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Equation and Conservation laws

e The periodic defocusing cubic nonlinear Schrédinger
equation(NLS)

{ — i+ Au = |u*u (1)

u (0, ) :=ug (),

where u (t,x) is a complex-valued function and = € T? and
the initial data is smooth for convenience.

e Hamiltonian (Energy conservation laws)

E[U](t):Z/ SVl + < IUI dz (t) = E'[u] (0).
e Mass conservation laws

M u] (t) := . [ul® da (t) = M [u] (0) -



e Local well-posedness for s > 0 (Bourgain, 1993).
e By conservation laws, we can get global smooth solution to
(1) from smooth initial data.

e Later, we introduce the toy model that is the completely
integrable.

We construct a solution to (1) that energy of move on to higher
Fourier modes. In other words, we construct a solution to (1)
with arbitrarily large growth in higher Sobolev norms.



Statements

Theorem 1.1 (Main theorem)

Let s > 1, K> 1,and 0 < § < 1 be given parameters. Then
there exists a global smooth solution « (f,x) to (1) and a time
T > 0 with

lw (O) | s <0

and
[u (D)l gs > K

Corollary 1.1 (H? instability of zero solution)

The global-in-time solution map taking the initial data ug to
the associated solution u of (1) is strongly unstable in H® near
zero for all s > 1:

inf ( limsup | sup |lu(t)||ys| | =0
020\ |t|—o0 | ||uolly2 <8



Previous result

e High Sobolev norms of solution can grow no faster than
exponential-in-time. (Bourgain, 1993)

e Sobolev norms grow no faster that polynomial-in-time
upper bound. (Bourgain, 2004, Collinder et al., 2001,
Salem et al., 1999)

e Small dispersion NLS
0w + 0Aw = wl®w (2)

Smooth norms of solution of (2) evolving from relatively
generic data with unit L? norm eventually grow larger than
a negative power of 0. (Kuksin, 1997)
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Reductions of Equation - FNLS

Equation (1) has gauge freedom. Hence we can let
v(t,z) = eClu(t, x), GeR (3)
then NLS equation (1) is the following equation for v
(= + A)v = (G+ W)U (4)

with the same initial data. We write a solution of (2) as
following

v (t,l’) _ Z an (t) ei(n-x+|n|2t). (5)

nez?



Substituting (5) into (4) and comparing both sides gives the
following infinite system of equations for a,, (t),

—ida, = Ga,, + Z amaTmanSeiw“t (6)

ni,ne,ns3 A
ni1—ns+n3=n

where
wy = |n1l* = |n2f* + |nal® — |n/? (7)

For the removal of Ga,, term with appropriate choosing the
gauge parameter G, we split the sum on the right hand side of
(6) into the following terms,

2. = X o =)

nl,ng,n3€Z2 n17n2,n3EZ2 n1,n2,n3622 n1,n2,n3€Z2 nl,nz,n3EZ2
n1—n2+nz=n ni1—n2+nz=n ni—n2+nz=n n1—n2+nz=n ni1—n2+n3=n
ni,n3F#En ni=n n3=n ni=ng=n

:= Terms I 4 Terms II + Terms III + Terms IV



Since we handle the system as term by term, Term IV is
—ay (t) |ay, (t)]*. Term IT and Term III are single sums which by
Plancherel’s Theorem and mass conservation total,

205 (t) - 3 lam (O = 2, (8) - 1 (]| 22

meZ
= 2a, (t)* M?,

where M := ”U(t)”%g(rﬂ-g).

We can remove the first term of (5) by choosing G = —2M.
Equation (4) takes then the following useful form which we
denote FNSL,

—iOa, = —ay, |an|2 + Z anITman3eiw4t (8)

n1,n2,n3€F(n)

where

I'(n) = {(nl,ng,ng) € (22)3 1My —ng +ng =n,ny #n,ng # n}
9)



Well-posedness - FNLS

Let

(N (#) (a,0,¢)),, = —anbncy + Z anlﬁcnseimt (10)

n1,n2,n3€l(n)

With this notation, we can reexpress FNLS as

—idan = (N'(t) (¢, a,0)),

Lemma 2.1

IV () (@)l z2y S Nlallizzy [0l 22y ey (11)



Resonant truncation - RFNLS

Define the set of all resonant non-self interactions
Ives (n) C T'(n) by

Pres (n) = { (11,12, m5) €T (1) 2 s = i[> — o + [nsf? — Inf* = 0}
(12)

Note that (n1,ng,ng) € I'yes precisely when (n1,ng,ng,n) form
four corners of a non degenerate rectangle with ny and n
opposing each other, and similarly for ny; and ngs.
In resonant set, FNLS is not oscillates in time anymore. Hence
we can simply define the resonant truncation RFNLS of FNLS
by,

—i0yry = —Tp |7ﬂn|2 + Z TniTnaTng - (13)

n1,m2,n3E M res(n)



Finite truncation - The frequency set A
We introduce some notations and terminologies on set A before
finite truncation of RFNLS.
e For some positive integer N, the set A splits into N disjoint
generations A = A UAU---UAN

n, €A, n €A,
(Children) @ @ (Parents)
nyeA; ® ®n,eA,,
(Parents) (Children)

Figure : Nuclear family



Finite truncation - The frequency set A

We require following properties on set A.
e Property I, (Initial data): r, (0) = 0 whenever n ¢ A.
e Property II5(Closure):

(n1,n2,n3) € I'es (n) ,n1,n2,n3 €' =nel (14)

Lemma 2.2

If A is a finite set satisfying Property 15, Property 115, and

7 (0) — r (t) solves RFNLS (8) on [0, 7] then for all ¢ € [0, 7],
spt [r (t)] C A.



Property 111, (Existence and uniqueness of spouse and
children): 1 <Vj < N and n; € A; 3! nuclear family
(n1,n2,mn3,n4) such that n; is a parent. In particular each
n1 € A; has a unique spouse n3 € A; and two unique
children no,n4 € Ajys.

Property IV (Existence and uniqueness of sibling and
parents): 1 <Vj < N and ny € Aj1 3! nuclear family
(n1,n2,n3,n4) such that ng is a parent. In particular each
no € Aj41 has a unique sibling ny € Aj41 and two unique
parents ni,n3 € A;.

Property V(Non-degeneracy): The sibling of a frequency
n is never equal to its spouse.

Property VIj(Faithful): Apart from the nuclear families, A
contains no other rectangles.



In assumption of existence of A,

_iat/rn (t) = - ’rn (t)’2 n (t) + 2”Anchild—l (t) Tnchild—2 (t) rnspouse (t)

+ 2rnparent—1 (t) 7anparent—Q (t) Tnsibling (t)
(15)

where for each n € Aj, ngpouse € A is its spouse,
Treniar» Tneniace € Aj+1 are its two children, ngpling € A;j is its
sibling, and 7015 Trparent.2 € Aj—1 are its parents.
For more simplify ODE, we introduce a condition to A.
e Property VI (Intragenerational equality): The function

n+— 1y (0) is constant on each generation A;. Thus

1 <j <N andn,n €A;imply r, (0) =r, (0).
By Gronwall argument, if one has intragenerational equality at
time 0 then one has intragenerational equality at all later times.



Finite truncation - Toy model system

By Property VI, we may collapse the function n +— 7, (t), which
is currently a function on A = A; U--- U Ay, to the function
j—b;(t) on{1,2,...,N}, where b; (t) := 1y, (t) whenever

n € Aj. Hence the ODE (15) collapse to the following system
that we call Toy Model System.

—i0;bj (t) = — [bj (£)[* by (£) + 2651 (£)" by (£) + 2651 (£)7 b5 (2),
(16)
with the convention that by (¢) = byy1 (t) = 0.
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First ingredient: the frequency set A

Proposition 2.1 (First ingredient: the frequency set A)

Given parameters § < 1, K > 1, we can find an NV > 1 and a
set of frequencies A C Z? with,

A=ANU---UAN disjoint union
which satisfies Property 115 - Property VIj and also,

s 2
ZnEAN|n|2 > K

—. 1
ZnGA1|n\2‘9 ~ o2 ( 7)

In addition, given any R > C (K, J), we can ensure that A
consists of N - 2V~1 disjoint frequencies n satisfying |n| > R.



Second ingredient: instability in the toy

model

Proposition 2.2 (Second ingredient: instability in the toy
model)

Given N > 1, ¢ < 1, there is initial data
b(0) = (b1 (0),b2(0),...,by (0)) € CV for (16) and there is a
time T'=T (N, ¢) so that

b3 (0)[ > 1—¢,  [b;(0))<e,  j#3
bn—2 (T)|=1—¢,  [b;(T)|<e, j#N-2

In addition, the corresponding solution satisfies ||b (t)||;c ~ 1 for
all0 <t <T.

Theorem 3.1 (Instability in the toy model)

Let N < 6. Given any € > 0, there exists a point x3 within ¢ of
T3 (using the usual metric on X), a point zy_o within € of
Tx_2, and a time ¢ < 0 such that S (t) 23 = zn_o.



Third ingredient: the approximation
lemma,

Let 0 < o0 < 1 be an absolute constant (all implicit constants in
this subsection may depend on o). Let B > 1, and let
T < B?log B. Let

9 () = {gn ()} ez
be a solution to the perturbed equation of
—i0g (t) = (N (g9 () g (1), 9 (1)) + £ (1) (19)

for times 0 < ¢ < T, where N (t) is defined in (10), (7) and
where the initial data g (0) is compactly supported.



Lemma 2.3 (Third ingredient: the approximation lemma)

Assume that the solution of above equation ¢ (¢) and the error
term & (t) obey the bounds of the form

lg (Ol z2) S B~ (20)

t
/E(t)ds
0
forall 0 <t <T.

We conclude that if a (¢) denotes the solution to FNLS (8) with
initial data a (0) = ¢ (0), then we have

la (t) =g (Ol zzy S B~ (22)

<SBTT (21)
11(72)

forall 0 <t <T.



Proof of Lemma 2.3

Write
F(t):= —i/o E(s)ds, and d(t):=g((t)+ F(t).

Observe that

—idy = —igy —iFy = (N () (g (t), 9 (t),g (1)) +E(t) = £ ()
=N@®)(d-F,d—F,d—F)
(23)

where we have suppressed the explicit ¢ dependence for brevity.



Proof of Lemma 2.3 - Continued
By hypothesis, d (¢t) = Op (B™!). By trilinearity and Lemma
2.1,
—idy =N (d,d—F,d—F)— N (F,d—F,d—F)
=N (d,d,d) + O (|[F}n) O (llgll»)* (24)
=N (d,d,d)+ Op (B_3_") .
Let e () is a smooth error function. Now write a := d + e. Since
a (t) is the solution to FNLS,
—1 (d + e)t = —’idt — iat + Zdt

= —ia; = N (a,a,a) =N (d+e,d+e,d+e). (25)

Now, we calculate (24) — (25) and use trilinearity and Lemma
2.1 again,

iey = Op (B™77) + Op (B2 lelln) + Op (Jlellf) - (26)



Hence by the differential form of Minkowski’s inequality, we
have
Ocllelly S B727 + B2 lell + [lellji -

~

To finish the proof we use a bootstrap argument.
If [lef, = O (B™!) for all t € [0,T] then

Oellellyy < CB™2 el -

We have the following inequality by using Gronwall’s inequality
and (21)
lellp < B~ exp (CB™%t)

for all t € [0,7]. Since we have T' < B?log B, we thus have
lellp < B™179/2) and so we can remove the bootstrap
assumption.



Proof of Theorem 1.1

Notation for understanding of proof
e a(t): The solution of FNLS.
e b(t): The solution of the toy model.
e b (¢): The scaled solution of the toy model.
e g (t): The solution of the perturbed toy model.

From now, we prove Theorem 1.1.

Given ¢, K, construct A as in Proposition 2.1. and so we can
construct a traveling wave solution b () to the toy model
concentrated at scale € according to Proposition 2.2 above.



This proposition also gives us a time Ty = Ty (k,0) at which the
wave has the traversed the N generations of frequencies.
For choosing sufficiently large time, we scale the toy model,

A =1, [ T
b = ) b(v)

First of all, the aim is to apply Lemma 2.3 with
g (t) = {gn (t)}n€Z2 defined by7

for n € Aj, and gy, (t) = 0 when n # A. Hence we set

EM) == D gnOngne™" (27)
[L(n)\I'res]NA3

where wy is as in (7).



e 1st condition

By considering its support, the fact that |A| = C (IV), and the
fact that [|b(¢)[[,c ~ 1, we can be sure that, [|b(¢)]|;1(z) ~ C (N)
and therefore

o

1wy 19 Ol <X7C () (28)

Thus, (20) holds with the choice B = C (V) .
For large enough A, we choose B large enough so that

B?log B > ATy,



e 2nd condition

Claim) t
’ / E(s)ds| < C(N) (A3 +AT). (29)
0
)

~

ll

Proof of Claim

T oat T d eiW4t
/0 Gy Ing Gnz €'t ds :/0 gm%ﬁ]ﬂs% [ Wy ] s

= 9ny (T) Ina (T)gns (T) — 9ny (0) Ina (O)gn;a (0)

T iwat
d o eiwa
- /0 E [g’ﬂlg’ﬂang] —ds

Wy

By (28), (11) and the fact that |A| = C (IV), the boundary
terms are bounded A~3 and the integral term is bounded A\ ~°T.



Once A has been chosen, we choose R sufficiently large so that
initial data ¢ (0) = a (0) has the right size:

(Z [9n (0)[ |7/ ) ~ 9 (30)

neA

It remains to show that we can guarantee,

(Z jan (X°T)[* Wﬁ) > K, (31)

neA

where a (t) is the evolution of the data a (0) under the full
system (8).



Claim)
e Estimate to perturbed solution

(Z |90 (\*T0) | \n\23> 2k (32)

neA
e Estimate to error
S |gn (NT0) — an (\2T0)|* Inf* < 1. (33)
neA

Proof of Claim)
As for first estimate, consider the ratio of this norm of the
resonant evolution at time A\27T} to the same norm at the time 0,

ez |90 (2T0) [ ]
> nezz lgn (0 ]
2 Yea, [bo (2T0) [ nf*
SN e, 1bn (0) >

since g, = 0 when n & A.

Q:=




2
Let 8 = 3, e, Inf*

0 = Tt Znea, [ °T0)[*
YLy S, 1bn () [
S Sn—2(1—¢)
~eSi+eSo+(1—¢e)S3+eSy+ - +eSn
B Sn_2(1—¢)
_SN—Q' 65N2+85N2+(1—8)51€i2+ —i—a—l—agNl—i—ssNQ
2
(T e CEr

by Proposition 2.1 and by choosing ¢ < C (N, K, §) sufficiently
small.




As for second estimate, using Lemma 2.3 we obtain that

S lon (2T0) = an (RT0)[* [0 S X727 > nf* <1,
nen neA

by possibly increasing A and R, maintaining (30).



Thank You
for Your Attention!!
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