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Notation

» The Fourier transform f of f in R9 is defined by the formula
FQ) = cymyars [ e 700 d
= X X.
(2m)4/2 Jgs

» We use the short hand LPL9 = LP([2, 00), L1(R3)).
» We denote LP9 for usual Lorentz space.



3D Quadratic NLS

We consider the VP
{ Ot + iAu = au?,

where a € C and v is a C-valued function of (t,x) € R x R3.
The first step is to take as the new unknown function

f(t) = eitAu(t), or equivalently, (t £ =e —it|¢)? u(t, €)
in the Fourier side. Then, by Duhamel’s formula,
f = :sd>(§ ”7
f(t,§) 27r)3/2/ /R3 f(s 77) (s,&€ —n) dnds,

where the phase function ®(&,7) = —|¢? + |n|2 + |€ — n|2.



Space-time resonance

> On the set of time resonances T := {(§,n) : ®(&,n) = 0},
the phase is stationary in s.

» On the set of space resonances
S :={(&,n) : 0,9(&,m) = 0}, the phase is stationary in 7.

» On the set of space-time resonances R := 7 NS, the phase
is stationary in both s and 7.

Since the set of space-time resonances in our case is a point
R ={(0,0)}, we can take advantage of the oscillation of the
phase in the Duhamel's formula

Fe0 =000+ 5 [ [ e 0)F(s.€ ) dnds

by integrating parts in either s or 7.



In order to implement this strategy, we notice that dse’*® = jdes®

and 0,e"*® = is(9,®)e™® thus for any P,

1 o _isd
IZ<8+ 8) = e"%,

where Z := ® 4 P - 9,®. We pick a P such that Z vanishes only
at (0,0). Among the functions P that will do the trick, we choose

1
P=_n+=¢.
77+2€

For this specific P, we have

Z=0+ P 0,0 = —2|n> — |£> + 2¢ - 1, which vanishes only at
the point where ® and 0, are zero, which is (£,7) = (0,0). To
deal with the singularity of , Wwe also consider the smoothened

verS|on 1 1
+0s + 8 = es®,
+ iZ ( )




Main Result
Define the Banach space X by its norm

n <wmw@4| Hu
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X
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where f is the profile of u, namely (t, &) = e~ /€I*t3i(¢, €).

» The choice of initial data t = 2 is made to avoid having
singularities at t = 0 and t =1 in the norm of X. If we
choose the data to be given at t = 0, then, in the definition of
||| x, t should be replaced by (t).

The solution u will be constructed using Picard’s iteration. If we
show that

7(6,6) = a(e) 2w)3/2// €N (5,0 (5, — ) dnds
— 8.() + aB(F. F(t,¢



is a contraction on a neighborhood of the origin in the Banach
space X, then we can get the result:

Theorem
For data u, such that He_"tAu*
solution of IVP

H X is small enough, there exists a

Ot + iAu = au?,
(NLS)

. a—2IA
u‘tzz—uz—e u
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in X. Furthermore, f(t) has a limit in L as t — co.

So we need to prove the estimate
2
I1B(F, O)lix < Ifllx -

The scattering follows immediately from the fact that f € X.



Stationary Phase Lemma

First we prove the L1 — L decay of solutions to the Schrdingier
equation:

Lemma (Stationary Phase Lemma)

The Schrodingier semigroup satisfies

it 1 2,\ X
SO (—2it)?2° g( 2t) - t7/4 Ol<ell.2)

. . i3m .
with the convention that ﬁ =¢e'« . In particular,

i 1 . 1
He 'tAgHLOO S 132 181 + /4 szgHLz-



Proof. Note that

1 by

(e ™g)(x) = Caimty2 /R3 e " g(y)dy

_ 1 e (_§>
T (—2it)3/2 g\ 72¢

+1eiz2f/ el e”.% —1)g(y)dy
(—4i7Tt)3/2 R3 :

In order to prove the lemma, it suffices to bound the second term
in the last line.

,,'é i 7’-ﬁ
" Rant e’ —1)g(y)dy

2
y c .,
/|y<ﬁ 2718 dy Iy‘zﬁ\g(y)l vy < 7 el




Gagliardo-Nirenberg Type Inequality

Lemma
The following inequality holds

2
—itA —itA ity 2
He (xf) S e Lo e (x°f) g

Proof. Define J =X — 2/tV Observe that e 2 x = Je=tA and
that J = 2ite ' Ve . We have

2
—itAf

. 2 . 2 2 2
He_'tA(xf)H .= HJe_'SAfH = 4t% |le '@ Ve'w e
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Coifman-Meyer Theorem

We consider the operators
To(f.) =7 [ mi&.mTne(e ~n) dn

Theorem (Coifman-Meyer)

Suppose that a multiplier m satisfies

C
(1] + In)led*15

for sufficiently many multi-indices (v, 3). Then Tp @ LP x L9 — L"
is bounded for
1 1

1
-—=—+4+—, 1<p,g<oo and 0<r < o0.
rp q

|00, m(¢,m)| <



> If mis homogeneous of degree 0, and of class C* on a
(&, m)-sphere, then the condition for the above holds.

» If m(&,n) is a Coifman-Meyer multiplier, so is
m¢(&,m) = m(t&, tn) for a real number t. Furthermore, the
bounds of yagaﬁm(g,n)\ are independent of t, and
consequently so are the norms of T, as an operator from
LP x L9 to L", for (p, g, r) satisfying % = % + %,
l1<p,g<ocand 0<r < oo.



Fractional Integration

Let AP := (—=A)%/2 and A} = (L — A)%/2.
Lemma

> lfa20,1<p,q<oo,and%—l:%, then

i

H/\iafHLp 5 HfHLq .

» [fa >0, then
ATl e SNl 200

» Ifa>0,1<p, g<oo, and0<f—7<°‘ then

\/

el < 2365 Ay 0



Multiplier Estimate

We can bound Z and % + Z in the denominator in the following
manner:

Lemma

Let Z=® + P-0,® and let P; denote a homogeneous polynomial
in (§,m) of degree . Suppose that % = % + % as in the C-M
theorem. Then

» The multiplier m(§,n) = ng%(gn) satisfies

1 Ten(F, ) e S AT o llglia + 1F e A o -

» The multiplier m¢(&,n) = Plen) catisfies

(2+2)"
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Proof. Let 11 and 1, be two functions of £ and 1, homogeneous
of degree 0 and C* outside (0,0), such that

Y1(€,m) +v2(&,m) =1 forany (§,n),
1
P1(€,m) =0 if [n] > Zlé -1,

1
Y2(&m) =0 i [E—nf = nl.

» To prove the first statement, we decompose the Fourier
multiplier m into two pieces

m(&,n) = ¥1(&, n)m(&, n)+v2(&,n)m(&, 1) = mi(&,n)+ma(€,n)
We rewrite my as

Pak—1(€, n)lnl 1

m(fﬂ?) = ¢1(§777) Zk n



Since 11 (¢, n)w satisfies the hypothesis of the
Coifman-Meyer theorem, we have

T o ) B L P
The estimate for my can be obtained similarly by permuting
the roles of f and g.

» To prove the second statement, we similarly decompose m;
into my1 + myo and rewrite myy as

_¢
Po&,m) (L +m2) 2 1
|
((+2)" (e
=:p(t€,tn)

mtl(fv 77) = ¢1(§7 77)




Note that (&, n) satisfies the hypothesis of the
Coifman-Meyer theorem. So we have

0—2k -2k
”Tmtl(f7g)HL’ = HTu(tfytn) (At f,g) HL, S H)‘t fHLP ”gHLq'

The case for my is entirely similar. O



Control of Hé(f, f)‘

Ll
By change of variable n — g + ¢, we write the bilinear term B as

e

B _ 1 ! —it-s 2i|¢|?s
B(fa f)(t,f) - (27‘(')3/2 /2 € /]R3 €
f (s, g + C) f <5,§ — () dnds.
g2

\ . . .
We bound e~ 2 ° by 1, and the inner integral by stationary phase
lemma.

Bir.nwols [ (3/2




Using Gagliardo-Nirenberg type inequality mentioned before, we
have

~ t1

Br.no| s [ 1615 4
+/2t S7/4 (HaC
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Control of ||B(f, )|l ;2

For this norm, we can give a simple energy estimate

B Al S [ 5 |20y e o S 11



B )

Applying O¢, we have
9:B(f, f) //R3 s(0:)e™®F(s,n)f (s, € — n) dnds

+/ / e*®F(s,n)0cF (s, & — ) dnds =: [ + 1.
2 JR3

By Holder inequality,

t .
1|2 = H / e (e"SAfe_’SA(xf)> ds
2 12

f t|0g5 2 2
S [ ol efllds 5 287 171 ds < I
2 2 S




First, we observe that, interpolating between the different
components of the X-norm,

1
lull 0 S

oG

for any € > 0. In order to estimate /, we integrate by parts using

1 P is® _ _isd
f <85 + San> e = e .

and  [|f|l o5 S t°

~

is(agcb).i (as + I:&,) e*®F(s,n)f(s,€ —n) dnds

3 I

L
:/;/R 5(85<D)as (eis¢) F(s.m)F(s. — ) dnds
1
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| = + /]1{3 t(azmeit¢?(s7n)?(57£ - 77) d77 (I_]‘)
-2 857(]) 2% 0y (n) (€ — ) dn (1-2)
R3
_/ / 8g2<1>e,5¢?(s n)f(s, & —n) dnds (1-3)
2 R3
~ / / 5(0:®) iso (05F(s,m)) 7(s. € — mdnds + 5. (1-4)
o Jrs Z
t P(afq)) isd 7 T
_/2 /R3an< > )e q>f(s,n)f(s,§—7y) dnds (1-5)
/ P(9:®)
R

es® (87,?(5, 77)) ?(s,g —n)dnds + s.t.

(1-6)



By the multiplier estimates that we showed before,

10-Dll 2 = ¢

<ol

e/tA Ta§¢ (e—lsA f, e—lsA f)
e

L2
e fHLoo Sl fllgsrs lull e S Il -

We can estimate (/-2), (/-3), and (/-5) similarly.

For (1-6), we apply the Coifman-Meyer theorem as follows.

t
nwwmsLs

t log s
2 g
< [ Il ol S 1918 [ 83 o5 < 1

ds
L2

e’s TP(6€¢ <ef"5A f e sA (xf))




For (/-4), remind that e/l6°t9,f = au?2.

t
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Control of Ht3/2 ~tAB(f f) HLOOLOC

USing
1 (1 PN ve e
§+iZ<s+as+san>es s
we have
t
1
B(f,f) =

+iZ <1 —|—8 + 3 ) ei5¢/f(5; n)?(s’g _ 77) d’r/ds



where
g(&) = &1(¢) + &(¢)
e 1 /tCDA -~ B
- /R3 - IZ F(s,mf(s,€ =)

L i2¢p ~ ~
= e N (€ — ) dn,
1 z¢ Bma(E—n)dn

and

*+P8¢ N -
I f ’ f 'S T dnd
//R?’ 7_|_,Z (s,m)f(s,& —n)dnds

/ /R3 52 1y Z Is¢f(5 77) (s,& —n) dnds

2 20, (s.m)F (s, —n) dnds.
/z/ﬂ@i—kize (s:m)f(s,€ = n) dnds




We first focus on g1 (g2 is more easy to deal with since it is
constant in time):

o —

. 1 ~
() = [ g o) dn

By the Coifman-Meyer theorem, we have

|eog] |7 L /i+g2ﬁ(s n)u(s,€ —n) dn
K] %+£2 R:‘}%—‘_Z ’ ’

[ oo

g t3/4

Tie (u, u)
Tz

NPTy (u,u)

i
2

Loe L6
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S ullgs Nullpe S 774 IFIX



Also notice that the norm of g1 in L*° is bounded:

Gl < [ o [fen|[fec—n| an <7 <175

Leent2 ™

By stationary phase lemma,

» 1 |- 1
e, < 7 7] + 77 bl

Lo ™

If we show that Hx2h(t“)HL2 < t© with € a constant arbitrarily small,
then

. 1 /s 1
—JjtA -~ 2
|e2] . 5 5 ([BEA .+ 181) + 575 201l
1 2
< =7 Il

So, to complete the proof, the only thing which is left is the proof
of the estimate
[x*h(t)]],> <t



< h
te [ oo L2

If we apply 352 to B(f) the following types of terms are produced.

/ / 1 P2k 4— 2J /s¢a f(S 77) (55 77) d77d5 (/I—].)
R3 +IZ

with k>0and k—2>j > —2.

/ / 1 sz 3— 21 e*®.f(s,n)0cf (s, & —n) dnds.  (11-2)
R3 +/Z

witthOandk——>J>—1

1P -
/ / “ 2 50 F (5,)02 (5,6 — ) dnds.  (11-3)
R3 +/Z

with k>0and k—1>,>0.



These three terms can be handled in a similar fashion. Here |
illustrate the estimate on (//-1).

t
||(//-1)HL2§/; Ty (e807)| s
: (L+iz)" B
N ‘1 —2j—4 _—isA 5
Nfz 3("\5 e | L N0
e, )
< ‘1 20,2
N/z 597 e Iz ds

<f2 tid<| tf2
NH Hx ) 3 s 55 log H Hx




p ~
/ / 1 Pogo- 2] /sd>f'( )f(S,f _ 77) dnds. (II-4)
IR3 + IZ

WitthOandk—lszO.

t 1 i i i
(-4l S/ — e’SATPZkfz,zj (e_’SAf,e_’SAf) ds
2 ¥ (l+iz)k
s L2

t
§/ l“A;2j—Ze—isAf
5

t 1 1
§/ QSJH lull oo Il 6/s ds
2
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1P
/ / L G5O (5, ) F (s, € — ) dids. (11-5)
R3 +/Z

withkzo;andk—%zjzo.
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1(1-5)]] 2 < / 1" Teacs s (e"SAf, e_’SA(xf)> ds
) Pok12)
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Pa—aj ises s
€ f(s,m)0¢f(s,§ —n) dnds. 11-6
//Rasf L i)t (s,m0zf(s,§ —n) dnds (11-6)

with k > 0 and k—leZO.
t 1 . . .
00 < [ 5 €T sy (e520 780020 | as
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// Pk (s (s — ) dnds. (117)
R3 —|—IZ

In order to deal W|th this term, we need to integrate by parts using
the identity

1 1 :
Os 8 = e"®,
*—|-IZ ( + Js + > e

We rewrite (//-7) as

is®F 7 o
/ /]R?’ _|_ /Z k1 —|— 17 < a + a ) € f(S,?])f(S,E 77)d77d5

and perform integrations by parts in s and 7. All terms that appear
in this procedure are of the form (//-1)-(//-6), except boundary
integral term, which is easy to estimate. So we have

I(-T)]] 2 S 111 -

~



P ~ -~
/ / _ Pogr - F(s,1)0f (s, € — ) dnds. (11-8)
R3 + /Z

Similary, we can rewrite (//-8) as

Poyy1 1 (1 P ) b
-+ 0s + —0 sPf ) dnds
//R3 +,Z 7_1_,'2 s g e (577)5(5577)77

and perform integrations by parts in s and 7. All terms that appear
in this procedure are of the form (//-1)-(//-6), except two terms.
We estimate these two terms to show our desired estimate
2
1(1-8) 11,2 < £ (I F 1l

~



The first one is

Pak+1P a7 2
e*®9, f(s,n)0:f (s, & — n) dnds.
//R T 00T 5.6 )

By Coifman-Meyer theorem and Gagliardo-Nirenberg type
inequality, its L%-norm can be bounded by

r

sz 1 e ~
/ /]R3 B k+1 s¢f(s7n)658£f(57§ - 77) dnds,

e”mf” He”m(xzf)H ds.
Lo 12

The second

for which we remove the O integral from the last term, using
the fact that 65?(5,5 —n)= —87,?(5,5 —n), and then
integrating by parts in 1. Resulting terms are of the form
(11-1)-(11-6).



I 8@”‘95 ) 597 (s, 1) (s, — ) dids. (1-9)
R3
We rewrite (//-9) as
(11-9) / / agcb)2 (a e’5¢> F(s,m)f (s, € — 1) dds.
R3

By performing the integration by parts in 77, one can get terms of
the form (//-7) and (//-8).



The estimate of

2 : . . —
ﬁgHL 2 8 straightforward. Thus if the initial

data ||e™ 2w, ||, is small enough, then the map f — u, + B(f, f)
is a contraction, and it completes the proof.

End of the slides. Thank you.
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