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Nonlinear Schrödinger equation

We consider the initial value problem:

i∂tφ+ ∆φ+ f (|φ|2)φ = 0, (x , t) ∈ RN × R+, (0.1)

subject to φ(x , 0) = φ0(x) ∈ H1.

We shall study the stability of solitary waves of (0.1).

A solitary wave is a localized finite energy solution

Resulting from a balance of dispersion and “focusing” effect by nonlinearity

The profile keeps its max. as t →∞ and decays as |x | → ∞

In this work, we restrict to the following special cases:

Nonlinearity f (|φ|2) = |φ|2σ, i.e., i∂tφ = −∆φ− |φ|2σφ

Subcritical case, i.e., σ < 2/N

N = 1 or N = 3 (as of 1986)
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Ground states and solitary waves

We seek for standing wave solutions of the form, ψ(x , t) = R(x ;E)e iEt :

iψt + ∆ψ + f (|ψ|2)ψ =
(

∆R − ER + f (R2)R
)
e iEt = 0

To find such a solution, we shall consider the elliptic problem:

∆u − Eu + f (|u|2)u = 0 in RN .

∃ a positive, radial, smooth and exp. decaying solution, denoted by R.

• R is called the ground state. (the least energy solution)

• For such R, ∃ a one-parameter family of solutions: ψ(x , t) = R(x ;E)e iEt .

• Note that the scaling invariance: R(x ;E) = E 1/2σR(
√
Ex ; 1)

• For any λ, γ ∈ R and x0 ∈ RN ,

ψλ(x , t) = λ1/σe iλ
2tR(λ(x + x0))e iγ is a ground state of NLS
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Scale transformation

Consider the power-type nonlinearity, i.e., f (s2) = |s|2σ

iφt + ∆φ+ |φ|2σφ = 0

and the associated elliptic equation:

∆u − Eu + |u|2σu = 0

• Recall that the scaling invariance: R(x ;E) = E 1/2σR(
√
Ex ; 1)

• For any λ, γ ∈ R and x0 ∈ RN ,

ψλ(x , t) = λ1/σe iλ
2tR(λ(x + x0))e iγ is a ground state of NLS

• In general,

φλ(x , t) = λ1/σφ(λx , λ2t)
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Notion of stability

• NLS has the phase and translation symmetries:

φ(x , t)⇒ e iγφ(x + x0, t) for (x0, γ) ∈ RN × [0, 2π)

• Orbital stability: ∀ε > 0, ∃δ > 0 such that

‖ψ0 − φ0‖X < δ ⇒ ‖ψ(·+ x0)e iγ − φ‖X < ε for some (x0, γ) ∈ RN × [0, 2π)

• Define the orbit of a function ψ by

Gψ := {ψ(·+ x0)e iγ : (x0, γ) ∈ RN × [0, 2π)}

• A metric measuring the deviation of φ from the orbit Gψ ∼ H1 norm:

[ρE (φ,Gψ)]2 := inf
(x0,γ)∈RN×[0,2π)

{‖∇φ(·+x0, t)e iγ−∇ψ‖2L2+E‖φ(·+x0, t)e iγ−ψ‖2L2}
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Observations: conserved quantities

• Let the Hamiltonian and the square integral be

H[φ] :=
1

2

∫
|∇φ|2 − G(|φ|2)dx and N [φ] :=

1

2

∫
|φ|2dx .

Then H[φ(t)] = H[φ0] and L[φ(t)] = L[φ0] for all t > 0.

• A Lyapunov functional E[φ] is defined by

E[φ] = H[φ] + EN [φ] =
1

2

∫
|∇φ|2 − G(|φ|2) + E |φ|2dx

Then E[φ] is conserved in time, i.e., E[φ(t)] = E[φ0] for all t > 0.

• Plugging φ(x , t) = u(x)e iEt into E[φ], we obtain a functional

I (u) := E[u(x)e iEt ] =
1

2

∫
|∇u|2 − G(|u|2) + E |u|2dx
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Existence of the ground states of NLS (Strauss, Berestycki and Lions)

A ground state solution is the least energy solution of the form of

φ(x , t) = u(x)e iEt , of which u is a solution to ∆u − Eu + f (|u|2)u = 0 and,

among such solutions, it attains a minimum of the functional:

I (u) =
1

2

∫
|∇u|2 − G(|u|2) + E |u|2dx , u ∈ H1

For the existence of such a solution, we consider the semilinear problem:

∆u − Eu + g(u) = 0 in RN

Under the conditions (B-L):

(i) g(s)/s → 0 as s → 0, (superlinear near s = 0)

(ii) lim sups→∞
|g(s)|
|s|p ≤ c for some 1 < p < N+2

N−2
, i.e., subcritical at ∞

(iii) ∃τ > 0 s.t.
∫ τ
0
g(t)dt > Eτ 2/2

Then there is a positive, radial, smooth and exp. decaying ground state.

In our case, let g(s) = |s|2σs, i.e., the eq. is ∆u − Eu + |u|2σu = 0.
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Variational characterization of the ground state

• For 0 < σ < 2
N−2

, we consider the minimization problem:

Jσ,N [u] :=
‖∇u‖σN‖u‖2+σ(2−N)

‖u‖2σ+2
2σ+2

for u ∈ H1

Proposition

α := infu∈H1 Jσ,N [u] is attained at a function R with the properties:

R > 0 and radial symmetric,

R ∈ H1(Rn) ∩ C∞(RN),

∆R − R + R2σ+1 = 0.

• Remark: Once existence of the minimizer R is proven, then E-L eq.
d
dε

∣∣
ε=0

Jσ,N [R + εη] = 0 ∀η ∈ C∞c gives the equations for R
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Variational characterization

• This is amount to the best constant problem: Let σ ∈ (0, 2
N−2

). For f ∈ H1,

‖f ‖2σ+2 ≤ Cσ,N‖∇f ‖
σN

2σ+2
2 ‖f ‖

1− σN
2σ+2

2 .

This is related to the Gagliardo-Nirenberg interpolation estimate:

‖f ‖p ≤ cp,N‖∇f ‖θ2‖f ‖1−θ2 with θ = N(
1

2
− 1

p
), 2 < p <

2N

N − 2

• A constrained minimization problem:

inf
u∈H1

I (u) = inf
u∈H1

1

2

∫
|∇u|2 + u2dx under J(u) =

∫
|u|2σ+2dx = C

• Key to the existence proof:

Symmetrization: u(x) = u(|x |) with the same L2 and reduced gradient norm

The embedding H1

rad(RN)→ L2σ+2(RN) is compact for σ ∈ (0, 2
N−2

)
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Stability Theorem

Recall our problem:

i∂tφ+ ∆φ+ |φ|2σφ = 0, (x , t) ∈ RN × (0,∞), (0.2a)

φ(x , 0) = φ0(x) ∈ H1. (0.2b)

Theorem (Orbital Stability)

σ < 2/N with N = 1 or N = 3 (as of 1986 CPAM, M. Weinstein)

φ ∈ C
(
[0,∞);H1

)
is a unique solution with initial data φ0 ∈ H1

Then the ground state R is orbitally stable, i.e., ∀ε > 0, ∃δ > 0:

ρE (φ0,GR) < δ ⇒ ρE (φ(t),GR) < ε, ∀t > 0.

• Remarks (Global-in-time H1 solution)

(0.2) has a unique global solution in C
(
[0,∞);H1

)
(e.g. Ginibre and Velo)
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Outline of the proof for the stability theorem

• Define the perturbation variable:

w(x , t) := φ(x + x0, t)e iγ − R(x) and w(x , t) := u + iv .

• Lyapunov functional differentials:

4E := E[φ0(·)]− E[R(·)] = E[φ(·, t)]− E[R(·)] = E[φ(·+ x0, t)e iγ ]− E[R(·)]

= E[R + w ]− E[R]

≥ (L+u, u) + (L−v , v)− C1‖w‖2+θH1 − C2‖w‖6H1 with θ > 0,

(0.3)

where L+ = −∆ + 1−
(
f (R2) + 2R2f ′(R2)

)
= −∆ + 1− (2σ + 1)R2σ,

L− = −∆ + 1− f (R2) = −∆ + 1− R2σ

are the real part and imaginary part, reps., of the NLS linearized operator

about the ground state R.
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Outline of the proof for the stability theorem

• For x0, γ chosen for ρE metric, we have

(L+u, u) + (L−v , v) ≥ C3‖w‖2H1 − C4‖w‖3H1 − C5‖w‖4H1 . (0.4)

• This together with (0.3) yields

4E ≥ g(‖w‖H1) ≥ g (ρE (φ(t),GR)) ,

where g(t) = ct2(1− atθ − bt4), a, b, c, θ > 0.

• Properties of g : g(0) = 0 and g(t) > 0 for 0 < t � 1.

• By the continuity of E in H1 near R, we have

∀ε > 0, ∃δ > 0 s.t. ρE (φ0,GR) < δ ⇒4E0 < g(ε).

• This implies that g (ρE (φ(t),GR)) < g(ε), in turn, ρE (φ(t),GR) < ε ∀t > 0.
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Key Lemmas to be proven

For the perturbations satisfying ‖φ‖ = ‖R‖, and x0 = x0(t) and γ = γ(t)

as in the definition of ρE ,

(L+u, u) + (L−v , v) ≥ C3‖w‖2H1 − C4‖w‖3H1 − C5‖w‖4H1 . (0.5)

Step 1. (L−v , v) ≥ C ′′‖v‖2
H1

ker L− = span {R}

Step 2. (L+u, u) ≥ D‖u‖2
H1 − D′‖∇w‖‖w‖2 − D′′‖w‖4

(a) (u,R) = − 1
2 [(u, u) + (v , v)] for ‖φ‖ = ‖R‖

(b) inf
(f ,R)=0

(L+f , f ) = 0 if σ ≤ 2/N

ker L+ = Span{Rxj
: j = 1, · · · ,N}
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Stability with respect to general perturbations

For general perturbations: if ρE (φ0,GR) < δ(ε), there is a λ:

(i) ψλ(x , t) = λ1/σR(λx)e iλ
2t is a ground state of NLS

(ii) ‖ψλ‖ = ‖φ0‖

(iii) ‖ψλ − R‖H1 < ε
2

Note that

1. ‖ψλ‖L2 = λ1/σ−N/2‖R‖L2 .

2. h(λ) := ‖ψλ − R‖H1 is continuous in λ ∈ (1− δ, 1 + δ).

Therefore, if σ < 2/N, one can change ‖ψλ‖L2 continuously so that

‖ψλ1‖L2 = ‖φ0‖L2 and ‖ψλ1 − R‖H1 < ε/2.

This together with the previous result yields the stability for the general

perturbations.
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The linearized NLS operator

• Recall the perturbation

w(x , t) := φ(x + x0, t)e iγ − R(x) and w(x , t) := u + iv .

• By a standard Taylor expansion method, we have

E[R + w ]− E[R]

=
1

2

∫
|∇R +∇w |2 − |∇R|2 −

(
G(|R + w |2)− G(R2)

)
+ |R + w |2 − R2dx

≥ (L+u, u) + (L−v , v)− C1‖w‖2+θH1 − C2‖w‖6H1 with θ > 0,

where

L+ = −∆ + 1−
(
f (R2) + 2R2f ′(R2)

)
and L− = −∆ + 1− f (R2)

(e.g.)

G(|R +w |2)−G(R2) = f (R2)
(
2uR + |w |2

)
+ 1

2
f ′(R2)

(
2uR + |w |2

)2
+O(|w |3)
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Lemma

Under the condition that
∫
|φ(x , t)|2dx =

∫
R2(x)dx , we have

(u,R) = −1

2
[(u, u) + (v , v)].

Proof.

Remind that

u + iv = w(x , t) = φ(x + x0, t)e iγ − R(x)∫
|φ(x , t)|2dx =

∫
R2(x)dx and ‖φ(·)‖ = ‖φ(· − x0)‖ lead to

2

∫
uRdx = −

∫
u2 + v 2dx .
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Lemma

A minimization of

inf
(x0,γ)∈RN×[0,2π)

{‖∇φ(·+ x0, t)e iγ −∇R(·)‖2L2 + E‖φ(·+ x0, t)e iγ − R(·)‖2L2}

over the choice of x0 = x0(t) and γ = γ(t) implies that∫
R2σ(x)Rxj (x)u(x , t)dx = 0 for j = 1, · · ·N

and ∫
R2σ+1(x)v(x , t)dx = 0.

Proof.

Let F (x0, γ; t) := ‖∇φ(·+ x0, t)e iγ −∇R(·)‖2L2 + E‖φ(·+ x0, t)e iγ − R(·)‖2L2 .

A straightforward computation of Dx0F = 0 and ∂γF = 0 yields the result.

rmk. F (x0, γ; t) is continuous in x0, γ and limx0→±∞ F exists
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Lemma

For v ∈ H1 satisfying
∫
R2σ+1(x)v(x , t)dx = 0, there exists c ′′ > 0 such

(L−v , v) ≥ c ′′‖v‖2H1 for some c ′′ > 0.

Proof.

Note that L−R = −∆R + R − R2σ+1 = 0

R > 0 is the ground state and nondegenerate (unique due to Kwong)

This implies that L− is nonnegative, i.e., (L−g , g) ≥ 0 for g ∈ H1

Consider the minimization problem: inf
(R2σ+1,v)=0

(L−v , v)

(v , v)
= c ′ > 0

if not, i.e., inf
(L−v,v)

(v,v)
= 0 then it attains at R. This contradicts to R > 0

(L−v , v) ≥ c ′′‖v‖2H1 for some c ′′ > 0
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Lemma

Let σ ≤ 2/N. Then

inf
(f ,R)=0

(L+f , f ) = 0

Proof.

L+Rxj = 0 since L−R = 0 and ∂j(L−R) = L+Rxj

(Rxj ,R) = 0. Thus inf
(f ,R)=0

(L+f , f ) ≤ 0

Since Jσ,N attains its min. at R, the second variation (δ2Jσ,N)(R) ≥ 0

This leads to

(L+f , f ) ≥ c(2− σN)(∆R, f )2 for some c > 0

σ ≤ 2/N implies that (L+f , f ) ≥ 0, thus the result is obtained.
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Non-degeneracy and Uniqueness of the ground state

Lemma

Let N = 1 or N = 3. Then

ker(L+) = Span

{
∂R

∂xj
: j = 1, · · · ,N

}

• Remark: This is the only place the restriction on the dimensions N = 1 and

N = 3 is imposed. Conjecture: True for all σ ∈ (0, 2/N − 2)

Lemma

L− is a nonnegative self-adjoint in L2 with

ker(L−) = {R}.
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Thank you for your attention.
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