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Abstract. In this paper, we review Colliander, Grillakis and Tzirakis’ paper

[3]. We establish interaction Morawetz-type (correlation) estimates in one and

two dimensions. We provide a proof in two different ways. Firstly, We follow

the original approach of Lin and Strauss [12] applied to the tensor products of

solutions. Secondly, we give the proof using commutator vector operators acting

on the conservation laws of the equation. By using correlation estimates, we show

the H1 scattering for the L2-supercritical nonlinear Schödinger equation. This

result has already been proven by Nakanishi [13]. But the simplified proof is given

in this paper.

1. Introduction

In this paper, we obtain new a priori estimates for solutions of the nonlinear

Schrödinger equation (NLS) in one and two dimensions. We apply these estimates

to study the global-in-time behavior of solutions to the following Cauchy problem:i∂tu+△u = µ|u|p−1u, (t, x) ∈ R× Rn,

u|t=0 = u0 ∈ Hs(Rn),
(1.1)

where µ = ±1 and p > 1. (1.1) with µ = 1 is the defocusing case and (1.1) with

µ = −1 is the focusing case. In the defocusing case, the Hamiltonian is positive

definite. In this paper, we only deal with the defocusing NLS as follows:

i∂tu+△u = |u|p−1u, (t, x) ∈ R× Rn. (1.2)

Smooth solutions to (1.2) satisfy mass conservation

∥u(t)∥L2 = ∥u0∥L2

and energy conservation

E(u(t)) =
1

2

∫
|∇u(t)|2 dx+

1

p+ 1

∫
|u|p+1 dx = E(u0).

Now the scaling is given by

uλ(t, x) = λ− 2
p−1u(λ−2t, λ−1x)

1
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for λ ≥ 1. If u is a solution of (1.2), then uλ is also a solution. The problem is called

Hs-critical when s = n
2
− 2

p−1
. Therefore L2-critical and H1-critical correspond to

p = 1 + 4
n
and p = 1 + 4

n−2
respectively.

Conjecture. Let p = 1 + 4
n
, n ≥ 1 and u0 ∈ L2(Rn). L2-critical equation (1.2) is

globally well-posed in L2(Rn). Moreover there exist u± ∈ L2(Rn) such that∥∥u(t)− eit△u±
∥∥
L2(Rn)

→ 0, as t → ±∞.

In the subcritical case, the local time T only depends on the norm of initial data.

But in the critical case the local time depends not only on the norm of initial data

but also the profile. This conjecture has recently been solved by Dondon in [8],

[9] and [10]. He used the interaction Morawetz estimates and minimal blow-up

solutions. For the details, see Dodson’s papers.

In the present paper, we deal with L2-supercritical (H1-subcritical) problem in

one and two dimensions. Our aim is to establish the global well-posedness and

scattering for the L2-supercritical NLS (1.2) in H1(Rn) for n = 1, 2. Nakanishi [13]

already have solved this problem. But his proof is very complicated. Then we give

a simple proof by using the correlation estimates.

The interaction Morawetz inequalities help us to prove global well-posedness and

scattering. Visan [14] and Visan and Zhang [15] established the following Morawetz

inequality for n ≥ 4 ∥∥D−n−3
2 (|u|2)

∥∥
L2
tL

2
x
≲ ∥u∥L∞

t L2
x
∥u∥

L∞
t Ḣ

1/2
x

. (1.3)

In the case n = 3, Collinader, Keel, Staffilani, Takaoka and Tao [6] obtained

∥u∥2L4
tL

4
x
≲ ∥u∥L∞

t L2
x
∥u∥

L∞
t Ḣ

1/2
x

.

Collecting these estimates, we have (1.3) for n ≥ 3. Note that the distribution

−△△|x| is positive for n ≥ 3 but not positive anymore for n = 1, 2. So we need to

construct another approach. Then we use the commutator vector operators acting

on the conservation laws and obtain the following interaction Morawetz inequalities

in one and two dimensions.

Theorem 1.1. (Correlation Estimates in Two Dimensions) Let u be an H1/2 solu-

tion to (1.2) on the space-time slab I × R2. Then the following estimate holds∥∥D1/2(|u|2)
∥∥
L2
tL

2
x
≲ ∥u∥L∞

t L2
x
∥u∥

L∞
t Ḣ

1/2
x

. (1.4)
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Theorem 1.2. (Correlation Estimates in One Dimension) Let u be an H1 solution

to (1.2) on the space -time slab I × R. Then the following estimate holds∥∥∂x(|u|2)∥∥L2
tL

2
x
≲ ∥u∥3/2L∞

t L2
x
∥u∥1/2

L∞
t Ḣ1

x
, (1.5)

∥u∥p+3

Lp+3
t Lp+3

x
≲ ∥u∥3L∞

t L2
x
∥u∥L∞

t Ḣ1
x
. (1.6)

The correlation estimate in two dimensions (1.4) can be considered as the diagonal,

nonlinear analog of the bilinear refinement of Strichartz established by Bourgain [1].

A weaker local-in-time estimate was obtained in [11]

∥u∥2L4
t∈[0,T ]

L4
x
≲ T 1/4∥u0∥L2∥u∥

L∞
t∈[0,T ]

Ḣ
1/2
x

.

This estimate is very useful since the L4
tL

4
x norm is the Strichartz norm and enables

us to extend local-in-time solutions to global ones. Moreover this estimate was

improved to the following one by Colliander, Grillakis and Tzirakis [2].

∥u∥2L4
t∈[0,T ]

L4
x
≲ T 1/6∥u0∥4/3L2

x
∥u∥

L∞
t∈[0,T ]

Ḣ
1/2
x

. (1.7)

A brief proof of (1.7) is given in the subsection 3.1.

Using the Sobolev embedding theorem and (1.4), we can control the L4
tL

8
x norm

in two dimensions as follows:

∥u∥2L4
tL

8
x
≲

∥∥D1/2(|u|2)
∥∥
L2
tL

2
x
≲ ∥u∥L∞

t L2
x
∥u∥

L∞Ḣ
1/2
x

.

We can use this estimate to obtain a simplified proof of the H1 scattering result.

Theorem 1.3. (Asymptotic Completeness in H1(R2)) Let u0 ∈ H1(R2). Then

there exists a unique solution to (1.2) when p > 1. Moreover if p > 3, there exist

u± ∈ H1(R2) such that∥∥u(t)− eit△u±
∥∥
H1(R2)

→ 0, as t → ±∞.

Combining the correlation estimates and the I-method introduced in [5], we obtain

the asymptotic completeness blow H1(R2).

Theorem 1.4. Let u0 ∈ Hs(R2). Then for each positive integer k ≥ 2, there exists

sk = 1− 1
4k−3

such that the Cauchy problem i∂tu+△u = |u|2ku,

u|t=0 = u0

is globally well-posed and scatters provided s > sk. In particular, there exist u± ∈
Hs(R2) such that ∥∥u(t)− eit△u±

∥∥
Hs(R2)

→ 0, as t → ±∞.
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In this paper, we omit the proof of Theorem 1.4. For the proof, see [3].

2. Preliminaries

In this section, we introduce some notations and the Strichartz estimates.

Definition. A pair of exponents (q, r) is called admissible pair if (q, r, n) ̸= (2,∞, 2)

2

q
+

n

r
=

n

2
, 2 ≤ r ≤ ∞.

For the space-time slab I × Rn, we define the Strichartz norm ∥ · ∥S0(I) as

∥f∥S0(I) := sup
(q,r):admissible

∥f∥Lq
tL

r
x(I×Rn).

Then we have the following inhomogeneous Strichartz estimate.

Lemma 2.1. Let I be a compact time interval, t0 ∈ I, s ≥ 0, and let u be a solution

to

i∂tu+△u =
m∑
i=1

Fi

for some functions F1, F2, · · · , Fm. Then,

∥|∇|su∥S0(I) ≲ ∥u0∥Ḣs
x
+

m∑
i=1

∥∥|∇|sFi

∥∥
L
q′
i

t L
r′
i

x (I×Rn)

for any admissible pair (qi, ri) and 1 ≤ i ≤ m. Here p′ denotes 1/p+ 1/p′ = 1.

3. Correlation Estimates for all Dimensions

We consider solutions of the equation

i∂tu+△u = |u|p−1u, (t, x) ∈ [0, T ]× Rn. (3.1)

This equation has the following momentum conservation laws

p⃗(t) =

∫
Rn

Im(u(t, x)∇u(t, x)) dx = p⃗(0).

We define the Morawetz action as

Ma(t) :=

∫
Rn

∇a(x) · Im(u(t, x)∇u(t, x)) dx

where a: Rn → R and is convex. Put ρ = 1
2
|u|2 and p⃗ = Im(u∇u) corresponding to

the mass density and the momentum density respectively. Now we assume that a
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solution u to (3.1) is smooth since the embedding S ⊂ Hs is dense. For the details,

see [7]. The equation (3.1) satisfies the following local conservation laws:

∂tρ+ ∂jp
j = 0, (local mass conservation),

∂tpk + ∂j
{
σj
k + δjk

(
−△ρ+

p− 1

p+ 1
|u|p+1

)}
= 0, (local momentum conservation)

where

σj,k :=
1

ρ
(pjpk + ∂jρ∂kρ)

which is a stress tensor. σj,k can be rewritten by

σj,k = Re(∂jū∂ku).

We are ready to the generalized Virial identity introduced by Lin and Strauss [12].

Proposition 3.1. If a is convex and u is a smooth solution to (1.2). Then the

following estimate holds:∫ T

0

∫
Rn

(−△△a(x))|u(t, x)|2 dtdx ≲ sup
[0,T ]

|Ma(t)|. (3.2)

Proof. The Morawetz action Ma(t) can be rewritten into

Ma(t) = 2

∫
Rn

(∂ka)pk dx.

By using the local momentum conservation laws, we have

∂tMa(t) = 2

∫
Rn

(∂ka)∂tpk dx

= −2

∫
Rn

(∂ka)∂j

{
σj
k + δjk

(
−△ρ+

p− 1

p+ 1
|u|p+1

)}
dx

= 2

∫
Rn

(∂j∂ka)σj,k dx− 2

∫
Rn

(∂2
ka)△ρ dx+

2(p− 1)

p+ 1

∫
Rn

(∂2
ka)|u|p+1 dx

= 4

∫
Rn

(∂j∂ka) Re(∂jū∂ku) dx+

∫
Rn

(−△△a)|u|2 dx

+
2(p+ 1)

p− 1

∫
Rn

△a|u|p+1 dx.

Since a is convex,

∂j∂ka Re(∂jū∂ku) ≥ 0.

In addition, the trace of the Hessian ∂j∂ka, which is △a, is positive. Therefore we

obtain ∫
Rn

(−△△a)|u(t, x)|2 dx ≤ ∂tMa(t),
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which shows the desired estimate (3.2). □

3.1. Interaction Morawetz Inequalities. In this subsection, we want to establish

the interaction Morawetz inequalities by using the tensor product of two solutions

to (3.1). Now the derivative D denotes D2 = −△.

Proposition 3.2. Let u be an H1/2 solution to (3.1). Then the following inequality

holds for n ≥ 3 ∥∥D−n−3
2 (|u|2)

∥∥
L2
tL

2
x
≲ ∥u∥L∞

t L2
x
∥u∥

L∞
t Ḣ

1/2
x

. (3.3)

Define the tensor product u := (u1 ⊗ u2)(t, x) for x in

Rn1+n2 :=
{
(x1, x2) : x1 ∈ Rn1 , x2 ∈ Rn2

}
by the formula

(u1 ⊗ u2)(t, x) = u1(t, x1)u2(t, x2).

Let ui be solutions to i∂tui + △ui = Fi where Fi = |ui|p−1ui for i = 1, 2. Put

F = F1 ⊗ u2 + F2 ⊗ u1. Then u = u1 ⊗ u2 solves

i∂tu+△u = F. (3.4)

We have that ρ = 1
2
|u|2 = 1

2
|u1|2|u2|2 and pk = Im

(
u1u2∂k(u1u2)

)
. The equation

(3.4) has the following local conservation laws:

∂tρ+ ∂jp
j = 0,

∂tpk + ∂j
{
σj
k + δjk(−△ρ+G)

}
= 0

where

G =
p− 1

p+ 1
(F1 ⊗ |u2|2 + F2 ⊗ |u1|2) ≥ 0.

We define the Morawetz action corresponding to u1 ⊗ u2 as

M⊗2
a (t) = 2

∫
Rn1⊗Rn2

∇a · Im
(
u1 ⊗ u2∇(u1 ⊗ u2)

)
dx

= Ma(u1(t))∥u2∥2L2 +Ma(u2(t))∥u1∥2L2 .

In this setting, ∇ = (∇x1 ,∇x2) and △ = △x1 +△x2 . If u is a solution to (3.1), by

using Proposition 3.1, we obtain for a convex function a that∫ T

0

∫
Rn⊗Rn

(−△△a)|(u1 ⊗ u2)(t, x)|2 dtdx ≲ sup
[0,T ]

|M⊗2
a (t)|. (3.5)
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We choose a(x) = a(x1, x2) = |x1 − x2| for x = (x1, x2) ∈ Rn ⊗ Rn. A simple

calculation yields that

−△△a(x) =

c0δ{x1=x2} for n = 3,

(n−1)(n−3)
|x1−x2|3 for n ≥ 4

where c0 is some positive constant. Substituting −△△a into (3.5) and choosing

u1 = u2, we have that in the case n = 3∫ T

0

∫
R3

|u(t, x)|4 dtdx ≲ sup
[0,T ]

|M⊗2
a (t)|.

In the case n ≥ 4, we have∫ T

0

∫
Rn

(
|u|2 ∗ 1

| · |3
)
(x1)|u(t, x1)| dtdx1 ≲ sup

[0,T ]

|M⊗2
a (t)|. (3.6)

We can write

D−(n−3)f(x) =

∫
Rn

f(y)

|x− y|3
dy

since for n ≥ 4 the distribution Fourier transform of |x|−3 is given by |̂ · |−3(ξ) =

|ξ|−(n−3). By using the Plancherel theorem, we have∫ T

0

∫
Rn×Rn

|u(t, x2)|2

|x1 − x2|3
|u(t, x1)|2 dtdx =

∫ T

0

∫
Rn

D−(n−3)(|u(t, x)|2)|u(t, x)|2 dx

=

∫ T

0

∫
Rn

∣∣∣D−n−3
2 (|u|2)

∣∣∣2dtdx.
Then we obtain for n ≥ 4∫ T

0

∫
Rn

∣∣∣D−n−3
2 (|u|2)

∣∣∣2dtdx ≲ sup
[0,T ]

|M⊗2
a (t)|.

We combine the two estimate and it follows that for n ≥ 3∥∥D−n−3
2 (|u|2)

∥∥2

L2
tL

2
x
≲ sup

[0,T ]

|M⊗2
a (t)|.

On the other hand, we estimate the action term M⊗2
a (t). It is enough to estimate

Ma(u(t)) since

M⊗2
a (t) = Ma(u1(t))∥u2∥2L2

x
+Ma(u2(t))∥u1∥2L2

x
.

Note that ∇a(x) = x
|x| . The Cauchy Schwarz inequality shows that

|Ma(u(t))| ≲ ∥u∥
Ḣ

1/2
x

∥∥∥ x

|x|
u
∥∥∥
Ḣ

1/2
x

.
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By using the Hardy inequality, we have∥∥∇( x

|x|
)
u
∥∥
L2
x
≲ ∥∇u∥L2

x
.

Interpolating this estimate and
∥∥ x
|x|u

∥∥
L2 ≲ ∥u∥L2 , we obtain ∥ x

|x|u∥Ḣ1/2 ≲ ∥u∥Ḣ1/2 .

Therefore it follows that

|Ma(u(t))| ≲ ∥u∥2
Ḣ

1/2
x

,

which implies that the following interaction Morawetz inequality for n ≥ 3 holds∥∥D−n−3
2 (|u|2)

∥∥
L2
tL

2
x
≲ ∥u∥L∞

t L2
x
∥u∥

L∞
t Ḣ

1/2
x

.

This estimate is appeared in [7] and [15].

We remark that the above method breaks down for n ≥ 3 since the distribution

−△△|x| is not positive anymore. Then we introduce the function f : [0,∞) →
[0,∞) such that

f(x) =


x2

2M
(1− log x

M
) if 0 ≤ x < M√

e
,

100x if x > M,

smooth and convex for all x

where M is a large parameter determined later. When we choose a(x1, x2) = f(|x1−
x2|) for (x1, x2) ∈ R2 × R2, a is convex and

−△△a =
4π

M
δ{x1=x2} +O

( 1

M3

)
.

In this setting, we can use the analogous method in the case n ≥ 3. Taking

M ∼ T 1/3
( ∥u∥L∞

t L2
x

∥u∥
L∞
t Ḣ

1/2
x

)2/3

,

we get the following interaction Morawetz inequality in two dimensions

∥u∥2L4
t∈[0,T ]

L4
x
≲ T 1/6∥u∥4/3L∞

t L2
x
∥u∥2/3

L∞
t Ḣ

1/2
x

,

which is a better estimate than one established by Fang and Grillakis [11].

3.2. Commutator Vector Operators and Correlation Estimates in Dimen-

sion n ≥ 2. We drive the correlation estimates by using commutator vector oper-

ators acting on the conservation laws of the equation (3.1). Recall the Morawetz

action

M⊗2
a (t) = 2

∫ T

0

∫
Rn1⊗Rn2

∇a · Im
(
u1 ⊗ u2∇(u1 ⊗ u2)

)
dtdx1dx2
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for the tensor product of solutions u = (u1⊗u2)(t, x) where x = (x1, x2) ∈ Rn⊗Rn.

We consider the special case u1 = u2, a(x1, x2) = |x1 − x2| for n ≥ 2 and observe

that

∇x1a(x1, x2) =
x1 − x2

|x1 − x2|
= − x2 − x1

|x2 − x1|
= −∇x2a(x1, x2).

We can view M(t) := M⊗2
a (t) as

M⊗2
a (t) = 2

∫ T

0

∫
Rn×Rn

x1 − x2

|x1 − x2|
{
p⃗(t, x1)ρ(t, x2)− p⃗(t, x2)ρ(t, x1)

}
dx1dx2dt.

Note that

D−(n−1)f(x) =

∫
Rn

f(y)

|x− y|
dy.

Now we define the vector operator X⃗ as

X⃗ = [x,D−(n−1)].

We change notations and write x1 = x and x2 = y. Then the action term M(t) can

be rewritten

M(t) = ⟨[x,D−(n−1)]ρ | p⃗⟩ = ⟨X⃗ρ | p⃗⟩.

We investigate the property of the commutator vector operator X⃗. Notice that

X⃗f(x) =

∫
Rn

x− y

|x− y|
f(y) dy.

We calculate the differentiation of X⃗ and have

∂jX
kf(x) =

∫
Rn

|x− y|2δj,k − (xj − yj)(xk − yk)

|x− y|3
f(y) dy =:

∫
Rn

rj,k(x, y)dy.

A direct calculation shows that

⟨rj,k |qjqk⟩ =
|x− y|2|q⃗|2 −

(
(x− y) · q⃗

)2
|x− y|3

≥ 0,

which implies that ∂jX
k is a positive definite operator. Moreover it follows that

⟨X⃗f |g⟩ = −⟨f |X⃗g⟩ from the Fubini theorem. Thus X⃗ is an antisymmetric operator.

We recall that the local mass and momentum conservation laws:

∂tρ+ ∂jp
j = 0,

∂tpk + ∂j
{
σj
k + δjk(−△ρ+

p− 1

p+ 1
|u|p+1)

}
= 0,

where σj,k = ρ−1(pjpk + ∂kρ∂jρ). We differentiate the action term and have

∂tM(t) = −⟨∂tρ | X⃗ · p⃗⟩ − ⟨ρ | X⃗ · ∂tp⃗⟩.
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We divide ∂tM(t) into four parts as follows:

∂tM(t) = −⟨∂jXkpk | pj⟩+ ⟨σj,k | ∂jXkρ⟩

+ ⟨−△ρ | ∂kXkρ⟩+ p− 1

p+ 1
⟨|u|p+1 | ∂kXkρ⟩

= P1 + P2 + P3 + P4

where

P1 = ⟨ρ−1∂jρ∂kρ | ∂jXkρ⟩,

P2 = ⟨ρ−1pjpk | ∂jXkρ⟩ − ⟨pj | ∂jXkpk⟩,

P3 = −⟨△∂kX
kρ⟩ = −⟨△ρ | ∇ · X⃗ρ⟩,

P4 =
p− 1

p+ 1
⟨|u|p+1 | ∇ · X⃗ρ⟩.

Since ∂jX
k is positive definite, P1 is positive. Note that

∇ · X⃗ = ∂jX
j = (n− 1)D−(n−1).

By using the Plancherel theorem, we have

P3 = ⟨D2ρ | (n− 1)D−(n−1)ρ⟩ = (n− 1)⟨D−n−3
2 ρ | D−n−3

2 ρ⟩

=
n− 1

4

∥∥D−n−3
2 (|u|2)

∥∥2

L2
x
.

Moreover

P4 =
p− 1

p+ 1
⟨|u|p+1 | (n− 1)D−(n−1)ρ⟩

=
(p− 1)(n− 1)

2(p+ 1)

∫
Rn

|u(t, x)|p+1|u(t, x)|2

|x− y|
dxdy ≥ 0.

By changing variables, we compute P2 to obtain

P2 =

∫
Rn×Rn

{ρ(y)
ρ(x)

pj(x)pk(x)− pj(y)pk(x)
}
rj,k(x, y) dxdy

=
1

2

∫
Rn×Rn

{ρ(x)

ρ(y)
pj(x)pk(x) +

ρ(y)

ρ(x)
pj(y)pk(y)

− pj(y)pk(x)− pj(x)pk(y)
}
rj,k(x, y) dxdy

=
1

2

∫
Rn×Rn

{√ρ(x)

ρ(y)
pk(x)−

√
ρ(y)

ρ(x)
pk(y)

}
×
{√ρ(x)

ρ(y)
pj(x)−

√
ρ(y)

ρ(x)
pj(y)

}
rj,k(x, y) dxdy
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If we define the two-point momentum vector as

J⃗ =

√
ρ(y)

ρ(x)
p⃗(x)− ρ(x)

ρ(y)
p⃗(y),

then we have

P4 = ⟨J jJk | (∂jXk)⟩ ≥ 0

since ∂jX
k is positive definition. Thus∥∥D− (n−3)

2 (|u|2)
∥∥2

L2
x
≤ ∂tM(t).

We integrate in time to have∥∥D− (n−3)
2 (|u|2)

∥∥2

L2
tL

2
x
≲ sup

[0,T ]

|M(t)|.

On the other hand,

|M(t)| = |⟨[x,D−(n−1)]jρ | pj⟩| ≤ ∥pj∥L1∥[x,D−(n−1)]jρ∥L∞

≤ ∥pj∥L1∥[x,D−(n−1)]j∥L1→L∞∥ρ∥L1 .

Following the Hardy inequality and interpolation, ∥pj∥L1 ≲ ∥u∥2
Ḣ

1/2
x

. Moreover

∥[x,D−(n−1)]∥L1→L∞ is bounded by 1 since

[x,D−(n−1)]f(x) =

∫
Rn

x− y

|x− y|
f(y) dy for f ∈ L1.

Therefore |M(t)| ≲ ∥u(t)∥2L2
x
∥u(t)∥2

Ḣ
1/2
x

. For all n ≥ 2, we have the correlation

estimate ∥∥D−n−3
2 (|u|2)

∥∥
L2
tL

2
x
≲ ∥u∥L∞

t L2
x
∥u∥

L∞
t Ḣ

1/2
x

.

3.3. Correlation Estimate in One Dimension. We would like to prove the

following correlation estimate in one dimension by using the Gauss-Weierstrauss

summability method:

∥∂x(|u|2)∥L2
tL

2
x
≲ ∥u∥3/2L∞

t L2
x
∥u∥1/2

L∞
t Ḣ1

x

for solutions of one dimension NLS i∂tu+△u = |u|p−1u. Recall the local mass and

momentum conservation laws as follows:

∂tρ+ ∂xp = 0,

∂tp+ ∂x
{
ρ−1(ρ2 + p2x)− ρxx +

p− 1

p+ 1
|u|p+1

}
= 0.
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We define the action term as

M(t) =

∫
R×R

a(x− y)ρ(y)p(x) dxdy

where

a(x− y) = erf
(x− y

ε

)
=

∫ x−y
ε

0

e−t2 dt

is the scaled error function. Its derivative is

∂xerf
(x− y

ε

)
=

1

ε
exp

(
−(x− y)2

ε2

)
≥ 0,

which is the heat kernel in one dimension. Clearly,

sup
t

|M(t)| ≲ ∥u∥3L∞
t L2

x
∥u∥L∞

t Ḣ1
x

(3.7)

We can write M(t) = ⟨Xρ | p⟩ where X is defined as

Xf(x) =

∫
R
erf

(x− y

ε

)
f(y) dy.

We easily check ⟨Xρ | p⟩ = −⟨ρ |Xp⟩, which impliesX is an antisymmetric operator.

We calculate the time derivative of the action term to obtain

∂tM(t) = −⟨∂tρ | Xp⟩ − ⟨ρ | X∂tp⟩ (3.8)

Applying the local mass and momentum conservation laws to (3.8), we have

∂tM(t) = P1 + P2 + P3 + P4

where

P1 := ⟨ρ−1ρ2x | X ′ρ⟩, P2 := ⟨ρ−1p2 | X ′ρ⟩ − ⟨p | X ′p⟩,

P3 := ⟨(−ρxx) | X ′ρ⟩, P4 :=
p− 1

p+ 1
⟨|u|p+1 | X ′ρ⟩.

These terms can be rewritten

P1 =

∫
R×R

1

ε
e−(x−y

ε
)2 ρ(y)

ρ(x)
ρ2x(x) dxdy ≥ 0,

P4 =
p− 1

p+ 1

∫
R×R

1

ε
e−(x−y

ε
)2ρ(y)|u(x)|p+1 dxdy ≥ 0,

P2 =

∫
R×R

1

ε
e−(x−y

ε
)2
{ρ(y)

ρ(x)
p2(x)− p(x)p(y)

}
dxdy.



CORRELATION ESTIMATES AND APPLICATIONS 13

By using change variables and symmetry, P2 is rewritten into

P2 =
1

2

∫
R×R

1

ε
e−(x−y

ε
)2
{ρ(y)

ρ(x)
p2(x) +

ρ(x)

ρ(y)
p2(y)− 2p(x)p(y)

}
dxdy

=
1

2

∫
R×R

1

ε
e−(x−y

ε
)2
{√ρ(y)

ρ(x)
p(x)−

√
ρ(x)

ρ(y)
p(y)

}2

dxdy ≥ 0

Following the Plancherel’s theorem, we have

P3 =

∫
R×R

1

ε
e−(x−y

ε
)2ρ(y)(−ρxx(x)) dxdy

=

∫
R

(1
ε
e−( ·

ε
)2 ∗ ρ

)
(x)(−ρxx(x)) dx

=

∫
R
exp

(
−ε2ξ2

4

)
ξ2ρ̂2(ξ) dξ ≥ 0.

Notice that

lim
ε→0

(
e−( ·

ε
)2 ∗ ρ

)
(x) = ρ(x)

in the distribution sense. Thus we obtain

lim
ε→0

P1 =

∫
R
ρ2x(x) dx =

1

4
∥∂x(|u|2)∥2L2

x
,

lim
ε→0

P3 =
p− 1

p+ 1

∫
R
ρ(x)|u(x)|p+1dx =

p− 1

2(p+ 1)
∥u∥p+3

Lp+3
x

.

Collecting the above estimates, we have

1

4
∥∂x(|u|2)∥2L2

x
≤ ∂tM(t),

p− 1

2(p+ 1)
∥u∥p+3

Lp+3
x

≤ ∂tM(t).

Integrating in time and using (3.7), we obtain

∥∂x(|u|2)∥2L2
tL

2
x
≲ ∥u∥3L∞

t L2
x
∥u∥L∞

t Ḣ1
x
,

∥u∥p+3

Lp+3
t Lp+3

x
≲ ∥u∥3L∞

t L2
x
∥u∥L∞

t Ḣ1
x
.

Recalling that the scaling is

uλ(t, x) = λ− 2
p−1u(λ−2t, λ−1x),

we can verify that a priori one dimensional estimate

∥u∥p+3

Lp+3
t Lp+3

x
≲ ∥u∥3L∞

t L2
x
∥u∥L∞

t Ḣ1
x
.

is scale invariant.
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4. The Proof of the H1 Scattering Results

In this section, by using the correlation estimate, we prove the global well-

posedness and the scattering of the Cauchy problem i∂tu+△u = |u|p−1u, p > 3,

u|t=0 = u0 ∈ H1(R2).
(4.1)

This proof is very simplified compared to Nakanishi’s one [13]. Combing (1.4) and

the Sobolev embedding theorem, we obtain

∥u∥2L4
tL

8
x
≲ ∥u∥L∞

t L2
x
∥u∥

L2
t Ḣ

1/2
x

.

By using the mass and energy conservation laws, we can control the L4
tL

8
x norm as

follows:

∥u∥L4
tL

8
x
≲ C(E(u0)). (4.2)

To prove the scattering, we have to control the following Strichartz norm:

∥u∥S1 := sup
1
q
+ 1

r
= 1

2

∥⟨∇⟩u∥Lq
tL

r
x
.

We divide the real line into finitely many subintervals {Ij}Lj=1 such that for each Ij

we have

∥u∥L4
tL

8
x(Ij)

∼ δ.

It is enough to show that

∥u∥S1(Ij) ≲ ∥u0∥H1 , (4.3)

which implies that ∥u∥S1 ≲ ∥u0∥H1 .

We will suppress the Ij notation for what follows. By Lemma 2.1 and interpola-

tion, we have

∥u∥S1 ≲∥u0∥H1 +
∥∥⟨∇⟩|u|p−1u

∥∥
L
4/3
t L

4/3
x

≲∥u0∥H1 + ∥⟨∇⟩u∥L∞
t L2

x
∥|u|p−1∥

L
4/3
t L4

x

≲∥u0∥H1 + ∥u∥S1∥u∥εL4
tL

8
x
∥u∥p−1−ε

L
q0
t L

r0
x

where

q0 =
4(p− 1− ε)

3− ε
, r0 =

8(p− 1− ε)

2− ε
.

Thus we have

∥u∥S1 ≲ ∥u0∥H1 + δε∥u∥S1∥u∥p−1−ε

L
q0
t L

r0
x
.
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By using the Sobolev embedding theorem, we observe that for p > 3 + ε
4

∥u∥Lq0
t L

r0
x
≲ ∥|∇|αu∥Lq0

t L
r1
x

where

r1 =
4(p− 1− ε)

2p− 5− ε
, α =

p− 3− ε/4

p− 1− ε
.

Since the pair of exponents (q0, r1) are admissible, it follows that

∥u∥Lq0
t L

r0
x
≲ ∥⟨∇⟩u∥Lq0

t L
r1
x
≲ ∥u∥S1

Thus we have

∥u∥S1(Ij) ≲ ∥u0∥H1 + δε∥u∥p−ε
S1(Ij)

.

and by a continuity argument for ε small we obtain (4.3).

We now prove that there exists u+ ∈ H1(R2) such that

∥u(t)− eit△u+∥H1(R2) → 0, as t → ∞.

We define v(t) = e−it△u(t) where u is an H1 solution to (4.1). Then v satisfies

v(t) = u0 − i

∫ t

0

e−is△(|u|p−1u)(s) ds.

For any 0 < τ < t,

v(t)− v(τ) = −i

∫ t

τ

e−is△(|u|p−1u)(s) ds.

By Lemma 2.1 and the Sobolev embedding, it follows that

∥v(t)− v(τ)∥H1(R2) ≲
∥∥⟨∇⟩|u|p−1u

∥∥
L
4/3
t L

4/3
x ([τ,t]×R2)

≲∥u∥εL4
t∈[τ,t]

L8
x
∥u∥p−ε

S1([t,τ ]),

which implies that ∥v(t)− v(τ)∥H1 is bounded from (4.2) and (4.3). Therefore

∥v(t)− v(τ)∥H1(R2) → 0, as t, τ → ∞.

This shows that u+ ∈ H1(R2) is well-defined as follows:

u+ = u0 − i

∫ ∞

0

e−is△(|u|p−1u)(s)ds.

Remark. By using the correlation estimates in one dimension (1.5) and (1.6),

an analogue simplified proof of the scattering for the L2-supercritical NLS in one

dimension appeared in [4].
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