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Equation and Conservation laws

• The periodic defocusing cubic nonlinear Schrödinger
equation(NLS) {

− i∂tu+ ∆u = |u|2 u,
u (0, x) := u0 (x) ,

(1)

where u (t, x) is a complex-valued function and x ∈ T2 and
the initial data is smooth for convenience.

• Hamiltonian (Energy conservation laws)

E [u] (t) :=

∫
T2

1

2
|∇u|2 +

1

4
|u|4 dx (t) = E [u] (0) .

• Mass conservation laws

M [u] (t) :=

∫
T2

|u|2 dx (t) = M [u] (0) .



• Local well-posedness for s > 0 (Bourgain, 1993).

• By conservation laws, we can get global smooth solution to
(1) from smooth initial data.

• Later, we introduce the toy model that is the completely
integrable.

We construct a solution to (1) that energy of move on to higher
Fourier modes. In other words, we construct a solution to (1)
with arbitrarily large growth in higher Sobolev norms.



Statements

Theorem 1.1 (Main theorem)

Let s > 1, K � 1, and 0 < δ � 1 be given parameters. Then
there exists a global smooth solution u (t, x) to (1) and a time
T > 0 with

‖u (0)‖Hs ≤ δ

and
‖u (T )‖Hs ≥ K

Corollary 1.1 (H2 instability of zero solution)

The global-in-time solution map taking the initial data u0 to
the associated solution u of (1) is strongly unstable in Hs near
zero for all s > 1:

inf
δ>0

(
limsup
|t|→∞

[
sup

‖u0‖H2≤δ
‖u (t)‖Hs

])
= 0



Previous result

• High Sobolev norms of solution can grow no faster than
exponential-in-time. (Bourgain, 1993)

• Sobolev norms grow no faster that polynomial-in-time
upper bound. (Bourgain, 2004, Collinder et al., 2001,
Salem et al., 1999)

• Small dispersion NLS

i∂tω + δ∆ω = |ω|2 ω (2)

Smooth norms of solution of (2) evolving from relatively
generic data with unit L2 norm eventually grow larger than
a negative power of δ. (Kuksin, 1997)
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Reductions of Equation - FNLS

Equation (1) has gauge freedom. Hence we can let

v (t, x) = eiGtu (t, x) , G ∈ R (3)

then NLS equation (1) is the following equation for v

(−∂t + ∆) v =
(
G+ |v|2

)
v (4)

with the same initial data. We write a solution of (2) as
following

v (t, x) =
∑
n∈Z2

an (t) ei(n·x+|n|2t). (5)



Substituting (5) into (4) and comparing both sides gives the
following infinite system of equations for an (t),

−i∂tan = Gan +
∑

n1,n2,n3∈Z2

n1−n2+n3=n

an1an2an3e
iω4t (6)

where
ω4 = |n1|2 − |n2|2 + |n3|2 − |n|2 (7)

For the removal of Gan term with appropriate choosing the
gauge parameter G, we split the sum on the right hand side of
(6) into the following terms,∑
n1,n2,n3∈Z2

n1−n2+n3=n

=
∑

n1,n2,n3∈Z2

n1−n2+n3=n
n1,n3 6=n

+
∑

n1,n2,n3∈Z2

n1−n2+n3=n
n1=n

+
∑

n1,n2,n3∈Z2

n1−n2+n3=n
n3=n

−
∑

n1,n2,n3∈Z2

n1−n2+n3=n
n1=n3=n

:= Terms I + Terms II + Terms III + Terms IV



Since we handle the system as term by term, Term IV is
−an (t) |an (t)|2. Term II and Term III are single sums which by
Plancherel’s Theorem and mass conservation total,

2an (t) ·
∑
m∈Z
|am (t)|2 = 2an (t) · ‖u (t)‖2L2(T2)

= 2an (t)2M2,

where M := ‖u (t)‖2L2(T2).
We can remove the first term of (5) by choosing G = −2M .
Equation (4) takes then the following useful form which we
denote FNSL,

−i∂tan = −an |an|2 +
∑

n1,n2,n3∈Γ(n)

an1an2an3e
iω4t (8)

where

Γ (n) =
{

(n1, n2, n3) ∈
(
Z2
)3

: n1 − n2 + n3 = n, n1 6= n, n3 6= n
}
.

(9)



Well-posedness - FNLS

Let

(N (t) (a, b, c))n = −anbncn +
∑

n1,n2,n3∈Γ(n)

an1bn2cn3e
iω4t (10)

With this notation, we can reexpress FNLS as
−i∂tan = (N (t) (a, a, a))n

Lemma 2.1

‖(N (t) (a, b, c))n‖l1(Z2) . ‖a‖l1(Z2) ‖b‖l1(Z2) ‖c‖l1(Z2) (11)



Resonant truncation - RFNLS

Define the set of all resonant non-self interactions
Γres (n) ⊂ Γ (n) by

Γres (n) =
{

(n1, n2, n3) ∈ Γ (n) : ω4 = |n1|2 − |n2|2 + |n3|2 − |n|2 = 0
}

(12)
Note that (n1, n2, n3) ∈ Γres precisely when (n1, n2, n3, n) form
four corners of a non degenerate rectangle with n2 and n
opposing each other, and similarly for n1 and n3.
In resonant set, FNLS is not oscillates in time anymore. Hence
we can simply define the resonant truncation RFNLS of FNLS
by,

−i∂trn = −rn |rn|2 +
∑

n1,n2,n3∈Γres(n)

rn1rn2rn3 . (13)



Finite truncation - The frequency set Λ
We introduce some notations and terminologies on set Λ before
finite truncation of RFNLS.
• For some positive integer N , the set Λ splits into N disjoint

generations Λ = Λ1 ∪ Λ2 ∪ · · · ∪ ΛN

n2 ∈Λ j+1

(Children)
       

n4 ∈Λ j+1

(Children)
       

n1 ∈Λ j

(Parents)
       

n3 ∈Λ j

(Parents)
       

Figure : Nuclear family



Finite truncation - The frequency set Λ

We require following properties on set Λ.

• Property IΛ(Initial data): rn (0) = 0 whenever n 6∈ Λ.

• Property IIΛ(Closure):

(n1, n2, n3) ∈ Γres (n) , n1, n2, n3 ∈ Γ⇒ n ∈ Γ (14)

Lemma 2.2
If Λ is a finite set satisfying Property IΛ, Property IIΛ, and
r (0) 7→ r (t) solves RFNLS (8) on [0, T ] then for all t ∈ [0, T ],
spt [r (t)] ⊂ Λ.



• Property IIIΛ(Existence and uniqueness of spouse and
children): 1 ≤ ∀j ≤ N and n1 ∈ Λj ∃! nuclear family
(n1, n2, n3, n4) such that n1 is a parent. In particular each
n1 ∈ Λj has a unique spouse n3 ∈ Λj and two unique
children n2, n4 ∈ Λj+1.

• Property IVΛ(Existence and uniqueness of sibling and
parents): 1 ≤ ∀j ≤ N and n2 ∈ Λj+1 ∃! nuclear family
(n1, n2, n3, n4) such that n2 is a parent. In particular each
n2 ∈ Λj+1 has a unique sibling n4 ∈ Λj+1 and two unique
parents n1, n3 ∈ Λj .

• Property VΛ(Non-degeneracy): The sibling of a frequency
n is never equal to its spouse.

• Property VIΛ(Faithful): Apart from the nuclear families, Λ
contains no other rectangles.



In assumption of existence of Λ,

−i∂trn (t) = − |rn (t)|2 rn (t) + 2rnchild-1
(t) rnchild-2

(t) rnspouse (t)

+ 2rnparent-1 (t) rnparent-2 (t) rnsibling
(t)

(15)

where for each n ∈ Λj , nspouse ∈ Λj is its spouse,
rnchild-1

, rnchild-2
∈ Λj+1 are its two children, nsibling ∈ Λj is its

sibling, and rnparent-1 , rnparent-2 ∈ Λj−1 are its parents.
For more simplify ODE, we introduce a condition to Λ.

• Property VIΛ(Intragenerational equality): The function
n 7→ rn (0) is constant on each generation Λj . Thus
1 ≤ j ≤ N and n, n′ ∈ Λj imply rn (0) = rn′ (0).

By Gronwall argument, if one has intragenerational equality at
time 0 then one has intragenerational equality at all later times.



Finite truncation - Toy model system

By Property VI, we may collapse the function n 7→ rn (t), which
is currently a function on Λ = Λ1 ∪ · · · ∪ ΛN , to the function
j 7→ bj (t) on {1, 2, . . . , N}, where bj (t) := rn (t) whenever
n ∈ Λj . Hence the ODE (15) collapse to the following system
that we call Toy Model System.

−i∂tbj (t) = − |bj (t)|2 bj (t) + 2bj−1 (t)2 bj (t) + 2bj+1 (t)2 bj (t),
(16)

with the convention that b0 (t) = bN+1 (t) = 0.
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First ingredient: the frequency set Λ

Proposition 2.1 (First ingredient: the frequency set Λ)

Given parameters δ � 1, K � 1, we can find an N � 1 and a
set of frequencies Λ ⊂ Z2 with,

Λ = Λ1 ∪ · · · ∪ ΛN disjoint union

which satisfies Property IIΛ - Property VIΛ and also,∑
n∈ΛN |n|2s∑
n∈Λ1|n|2s

&
K2

δ2
. (17)

In addition, given any R � C (K, δ), we can ensure that Λ
consists of N · 2N−1 disjoint frequencies n satisfying |n| ≥ R.



Second ingredient: instability in the toy
model

Proposition 2.2 (Second ingredient: instability in the toy
model)

Given N > 1, ε� 1, there is initial data
b (0) = (b1 (0) , b2 (0) , . . . , bN (0)) ∈ CN for (16) and there is a
time T = T (N, ε) so that

|b3 (0)| ≥ 1− ε, |bj (0)| ≤ ε, j 6= 3

|bN−2 (T )| ≥ 1− ε, |bj (T )| ≤ ε, j 6= N − 2.
(18)

In addition, the corresponding solution satisfies ‖b (t)‖l∞ ∼ 1 for
all 0 ≤ t ≤ T .

Theorem 3.1 (Instability in the toy model)

Let N ≤ 6. Given any ε > 0, there exists a point x3 within ε of
T3 (using the usual metric on Σ), a point xN−2 within ε of
TN−2, and a time t ≤ 0 such that S (t)x3 = xN−2.



Third ingredient: the approximation
lemma

Let 0 < σ < 1 be an absolute constant (all implicit constants in
this subsection may depend on σ). Let B � 1, and let
T � B2 logB. Let

g (t) := {gn (t)}n∈Z2

be a solution to the perturbed equation of

−i∂tg (t) = (N (g (t) , g (t) , g (t))) + E (t) (19)

for times 0 ≤ t ≤ T , where N (t) is defined in (10), (7) and
where the initial data g (0) is compactly supported.



Lemma 2.3 (Third ingredient: the approximation lemma)

Assume that the solution of above equation g (t) and the error
term E (t) obey the bounds of the form

‖g (t)‖l1(Z2) . B−1 (20)∥∥∥∥∫ t

0
E (t) ds

∥∥∥∥
l1(Z2)

. B−1−σ (21)

for all 0 ≤ t ≤ T .
We conclude that if a (t) denotes the solution to FNLS (8) with
initial data a (0) = g (0), then we have

‖a (t)− g (t)‖l1(Z2) . B−1−σ (22)

for all 0 ≤ t ≤ T .



Proof of Lemma 2.3

Write

F (t) := −i
∫ t

0
E (s) ds, and d (t) := g (t) + F (t) .

Observe that

−idt = −igt − iFt = (N (t) (g (t) , g (t) , g (t))) + E (t)− E (t)

= N (t) (d− F, d− F, d− F )

(23)

where we have suppressed the explicit t dependence for brevity.



Proof of Lemma 2.3 - Continued
By hypothesis, d (t) = Ol1

(
B−1

)
. By trilinearity and Lemma

2.1,

−idt = N (d, d− F, d− F )−N (F, d− F, d− F )

= N (d, d, d) +O (‖F‖l1)O (‖g‖l1)2

= N (d, d, d) +Ol1
(
B−3−σ) . (24)

Let e (t) is a smooth error function. Now write a := d+ e. Since
a (t) is the solution to FNLS,

−i (d+ e)t = −idt − iat + idt

= −iat = N (a, a, a) = N (d+ e, d+ e, d+ e) .
(25)

Now, we calculate (24) − (25) and use trilinearity and Lemma
2.1 again,

iet = Ol1
(
B−3−σ)+Ol1

(
B−2 ‖e‖l1

)
+Ol1

(
‖e‖3l1

)
. (26)



Hence by the differential form of Minkowski’s inequality, we
have

∂t ‖e‖l1 . B−3−σ +B−2 ‖e‖l1 + ‖e‖3l1 .

To finish the proof we use a bootstrap argument.
If ‖e‖l1 = O

(
B−1

)
for all t ∈ [0, T ] then

∂t ‖e‖l1 ≤ CB
−2 ‖e‖l1 .

We have the following inequality by using Gronwall’s inequality
and (21)

‖e‖l1 ≤ B
−1−σ exp

(
CB−2t

)
for all t ∈ [0, T ]. Since we have T � B2 logB, we thus have
‖e‖l1 � B−1−σ/2, and so we can remove the bootstrap
assumption.



Proof of Theorem 1.1

Notation for understanding of proof

• a (t): The solution of FNLS.

• b (t): The solution of the toy model.

• b(λ) (t): The scaled solution of the toy model.

• g (t): The solution of the perturbed toy model.

From now, we prove Theorem 1.1.
Given δ, K, construct Λ as in Proposition 2.1. and so we can
construct a traveling wave solution b (t) to the toy model
concentrated at scale ε according to Proposition 2.2 above.



This proposition also gives us a time T0 = T0 (k, δ) at which the
wave has the traversed the N generations of frequencies.
For choosing sufficiently large time, we scale the toy model,

b(λ) := λ−1b

(
t

λ2

)
.

First of all, the aim is to apply Lemma 2.3 with
g (t) = {gn (t)}n∈Z2 defined by,

gn (t) = b
(λ)
j (t) ,

for n ∈ Λj , and gn (t) = 0 when n 6= Λ. Hence we set

E (t) := −
∑

[Γ(n)\Γres]∩Λ3

gn1gn2gn3e
iω4t (27)

where ω4 is as in (7).



• 1st condition

By considering its support, the fact that |λ| = C (N), and the
fact that ‖b (t)‖l∞ ∼ 1, we can be sure that, ‖b (t)‖l1(Z) ∼ C (N)
and therefore∥∥∥b(λ) (t)

∥∥∥
l1(Z)

, ‖g (t)‖l1(Z) ≤ λ
−1C (N) (28)

Thus, (20) holds with the choice B = C (N)λ.
For large enough λ, we choose B large enough so that

B2 logB � λ2T0.



• 2nd condition

Claim) ∥∥∥∥∫ t

0
E (s) ds

∥∥∥∥
l1
. C (N)

(
λ−3 + λ−5T

)
. (29)

Proof of Claim)∫ T

0
gn1gn2gn3e

iω4tds =

∫ T

0
gn1gn2gn3

d

ds

[
eiω4t

iω4

]
ds

= gn1 (T ) gn2 (T )gn3 (T )− gn1 (0) gn2 (0)gn3 (0)

−
∫ T

0

d

ds
[gn1gn2gn3 ]

eiω4t

iω4
ds

By (28), (11) and the fact that |λ| = C (N), the boundary
terms are bounded λ−3 and the integral term is bounded λ−5T .



Once λ has been chosen, we choose R sufficiently large so that
initial data g (0) = a (0) has the right size:(∑

n∈Λ

|gn (0)|2 |n|2s
) 1

2

∼ δ (30)

It remains to show that we can guarantee,(∑
n∈Λ

∣∣an (λ2T0

)∣∣2 |n|2s) 1
2

≥ K, (31)

where a (t) is the evolution of the data a (0) under the full
system (8).



Claim)

• Estimate to perturbed solution(∑
n∈Λ

∣∣gn (λ2T0

)∣∣2 |n|2s) 1
2

& K, (32)

• Estimate to error∑
n∈Λ

∣∣gn (λ2T0

)
− an

(
λ2T0

)∣∣2 |n|2s . 1. (33)

Proof of Claim)
As for first estimate, consider the ratio of this norm of the
resonant evolution at time λ2T0 to the same norm at the time 0,

Q :=

∑
n∈Z2

∣∣gn (λ2T0

)∣∣2 |n|2s∑
n∈Z2 |gn (0)|2 |n|2s

=

∑N
i=1

∑
n∈Λi

∣∣bn (λ2T0

)∣∣2 |n|2s∑N
i=1

∑
n∈Λi

|bn (0)|2 |n|2s

since gn = 0 when n 6∈ Λ.



Let Sj :=
∑

n∈Λj
|n|2s,

Q =

∑N
i=1

∑
n∈Λi

∣∣bn (λ2T0

)∣∣2 |n|2s∑N
i=1

∑
n∈Λi

|bn (0)|2 |n|2s

&
SN−2 (1− ε)

εS1 + εS2 + (1− ε)S3 + εS4 + · · ·+ εSN

=
SN−2 (1− ε)

SN−2 ·
[
ε S1
SN−2

+ ε S2
SN−2

+ (1− ε) S3
SN−2

+ · · ·+ ε+ ε
SN−1

SN−2
+ ε SN

SN−2

]
=

(1− ε)
(1− ε)

S3

SN−2
+O (ε) &

K2

δ2
,

by Proposition 2.1 and by choosing ε . C (N,K, δ) sufficiently
small.



As for second estimate, using Lemma 2.3 we obtain that∑
n∈Λ

∣∣gn (λ2T0

)
− an

(
λ2T0

)∣∣2 |n|2s . λ−2−σ
∑
n∈Λ

|n|2s ≤ 1,

by possibly increasing λ and R, maintaining (30).



Thank You
for Your Attention!!
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