∥∥F

∥∥
L2

t Lr′
x

∥∥G
∥∥

L2
t Lr′

x
(25)

for each j ∈ Z (uniformly), which clearly won’t sum to give (22).

Observation: To see how to sum up in j, we begin with the model case.

Assume that F and g have the special form

F (t, x) = f(t) · 2−k/r′
χE(t)(x), G(t, x) = g(t) · 2−ek/r′

χ
eE(t)(x),

where k, k̃ ∈ Z and E(t), Ẽ(t) are sets of measure 2k and 2ek respectively

for each t. Note that ‖F‖L2
t Lr′

x
∼ ‖f‖L2 , ‖G‖L2

t Lr′
x

∼ ‖g‖L2 .
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|Tj(F,G)| ≤ C2−j{σ−1−σ( 1
a + 1

b )}∥∥F
∥∥

L2
t La′

x

∥∥G
∥∥

L2
t Lb′

x

≤ C2−jσ{σ−1
σ −( 1

a + 1
b )} · 2 k

a′ − k
r′

∥∥f
∥∥

L2 · 2
ek
b′ −

ek
r′

∥∥g
∥∥

L2

(uniformly) for all j ∈ Z and ( 1
a , 1

b ) in a neighborhood of ( 1
r , 1

r ). Note that

σ − 1
σ

=
2
r
,

1
a′ −

1
r′

=
1
r
− 1

a
,

1
b′

− 1
r′

=
1
r
− 1

b
.

Then, the above estimate is simplified to

|Tj(F,G)| ≤ C2(k−jσ)( 1
r −

1
a )2(ek−jσ)( 1

r −
1
b )

∥∥F
∥∥

L2
t Lr′

x

∥∥G
∥∥

L2
t Lr′

x
. (26)

Take ε > 0 sufficiently small so that the estimate is valid for 1
a , 1

b ∈ { 1
r ± ε}.

Now, for each j ∈ Z we choose 1
a , 1

b ∈ { 1
r ± ε} appropriately to obtain

|Tj(F, G)| ≤ C2−ε|k−jσ|2−ε|ek−jσ|
∥∥F

∥∥
L2

t Lr′
x

∥∥G
∥∥

L2
t Lr′

x
,

which does imply (22). 2
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• This observation suggests that (25) is only sharp when F and G are

both concentrated in a set of size 2jσ. However, such functions can only

be critical for one scale of j. That’s why we expect to obtain (22) for

general F,G from Lemma 4.1.

• Also note that this argument requires a two-parameter family of estimates

as Lemma 4.1, while the Strichartz estimates for nonendpoint case was

obtained from a one-parameter family of estimates (namely, a = b).

To apply the above argument in the general case, we use the following

lemma to decompose F,G so that each piece has a form similar to the above.



25Lemma 5.1. Let 0 < p < ∞ and f ∈ Lp. Then there exist

{ck}k∈Z ⊂ [0,∞), {χk}k∈Z ⊂ L∞ such that

(i) f(x) =
∑
k∈Z

ckχk(x),

(ii) ‖χk‖L∞ ≤ 2−k/p and meas
{

x
∣∣ χk(x) 6= 0

}
≤ 2 · 2k,

(iii) ‖ck‖`p ≤ 21+1/p‖f‖Lp .

By applying Lemma 5.1 with p = r′ to F (t) and G(t), we have

F (t, x) =
∑
k∈Z

ck(t)χk(t, x), G(t, x) =
∑

ek∈Z
c̃

ek(t)χ̃
ek(t, x), (29)

where for each t ∈ R and k ∈ Z the function χk(t, ·) satisfies∥∥χk(t, ·)
∥∥

L∞ ≤ 2−k/r′
, meas

{
x

∣∣ χk(t, x) 6= 0
}
≤ 2 · 2k,

and similarly for χ̃
ek. Moreover, ck(t) and c̃

ek(t) satisfy the inequalities∥∥‖ck(t)‖`r′
k

∥∥
L2

t
≤ C

∥∥F
∥∥

L2
t Lr′

x
,

∥∥‖c̃
ek(t)‖`r′

ek

∥∥
L2

t
≤ C

∥∥G
∥∥

L2
t Lr′

x
. (30)
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We are now ready to prove (22). By the decomposition (29) we have∑

j∈Z
|Tj(F, G)| ≤

∑
k,ek∈Z

∑
j∈Z

∣∣Tj(ckχk, c̃
ekχ̃

ek)
∣∣.

But by Observation at the start of §5, Lemma 4.1 gives∣∣Tj(ckχk, c̃
ekχ̃

ek)
∣∣ ≤ C2−ε(|k−jσ|+|ek−jσ|)∥∥ck

∥∥
L2

∥∥c̃
ek

∥∥
L2

for some ε > 0. Summing in j, we have∑
j∈Z

|Tj(F, G)| ≤ C
∑

k,ek∈Z

(
1 + |k − k̃|

)
2−ε|k−ek|∥∥ck

∥∥
L2

∥∥c̃
ek

∥∥
L2 .
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Note that the quantity wk := (1+ |k|)2−ε|k| is summable, and RHS of the

above estimate has the form
∑

k ‖ck‖L2

(
w(·) ∗ ‖c̃(·)‖L2

)
k
.

We apply Young’s inequality :
∣∣ ∑

k fk(w ∗ g)k

∣∣ ≤ ‖w‖`1‖f‖`2‖g‖`2

to obtain ∑
j∈Z

|Tj(F,G)| ≤ C
∥∥‖ck‖L2

∥∥
`2k

∥∥‖c̃
ek‖L2

∥∥
`2

ek

.

Interchanging the L2 and `2 norms and using `r′
↪→ `2, we obtain∑

j∈Z

|Tj(F,G)| ≤ C
∥∥‖ck(t)‖`r′

k

∥∥
L2

t

∥∥‖c̃
ek(t)‖`r′

ek

∥∥
L2

t
.

(22) then follows from (30), concluding the proof of (5), (6) for endpoint. 2
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We now proceed to the proof of Lemma 5.1. Let f ∈ Lp, 0 < p < ∞.

Define the distribution function λ(α) of f for α ≥ 0 by

λ(α) = meas
{

x
∣∣ |f(x)| > α

}
.

Note that λ(α) is non-increasing and right-continuous.

For each k ∈ Z, we set

αk = inf
{

α > 0
∣∣ λ(α) < 2k

}
.

From definition we see that

0 ≤ αk < ∞, αk is non-increasing in k, lim
k→−∞

αk =
∥∥f

∥∥
L∞ ∈ [0,∞],

λ(αk) ≤ 2k, and λ(αk − 0) ≥ 2k if αk > 0. (B)
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Finally, we define

ck = 2k/pαk,

χk(x) =

c−1
k χ(αk+1,αk](|f(x)|)f(x) if αk > 0,

0 if αk = 0 (= αk+1).

Property (i) is straightforward. For (ii), the L∞ bound is easily verified.

Since

{χk 6= 0} ⊂ {|f(x)| > αk+1},

we have

meas{χk 6= 0} ≤ λ(αk+1) ≤ 2k+1,

where we have used (B).
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It remains to verify (iii). If we know a priori that∑

k∈Z

cp
k =

∑
k∈Z

2kαp
k < ∞,

then we have∑
k∈Z

2kαp
k =

∑
k∈Z

(2k+1 − 2k)αp
k =

∑
k∈Z

2k+1(αp
k − αp

k+1).

Let us take a non-increasing sequence {α′
k} ⊂ [0,∞) such that αk > α′

k > αk+1, α′
k ≥ αk/2 if αk > αk+1,

α′
k = αk if αk = αk+1.

Note that αk ≥ α′
k ≥ αk+1 and αk ≤ 2α′

k for all k ∈ Z. Furthermore,

from (B) we have 2k ≤ λ(α′
k) ≤ 2k+1 whenever αk > αk+1, which implies



31∑
k∈Z

2k(αp
k − αp

k+1) ≤
∑
k∈Z

λ(α′
k)(αp

k − αp
k+1) ≤

∑
k∈Z

2k+1(αp
k − αp

k+1).

Since RHS is absolutely summable, we have∑
k∈Z

2kαp
k ≤ 2

∑
k∈Z

λ(α′
k)(αp

k − αp
k+1)

= 2
∑
k∈Z

(
λ(α′

k) − λ(α′
k−1)

)
αp

k

≤ 2 · 2p
∑
k∈Z

(
λ(α′

k) − λ(α′
k−1)

)
(α′

k)p (∵ αk ≤ 2α′
k)

= 21+p
∑
k∈Z

(α′
k)p

∫
{α′

k<|f(x)|≤α′
k−1}

dx

≤ 21+p
∥∥f

∥∥p

Lp ,

which shows (iii).
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In the general case, we first define a non-negative function fK for K ∈ N by

fK(x) =


α−K if |f(x)| > α−K ,

|f(x)| if α−K ≥ |f(x)| > αK ,

0 if |f(x)| ≤ αK .

It is easy to see that

fK(x) ≤ |f(x)|, K ∈ N.
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If we define the distribution function λK(α) and the sequence {αK

k }k∈Z

for each fK as before, then

λK(α) =


0 if α ≥ α−K ,

λ(α) if α−K > α ≥ αK ,

λ(αK) if α < αK ,

αK
k =


0 if k > K,

αk if K ≥ k > −K,

α−K if k ≤ −K,

so that ∑
k∈Z

2k(αK
k )p =

∑
−K<k≤K

2kαp
k + α−K

∑
k≤−K

2k < ∞

for any K ∈ N. Therefore, we can apply the previous argument and obtain∑
−K<k≤K

2kαp
k ≤

∑
k∈Z

2k(αK
k )p ≤ 21+p

∥∥fK
∥∥p

Lp ≤ 21+p
∥∥f

∥∥p

Lp .

Letting K → ∞ verifies (iii), which concludes the proof of Lemma 5.1. 2



34§6. Alternate proof for Step II

In §5, we have deduced the strong (`1j) summability in L2
t L

r′

x × L2
t L

r′

x

from the weak (`∞j ) summability in L2
t L

a′

x ×L2
t L

b′

x with (a, b) around (r, r).

Such a situation is similar to the Marcinkiewicz interpolation theorem,

which asserts that the strong boundedness

T : Lp → Lp

of an operator T is deduced from the weak boundedness

T : Lp1 → Lp1,∞, T : Lp2 → Lp2,∞

if 1 ≤ p1 < p < p2 ≤ ∞.

Marcinkiewicz interpolation theorem is one of the simplest consequences

in real interpolation theory. In fact, we can rephrase the previous derivation

of (22) from Lemma 4.1 by using existing results in real interpolation theory.
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Real interpolation method

Let (A0, A1) be a pair of “compatible” Banach spaces. For parameters

0 < θ < 1 and 1 ≤ q ≤ ∞, we define the real interpolation spaces (A0, A1)θ,q

as the spaces of all the elements a in

A0 + A1 =
{

a0 + a1

∣∣ a0 ∈ A0, a1 ∈ A1

}
such that the norm

∥∥a
∥∥

(A0,A1)θ,q
=

(∫ ∞

0

[
t−θ inf

a=a0+a1

(
‖a0‖A0 + t‖a1‖A1

)]q dt

t

)1/q

is finite, with the usual modification when q = ∞.



36We will need the following two interpolation space identities.

• [Triebel [3], Sections 1.18.2 and 1.18.6](
L2

t L
p0
x , L2

t L
p1
x

)
θ,2

= L2
t L

p,2
x

for 1 ≤ p0 6= p1 ≤ ∞, min{p0, p1} < 2, 0 < θ < 1, 1
p = 1−θ

p0
+ θ

p1
.

• [Bergh, Löfström [1], Section 5.6](
`∞s0

, `∞s1

)
θ,1

= `1s

for s0 6= s1 ∈ R and s = (1 − θ)s0 + θs1.

Here, Lp,q denotes Lorentz spaces which satisfy

Lp,p = Lp, Lp,q1 ↪→ Lp,q2 for 1 ≤ p ≤ ∞, 1 ≤ q1 ≤ q2 ≤ ∞,

and `q
s stands for weighted sequence spaces defined via the norm∥∥{aj}j∈Z

∥∥
`q

s
=

∥∥{2sjaj}j∈Z
∥∥

`q .
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With the notion of weighted sequence spaces `q
s, the estimate (23) can be

regarded as boundedness

T : L2
t L

a′

x × L2
t L

b′

x → `∞β(a,b), (31)

where T = {Tj}j∈Z is the vector-valued bilinear operator and

β(a, b) = σ − 1 − σ
(1

a
+

1
b

)
,

and the claimed estimate (22) is rewritten as

T : L2
t L

r′

x × L2
t L

r′

x → `10. (C)
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We will use the following bilinear interpolation theorem:

Lemma 6.1. ([1], Exercise 5(b) of Section 3.13)

Let (A0, A1), (B0, B1), (C0, C1) be “compatible” pairs of Banach spaces.

Suppose that the bilinear operator T is bounded as

T : A0 × B0 → C0, A1 × B0 → C1, A0 × B1 → C1.

Then, we have boundedness

T :
(
A0, A1

)
θA,pAq

×
(
B0, B1

)
θB ,pBq

→
(
C0, C1

)
θ,q

whenever

0 < θA, θB < θ = θA + θB < 1, 1 ≤ pA, pB , q ≤ ∞,
1
pA

+
1

pB
≥ 1.
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We set, with ε > 0 sufficiently small,

A0 = B0 = L2
t L

a′
0

x , A1 = B1 = L2
t L

a′
1

x ,
1
a0

=
1
r
− ε,

1
a1

=
1
r

+ 2ε.

Then, by Lemma 4.1 (or (31)) the assumption in Lemma 6.1 is satisfied with

C0 = `∞2σε, C1 = `∞−σε.

We apply Lemma 6.1 with

θA = θB =
1
3
, pA = pB = 2, q = 1

to obtain the boundedness

T : L2
t L

r′,2
x × L2

t L
r′,2
x → `10,

which implies the claim (C) because of the embedding Lr′
↪→ Lr′,2. 2
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• There is also a one-parameter real interpolation theorem as follows:

Lemma. ([1], Exercise 4 of Section 3.13)

If the bilinear operator T is bounded as

T : A0 × B0 → C0, A1 × B1 → C1,

then we have

T :
(
A0, A1

)
θ,q

×
(
B0, B1

)
θ,q

→
(
C0, C1

)
θ,q

whenever

0 < θ < 1, 1 ≤ q ≤ ∞.

However, we only deduce from this lemma

T : L2
t L

r′

x × L2
t L

r′

x → `r′

0 ,

and this is not sufficient because r′ = 2σ
σ+1 > 1.
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Thank you for your attention !


