Transfer of energy frequencies in the cubic defocusing nonlinear Schrödinger equation I

Sunghyun Hong

Department of Mathematical Sciences
August 28, 2013

Contents

(1) Introduction
(2) Settings
(3) Proof of Main theorem

Equation and Conservation laws

- The periodic defocusing cubic nonlinear Schrödinger equation(NLS)

$$
\left\{\begin{array}{l}
-i \partial_{t} u+\Delta u=|u|^{2} u \tag{1}\\
u(0, x):=u_{0}(x)
\end{array}\right.
$$

where $u(t, x)$ is a complex-valued function and $x \in \mathbb{T}^{2}$ and the initial data is smooth for convenience.

- Hamiltonian (Energy conservation laws)

$$
E[u](t):=\int_{\mathbb{T}^{2}} \frac{1}{2}|\nabla u|^{2}+\frac{1}{4}|u|^{4} d x(t)=E[u](0) .
$$

- Mass conservation laws

$$
M[u](t):=\int_{\mathbb{T}^{2}}|u|^{2} d x(t)=M[u](0)
$$

- Local well-posedness for $s>0$ (Bourgain, 1993).
- By conservation laws, we can get global smooth solution to (1) from smooth initial data.
- Later, we introduce the toy model that is the completely integrable.

We construct a solution to (1) that energy of move on to higher Fourier modes. In other words, we construct a solution to (1) with arbitrarily large growth in higher Sobolev norms.

Statements

Theorem 1.1 (Main theorem)
Let $s>1, K \gg 1$, and $0<\delta \ll 1$ be given parameters. Then there exists a global smooth solution $u(t, x)$ to (1) and a time $T>0$ with

$$
\|u(0)\|_{H^{s}} \leq \delta
$$

and

$$
\|u(T)\|_{H^{s}} \geq K
$$

Corollary 1.1 (H^{2} instability of zero solution)
The global-in-time solution map taking the initial data u_{0} to the associated solution u of (1) is strongly unstable in H^{s} near zero for all $s>1$:

$$
\inf _{\delta>0}\left(\limsup _{|t| \rightarrow \infty}\left[\sup _{\left\|u_{0}\right\|_{H^{2}} \leq \delta}\|u(t)\|_{H^{s}}\right]\right)=0
$$

Previous result

- High Sobolev norms of solution can grow no faster than exponential-in-time. (Bourgain, 1993)
- Sobolev norms grow no faster that polynomial-in-time upper bound. (Bourgain, 2004, Collinder et al., 2001, Salem et al., 1999)
- Small dispersion NLS

$$
\begin{equation*}
i \partial_{t} \omega+\delta \Delta \omega=|\omega|^{2} \omega \tag{2}
\end{equation*}
$$

Smooth norms of solution of (2) evolving from relatively generic data with unit L^{2} norm eventually grow larger than a negative power of δ. (Kuksin, 1997)

Outline

Figure: Outline

Contents

(1) Introduction
(2) Settings
(3) Proof of Main theorem

Reductions of Equation - $\mathcal{F} N L S$

Equation (1) has gauge freedom. Hence we can let

$$
\begin{equation*}
v(t, x)=e^{i G t} u(t, x), \quad G \in \mathbb{R} \tag{3}
\end{equation*}
$$

then NLS equation (1) is the following equation for v

$$
\begin{equation*}
\left(-\partial_{t}+\Delta\right) v=\left(G+|v|^{2}\right) v \tag{4}
\end{equation*}
$$

with the same initial data. We write a solution of (2) as following

$$
\begin{equation*}
v(t, x)=\sum_{n \in \mathbb{Z}^{2}} a_{n}(t) e^{i\left(n \cdot x+|n|^{2} t\right)} \tag{5}
\end{equation*}
$$

Substituting (5) into (4) and comparing both sides gives the following infinite system of equations for $a_{n}(t)$,

$$
\begin{equation*}
-i \partial_{t} a_{n}=G a_{n}+\sum_{\substack{n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\ n_{1}-n_{2}+n_{3}=n}} a_{n_{1}} \overline{a_{n_{2}}} a_{n_{3}} e^{i \omega_{4} t} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{4}=\left|n_{1}\right|^{2}-\left|n_{2}\right|^{2}+\left|n_{3}\right|^{2}-|n|^{2} \tag{7}
\end{equation*}
$$

For the removal of $G a_{n}$ term with appropriate choosing the gauge parameter G, we split the sum on the right hand side of (6) into the following terms,

$$
\begin{aligned}
\sum_{\substack{n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
n_{1}-n_{2}+n_{3}=n}} & \sum_{\substack{n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
n_{1}-n_{2}+n_{3}=n \\
n_{1}, n_{3} \neq n}}+\sum_{\substack{n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
n_{1}-n_{2}+n_{3}=n \\
n_{1}=n}}+\sum_{\substack{n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
n_{1}-n_{2}+n_{3}=n \\
n_{3}=n}} \sum_{\substack{n_{1}, n_{2}, n_{3} \in \mathbb{Z}^{2} \\
n_{1}-n_{2}+n_{3}=n \\
n_{1}=n_{3}=n}} \\
& =\text { Terms I + Terms II + Terms III + Terms IV }
\end{aligned}
$$

Since we handle the system as term by term, Term IV is
$-a_{n}(t)\left|a_{n}(t)\right|^{2}$. Term II and Term III are single sums which by Plancherel's Theorem and mass conservation total,

$$
\begin{aligned}
2 a_{n}(t) \cdot \sum_{m \in \mathbb{Z}}\left|a_{m}(t)\right|^{2} & =2 a_{n}(t) \cdot\|u(t)\|_{L^{2}\left(\mathbb{T}^{2}\right)}^{2} \\
& =2 a_{n}(t)^{2} M^{2}
\end{aligned}
$$

where $M:=\|u(t)\|_{L^{2}\left(\mathbb{T}^{2}\right)}^{2}$.
We can remove the first term of (5) by choosing $G=-2 M$. Equation (4) takes then the following useful form which we denote \mathcal{F} NSL,

$$
\begin{equation*}
-i \partial_{t} a_{n}=-a_{n}\left|a_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma(n)} a_{n_{1}} \overline{a_{n_{2}}} a_{n_{3}} e^{i \omega_{4} t} \tag{8}
\end{equation*}
$$

where
$\Gamma(n)=\left\{\left(n_{1}, n_{2}, n_{3}\right) \in\left(\mathbb{Z}^{2}\right)^{3}: n_{1}-n_{2}+n_{3}=n, n_{1} \neq n, n_{3} \neq n\right\}$.

Well-posedness - $\mathcal{F N L S}$

Let

$$
\begin{equation*}
(\mathcal{N}(t)(a, b, c))_{n}=-a_{n} \overline{b_{n}} c_{n}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma(n)} a_{n_{1}} \overline{b_{n_{2}}} c_{n_{3}} e^{i \omega_{4} t} \tag{10}
\end{equation*}
$$

With this notation, we can reexpress \mathcal{F} NLS as
$-i \partial_{t} a_{n}=(\mathcal{N}(t)(a, a, a))_{n}$
Lemma 2.1

$$
\begin{equation*}
\left\|(\mathcal{N}(t)(a, b, c))_{n}\right\|_{l^{1}\left(\mathbb{Z}^{2}\right)} \lesssim\|a\|_{l^{1}\left(\mathbb{Z}^{2}\right)}\|b\|_{l^{1}\left(\mathbb{Z}^{2}\right)}\|c\|_{l^{1}\left(\mathbb{Z}^{2}\right)} \tag{11}
\end{equation*}
$$

Resonant truncation - RFNLS

Define the set of all resonant non-self interactions $\Gamma_{\text {res }}(n) \subset \Gamma(n)$ by
$\Gamma_{\text {res }}(n)=\left\{\left(n_{1}, n_{2}, n_{3}\right) \in \Gamma(n): \omega_{4}=\left|n_{1}\right|^{2}-\left|n_{2}\right|^{2}+\left|n_{3}\right|^{2}-|n|^{2}=0\right\}$
Note that $\left(n_{1}, n_{2}, n_{3}\right) \in \Gamma_{\text {res }}$ precisely when $\left(n_{1}, n_{2}, n_{3}, n\right)$ form four corners of a non degenerate rectangle with n_{2} and n opposing each other, and similarly for n_{1} and n_{3}. In resonant set, $\mathcal{F} N L S$ is not oscillates in time anymore. Hence we can simply define the resonant truncation $\mathrm{R} \mathcal{F}$ NLS of \mathcal{F} NLS by,

$$
\begin{equation*}
-i \partial_{t} r_{n}=-r_{n}\left|r_{n}\right|^{2}+\sum_{n_{1}, n_{2}, n_{3} \in \Gamma_{\mathrm{res}}(n)} r_{n_{1}} \overline{r_{n_{2}}} r_{n_{3}} \tag{13}
\end{equation*}
$$

Finite truncation - The frequency set Λ

 We introduce some notations and terminologies on set Λ before finite truncation of $\mathrm{R} \mathcal{F}$ NLS.- For some positive integer N, the set Λ splits into N disjoint generations $\Lambda=\Lambda_{1} \cup \Lambda_{2} \cup \cdots \cup \Lambda_{N}$

Figure : Nuclear family

Finite truncation - The frequency set Λ

We require following properties on set Λ.

- Property I_{Λ} (Initial data): $r_{n}(0)=0$ whenever $n \notin \Lambda$.
- Property II_{Λ} (Closure):

$$
\begin{equation*}
\left(n_{1}, n_{2}, n_{3}\right) \in \Gamma_{\text {res }}(n), n_{1}, n_{2}, n_{3} \in \Gamma \Rightarrow n \in \Gamma \tag{14}
\end{equation*}
$$

Lemma 2.2
If Λ is a finite set satisfying Property I_{Λ}, Property II_{Λ}, and $r(0) \mapsto r(t)$ solves RFNLS (8) on $[0, T]$ then for all $t \in[0, T]$, $\operatorname{spt}[r(t)] \subset \Lambda$.

- Property $\mathrm{III}_{\Lambda}($ Existence and uniqueness of spouse and children): $1 \leq \forall j \leq N$ and $n_{1} \in \Lambda_{j} \exists$! nuclear family $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ such that n_{1} is a parent. In particular each $n_{1} \in \Lambda_{j}$ has a unique spouse $n_{3} \in \Lambda_{j}$ and two unique children $n_{2}, n_{4} \in \Lambda_{j+1}$.
- Property IV_{Λ} (Existence and uniqueness of sibling and parents): $1 \leq \forall j \leq N$ and $n_{2} \in \Lambda_{j+1} \exists$! nuclear family $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ such that n_{2} is a parent. In particular each $n_{2} \in \Lambda_{j+1}$ has a unique sibling $n_{4} \in \Lambda_{j+1}$ and two unique parents $n_{1}, n_{3} \in \Lambda_{j}$.
- Property V_{Λ} (Non-degeneracy): The sibling of a frequency n is never equal to its spouse.
- Property VI_{Λ} (Faithful): Apart from the nuclear families, Λ contains no other rectangles.

In assumption of existence of Λ,

$$
\begin{align*}
-i \partial_{t} r_{n}(t) & =-\left|r_{n}(t)\right|^{2} r_{n}(t)+2 r_{n_{\text {child-1 }}}(t) r_{n_{\text {child-2 }}}(t) \overline{r_{n_{\text {spouse }}}(t)} \\
& +2 r_{n_{\text {parent-1 }}}(t) r_{n_{\text {parent-2 }}}(t) \frac{r_{n_{\text {sibling }}}(t)}{} \tag{15}
\end{align*}
$$

where for each $n \in \Lambda_{j}, n_{\text {spouse }} \in \Lambda_{j}$ is its spouse, $r_{n_{\text {child-1 }}}, r_{n_{\text {child-2 }}} \in \Lambda_{j+1}$ are its two children, $n_{\text {sibling }} \in \Lambda_{j}$ is its sibling, and $r_{n_{\text {parent-1 }}}, r_{n_{\text {parent-2 }}} \in \Lambda_{j-1}$ are its parents. For more simplify ODE, we introduce a condition to Λ.

- Property VI_{Λ} (Intragenerational equality): The function $n \mapsto r_{n}(0)$ is constant on each generation Λ_{j}. Thus $1 \leq j \leq N$ and $n, n^{\prime} \in \Lambda_{j}$ imply $r_{n}(0)=r_{n^{\prime}}(0)$.
By Gronwall argument, if one has intragenerational equality at time 0 then one has intragenerational equality at all later times.

Finite truncation - Toy model system

By Property VI, we may collapse the function $n \mapsto r_{n}(t)$, which is currently a function on $\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{N}$, to the function $j \mapsto b_{j}(t)$ on $\{1,2, \ldots, N\}$, where $b_{j}(t):=r_{n}(t)$ whenever $n \in \Lambda_{j}$. Hence the ODE (15) collapse to the following system that we call Toy Model System.

$$
\begin{equation*}
-i \partial_{t} b_{j}(t)=-\left|b_{j}(t)\right|^{2} b_{j}(t)+2 b_{j-1}(t)^{2} \overline{b_{j}(t)}+2 b_{j+1}(t)^{2} \overline{b_{j}(t)} \tag{16}
\end{equation*}
$$

with the convention that $b_{0}(t)=b_{N+1}(t)=0$.

Contents

(1) Introduction
(2) Settings
(3) Proof of Main theorem

First ingredient: the frequency set Λ

Proposition 2.1 (First ingredient: the frequency set Λ) Given parameters $\delta \ll 1, K \gg 1$, we can find an $N \gg 1$ and a set of frequencies $\Lambda \subset \mathbb{Z}^{2}$ with,

$$
\Lambda=\Lambda_{1} \cup \cdots \cup \Lambda_{N} \quad \text { disjoint union }
$$

which satisfies Property II_{Λ} - Property VI_{Λ} and also,

$$
\begin{equation*}
\frac{\sum_{n \in \Lambda_{N}|n|^{2 s}}}{\sum_{n \in \Lambda_{1}|n|^{2 s}}} \gtrsim \frac{K^{2}}{\delta^{2}} \tag{17}
\end{equation*}
$$

In addition, given any $\mathcal{R} \gg C(K, \delta)$, we can ensure that Λ consists of $N \cdot 2^{N-1}$ disjoint frequencies n satisfying $|n| \geq \mathcal{R}$.

Second ingredient: instability in the toy

 modelProposition 2.2 (Second ingredient: instability in the toy model)
Given $N>1, \varepsilon \ll 1$, there is initial data
$b(0)=\left(b_{1}(0), b_{2}(0), \ldots, b_{N}(0)\right) \in \mathbb{C}^{N}$ for (16) and there is a time $T=T(N, \varepsilon)$ so that

$$
\begin{align*}
\left|b_{3}(0)\right| \geq 1-\varepsilon, & & \left|b_{j}(0)\right| \leq \varepsilon, & j \neq 3 \tag{18}\\
\left|b_{N-2}(T)\right| \geq 1-\varepsilon, & & \left|b_{j}(T)\right| \leq \varepsilon, & j \neq N-2 .
\end{align*}
$$

In addition, the corresponding solution satisfies $\|b(t)\|_{l \infty} \sim 1$ for all $0 \leq t \leq T$.

Theorem 3.1 (Instability in the toy model)
Let $N \leq 6$. Given any $\varepsilon>0$, there exists a point x_{3} within ε of \mathbb{T}_{3} (using the usual metric on Σ), a point x_{N-2} within ε of \mathbb{T}_{N-2}, and a time $t \leq 0$ such that $S(t) x_{3}=x_{N-2}$.

Third ingredient: the approximation
 lemma

Let $0<\sigma<1$ be an absolute constant (all implicit constants in this subsection may depend on σ). Let $B \gg 1$, and let $T \ll B^{2} \log B$. Let

$$
g(t):=\left\{g_{n}(t)\right\}_{n \in \mathbb{Z}^{2}}
$$

be a solution to the perturbed equation of

$$
\begin{equation*}
-i \partial_{t} g(t)=(\mathcal{N}(g(t), g(t), g(t)))+\mathcal{E}(t) \tag{19}
\end{equation*}
$$

for times $0 \leq t \leq T$, where $\mathcal{N}(t)$ is defined in (10), (7) and where the initial data $g(0)$ is compactly supported.

Lemma 2.3 (Third ingredient: the approximation lemma) Assume that the solution of above equation $g(t)$ and the error term $\mathcal{E}(t)$ obey the bounds of the form

$$
\begin{align*}
\|g(t)\|_{l^{1}\left(\mathbb{Z}^{2}\right)} & \lesssim B^{-1} \tag{20}\\
\left\|\int_{0}^{t} \mathcal{E}(t) d s\right\|_{l^{1}\left(\mathbb{Z}^{2}\right)} & \lesssim B^{-1-\sigma} \tag{21}
\end{align*}
$$

for all $0 \leq t \leq T$.
We conclude that if $a(t)$ denotes the solution to \mathcal{F} NLS (8) with initial data $a(0)=g(0)$, then we have

$$
\begin{equation*}
\|a(t)-g(t)\|_{l^{1}\left(\mathbb{Z}^{2}\right)} \lesssim B^{-1-\sigma} \tag{22}
\end{equation*}
$$

for all $0 \leq t \leq T$.

Proof of Lemma 2.3

Write

$$
F(t):=-i \int_{0}^{t} \mathcal{E}(s) d s, \quad \text { and } \quad d(t):=g(t)+F(t)
$$

Observe that

$$
\begin{align*}
-i d_{t} & =-i g_{t}-i F_{t}=(\mathcal{N}(t)(g(t), g(t), g(t)))+\mathcal{E}(t)-\mathcal{E}(t) \\
& =\mathcal{N}(t)(d-F, d-F, d-F) \tag{23}
\end{align*}
$$

where we have suppressed the explicit t dependence for brevity.

Proof of Lemma 2.3-Continued

By hypothesis, $d(t)=O_{l^{1}}\left(B^{-1}\right)$. By trilinearity and Lemma 2.1,

$$
\begin{align*}
-i d_{t} & =\mathcal{N}(d, d-F, d-F)-\mathcal{N}(F, d-F, d-F) \\
& =\mathcal{N}(d, d, d)+O\left(\|F\|_{l^{1}}\right) O\left(\|g\|_{l^{1}}\right)^{2} \tag{24}\\
& =\mathcal{N}(d, d, d)+O_{l^{1}}\left(B^{-3-\sigma}\right)
\end{align*}
$$

Let $e(t)$ is a smooth error function. Now write $a:=d+e$. Since $a(t)$ is the solution to \mathcal{F} NLS,

$$
\begin{align*}
-i(d+e)_{t} & =-i d_{t}-i a_{t}+i d_{t} \tag{25}\\
& =-i a_{t}=\mathcal{N}(a, a, a)=\mathcal{N}(d+e, d+e, d+e)
\end{align*}
$$

Now, we calculate (24) - (25) and use trilinearity and Lemma 2.1 again,

$$
\begin{equation*}
i e_{t}=O_{l^{1}}\left(B^{-3-\sigma}\right)+O_{l^{1}}\left(B^{-2}\|e\|_{l^{1}}\right)+O_{l^{1}}\left(\|e\|_{l^{1}}^{3}\right) . \tag{26}
\end{equation*}
$$

Hence by the differential form of Minkowski's inequality, we have

$$
\partial_{t}\|e\|_{l^{1}} \lesssim B^{-3-\sigma}+B^{-2}\|e\|_{l^{1}}+\|e\|_{l^{1}}^{3} .
$$

To finish the proof we use a bootstrap argument. If $\|e\|_{l^{1}}=O\left(B^{-1}\right)$ for all $t \in[0, T]$ then

$$
\partial_{t}\|e\|_{l^{1}} \leq C B^{-2}\|e\|_{l^{1}}
$$

We have the following inequality by using Gronwall's inequality and (21)

$$
\|e\|_{l^{1}} \leq B^{-1-\sigma} \exp \left(C B^{-2} t\right)
$$

for all $t \in[0, T]$. Since we have $T \ll B^{2} \log B$, we thus have $\|e\|_{l^{1}} \ll B^{-1-\sigma / 2}$, and so we can remove the bootstrap assumption.

Proof of Theorem 1.1

Notation for understanding of proof

- $a(t)$: The solution of \mathcal{F} NLS.
- $b(t)$: The solution of the toy model.
- $b^{(\lambda)}(t)$: The scaled solution of the toy model.
- $g(t)$: The solution of the perturbed toy model.

From now, we prove Theorem 1.1.
Given δ, K, construct Λ as in Proposition 2.1. and so we can construct a traveling wave solution $b(t)$ to the toy model concentrated at scale ε according to Proposition 2.2 above.

This proposition also gives us a time $T_{0}=T_{0}(k, \delta)$ at which the wave has the traversed the N generations of frequencies.
For choosing sufficiently large time, we scale the toy model,

$$
b^{(\lambda)}:=\lambda^{-1} b\left(\frac{t}{\lambda^{2}}\right)
$$

First of all, the aim is to apply Lemma 2.3 with $g(t)=\left\{g_{n}(t)\right\}_{n \in \mathbb{Z}^{2}}$ defined by,

$$
g_{n}(t)=b_{j}^{(\lambda)}(t),
$$

for $n \in \Lambda_{j}$, and $g_{n}(t)=0$ when $n \neq \Lambda$. Hence we set

$$
\begin{equation*}
\mathcal{E}(t):=-\sum_{\left[\Gamma(n) \backslash \Gamma_{\mathrm{res}}\right] \cap \Lambda_{3}} g_{n_{1}} \overline{g_{n_{2}}} g_{n_{3}} e^{i \omega_{4} t} \tag{27}
\end{equation*}
$$

where ω_{4} is as in (7).

- 1st condition

By considering its support, the fact that $|\lambda|=C(N)$, and the fact that $\|b(t)\|_{l^{\infty}} \sim 1$, we can be sure that, $\|b(t)\|_{l^{1}(\mathbb{Z})} \sim C(N)$ and therefore

$$
\begin{equation*}
\left\|b^{(\lambda)}(t)\right\|_{l^{1}(\mathbb{Z})},\|g(t)\|_{l^{1}(\mathbb{Z})} \leq \lambda^{-1} C(N) \tag{28}
\end{equation*}
$$

Thus, (20) holds with the choice $B=C(N) \lambda$.
For large enough λ, we choose B large enough so that

$$
B^{2} \log B \gg \lambda^{2} T_{0}
$$

- 2 nd condition

Claim)

$$
\begin{equation*}
\left\|\int_{0}^{t} \mathcal{E}(s) d s\right\|_{l^{1}} \lesssim C(N)\left(\lambda^{-3}+\lambda^{-5} T\right) \tag{29}
\end{equation*}
$$

Proof of Claim)

$$
\begin{aligned}
\int_{0}^{T} g_{n_{1}} \overline{g_{n_{2}}} g_{n_{3}} e^{i \omega_{4} t} d s & =\int_{0}^{T} g_{n_{1}} \overline{g_{n_{2}}} g_{n_{3}} \frac{d}{d s}\left[\frac{e^{i \omega_{4} t}}{i \omega_{4}}\right] d s \\
& =g_{n_{1}}(T) \overline{g_{n_{2}}(T)} g_{n_{3}}(T)-g_{n_{1}}(0) \overline{g_{n_{2}}(0)} g_{n_{3}}(0) \\
& -\int_{0}^{T} \frac{d}{d s}\left[g_{n_{1}} \overline{g_{n_{2}}} g_{n_{3}}\right] \frac{e^{i \omega_{4} t}}{i \omega_{4}} d s
\end{aligned}
$$

By (28), (11) and the fact that $|\lambda|=C(N)$, the boundary terms are bounded λ^{-3} and the integral term is bounded $\lambda^{-5} T$.

Once λ has been chosen, we choose \mathcal{R} sufficiently large so that initial data $g(0)=a(0)$ has the right size:

$$
\begin{equation*}
\left(\sum_{n \in \Lambda}\left|g_{n}(0)\right|^{2}|n|^{2 s}\right)^{\frac{1}{2}} \sim \delta \tag{30}
\end{equation*}
$$

It remains to show that we can guarantee,

$$
\begin{equation*}
\left(\sum_{n \in \Lambda}\left|a_{n}\left(\lambda^{2} T_{0}\right)\right|^{2}|n|^{2 s}\right)^{\frac{1}{2}} \geq K \tag{31}
\end{equation*}
$$

where $a(t)$ is the evolution of the data $a(0)$ under the full system (8).

Claim)

- Estimate to perturbed solution

$$
\begin{equation*}
\left(\sum_{n \in \Lambda}\left|g_{n}\left(\lambda^{2} T_{0}\right)\right|^{2}|n|^{2 s}\right)^{\frac{1}{2}} \gtrsim K \tag{32}
\end{equation*}
$$

- Estimate to error

$$
\begin{equation*}
\sum_{n \in \Lambda}\left|g_{n}\left(\lambda^{2} T_{0}\right)-a_{n}\left(\lambda^{2} T_{0}\right)\right|^{2}|n|^{2 s} \lesssim 1 \tag{33}
\end{equation*}
$$

Proof of Claim)
As for first estimate, consider the ratio of this norm of the resonant evolution at time $\lambda^{2} T_{0}$ to the same norm at the time 0 ,

$$
\begin{aligned}
Q & :=\frac{\sum_{n \in \mathbb{Z}^{2}}\left|g_{n}\left(\lambda^{2} T_{0}\right)\right|^{2}|n|^{2 s}}{\sum_{n \in \mathbb{Z}^{2}}\left|g_{n}(0)\right|^{2}|n|^{2 s}} \\
& =\frac{\sum_{i=1}^{N} \sum_{n \in \Lambda_{i}}\left|b_{n}\left(\lambda^{2} T_{0}\right)\right|^{2}|n|^{2 s}}{\sum_{i=1}^{N} \sum_{n \in \Lambda_{i}}\left|b_{n}(0)\right|^{2}|n|^{2 s}}
\end{aligned}
$$

since $g_{n}=0$ when $n \notin \Lambda$.

Let $S_{j}:=\sum_{n \in \Lambda_{j}}|n|^{2 s}$,

$$
\begin{aligned}
Q & =\frac{\sum_{i=1}^{N} \sum_{n \in \Lambda_{i}}\left|b_{n}\left(\lambda^{2} T_{0}\right)\right|^{2}|n|^{2 s}}{\sum_{i=1}^{N} \sum_{n \in \Lambda_{i}}\left|b_{n}(0)\right|^{2}|n|^{2 s}} \\
& \gtrsim \frac{S_{N-2}(1-\varepsilon)}{\varepsilon S_{1}+\varepsilon S_{2}+(1-\varepsilon) S_{3}+\varepsilon S_{4}+\cdots+\varepsilon S_{N}} \\
& =\frac{S_{N-2}(1-\varepsilon)}{S_{N-2} \cdot\left[\varepsilon \frac{S_{1}}{S_{N-2}}+\varepsilon \frac{S_{2}}{S_{N-2}}+(1-\varepsilon) \frac{S_{3}}{S_{N-2}}+\cdots+\varepsilon+\varepsilon \frac{S_{N-1}}{S_{N-2}}+\varepsilon \frac{S_{N}}{S_{N-2}}\right]} \\
& =\frac{(1-\varepsilon)}{(1-\varepsilon)} \frac{S_{3}}{S_{N-2}}+O(\varepsilon) \gtrsim \frac{K^{2}}{\delta^{2}},
\end{aligned}
$$

by Proposition 2.1 and by choosing $\varepsilon \lesssim C(N, K, \delta)$ sufficiently small.

As for second estimate, using Lemma 2.3 we obtain that

$$
\sum_{n \in \Lambda}\left|g_{n}\left(\lambda^{2} T_{0}\right)-a_{n}\left(\lambda^{2} T_{0}\right)\right|^{2}|n|^{2 s} \lesssim \lambda^{-2-\sigma} \sum_{n \in \Lambda}|n|^{2 s} \leq 1,
$$

by possibly increasing λ and \mathcal{R}, maintaining (30).

Thank You for Your Attention!!

