QUALIFYING EXAM: COMPLEX ANALYSIS

Scope of the subject

The exam will cover the following topics:

- Graphing of elementary functions
- Logarithmic function, power function
- Möbius transform
- Analytic functions, Cauchy-Riemann equations
- Power series including Laurant series, Identity theorem
- Cauchy theorem, Morera's Theorem
- Cauchy integral formula, Liouville's Theorem, Fundamental theorem of algebra
- Harmonic functions, harmonic conjugate, Poisson integral formula
- Mean value property, maximum principle
- Three types of isolated singularities
- Residue calculus, Rouche's theorem
- Evaluation of real integrals
- Argument principle
- Schwartz lemma, Pick's lemma
- Meromorphic functions, infinite product, Weierstrauss product theorem
- Conformal mapping and Riemann mapping theorem

DO NOT include the followings:

- Analytic continuation
- Picard Theorem, Montel theorem
- Special functions, e.g. Zeta function, Gamma functions.
- Riemann surface

Example Problems
Problem 1. Find all values of $(1+2 i)^{i}$ in $a+b i$ form.
Problem 2. Sketch the image of $\log z$ in the following domains.
(1) the right half plane, Re $z>0$
(2) the half disk, $|z|<1$, Re $z>0$
(3) the unit circle, $|z|=1$
(4) the horizontal line, $y=e$
(5) the vertical line, $x=e$

Problem 3. Find all roots of the equation $\log z=i \pi / 2$.
Problem 4. Find the radius of convergence of the power series expansion of $\left(z^{2}-\right.$ 1) $/\left(z^{3}-1\right)$ at $z=2$.

Problem 5. Show that $\sum \frac{z^{k}}{k^{2}}$ converges uniformly for $|z|<1$. Show that $\sum \frac{z^{k}}{k}$ does not converge uniformly for $|z|<1$.

Problem 6. Let f be an entire function such that, for all $z,|f(z)|=|\sin z|$. Prove that there is a contant c of modulus 1 such that $f(z)=C \sin z$.
Problem 7. Let f be an entire function such that $|f(z)| \leq A|z|$ for all z, where A is a positive constant. Show that $f(z)=a_{1} z$, where a_{1} is a complex constant.

Problem 8. Show that if z_{0} is an isolated singularity of $f(z)$, and if $\left(z-z_{0}\right)^{N} f(z)$ is bounded near z_{0}, then z_{0} is either removable or a pole of order at most N.
Problem 9. Determine the order of the pole at $z=0$ for

$$
\frac{z}{\sin z-z+z^{3} / 3!}
$$

Problem 10. Show that $f(x, y)=x^{2}-y^{2}+3 x y+x+2 y$ is harmonic. Find a harmonic conjugate.

Problem 11. Show that $f(z)$ has no singularities in the extended plane other than poles if and only if $f(z)$ is a rational function.

Problem 12. Evaluate the following integrals.
(1)

$$
\oint_{|z|=3} \frac{2 z^{2}-z-2}{z-2} d z
$$

(2)

$$
\oint_{|z-1|=2} \frac{d z}{z\left(z^{2}-4\right) e^{z}}
$$

(3)

$$
\int_{-\infty}^{\infty} \frac{\cos x}{1+x+x^{2}} d x
$$

$$
\int_{0}^{\infty} \frac{x^{2}+1}{x^{4}+1} d x
$$

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{d \theta}{a+b \sin \theta} \tag{5}
\end{equation*}
$$

(6)

$$
\int_{0}^{\infty} \frac{x^{-a}}{1+x} d x
$$

$$
\int_{-\infty}^{\infty} \frac{1}{x^{4}+1} d x
$$

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{\cos \theta}{5+4 \cos \theta} d \theta \tag{8}
\end{equation*}
$$

Problem 13. Show that $2 z^{5}+6 z-1$ has one root in the interval $0<x<1$ and four roots in the annulus $\{1<|z|<2\}$.
Problem 14. How many roots does $z^{9}+z^{5}-8 z^{3}+2 z+1$ have between the circles $\{|z|=1\}$ and $\{|z|=2\}$?

Problem 15. Let $f(z)$ be a holomorphic function on a domain D. Prove that $\overline{f(\bar{z})}$ is a holomorphic function on $\{\bar{z}: z \in D\}$.
Problem 16. Establish the identity

$$
\int_{-\infty}^{\infty} e^{\alpha x^{2}} e^{i \beta x} d x=\sqrt{\frac{\pi}{\alpha}} e^{-\beta^{2} / 4 \alpha}
$$

where α, β are real numbers with $\alpha>0$.
Problem 17. Let $p(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ be a polynomial of degree n.
(1) Prove that for any $M>0$, there exists a constant $R>0$ such that $|p(z)|>$ M on $\{z \in \mathbb{C}:|z|>R\}$.
(2) Prove that if $|p(z)|$ attains a local minimum at z_{0}, then $\left|p\left(z_{0}\right)\right|=0$.
(3) Deduce the fundamental theorem of algebra, saying that $p(z)$ has at least a zero in \mathbb{C}.
Problem 18. Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be a continuous function with compact support. Show that if the Fourier transform of f,

$$
\widehat{f}(\xi)=\int_{\mathbb{R}} e^{-i x \xi} f(x) d x
$$

also has a compact support, then $f \equiv 0$. (Hint. Use the identity theorem)
Problem 19. Let $f(z)$ be a nonconstant entire function. Show that $f(\mathbb{C})$ is dense in \mathbb{C}.
Problem 20. Let $f(z)$ be a holomorphic function on \mathbb{C}. Show tha if $\operatorname{Re} f \geq 0$, then f is a constant.
Problem 21. Let $f(z)$ be continuous on a domain D. Show $f(z)$ is analytic in D, assuming that
(1) $f(z)$ is analytic except on a point $z_{0} \in D$
(2) $f(z)$ is analytic except on a line segment C in D.

Problem 22. Show the equation $e^{z}=3 z^{2}$ has two roots inside the unit circle. Show that two roots are real.
Problem 23. Show that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|a-e^{i \theta}\right| d \theta= \begin{cases}0, & |a| \leq 1 \\ \log |a|, & |a|>1\end{cases}
$$

Problem 24. Let $\left\{u_{n}(z)\right\}$ be a sequence of harmonic functions uniformly converging to $u(z)$ on any compact subset of D. Show that $u(z)$ is harmonic.
Problem 25. Suppose that $f(z)$ is analytic in a neighborhood of z_{0}. Show that $f(z)$ has a zero of degree n at z_{0} if and only if $1 / f(z)$ has a pole of degree n at z_{0}.
Problem 26. Show the Gamma function $\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t$ is analytic on $\{\operatorname{Re} z>0\}$ by following steps. $\left(t^{z-1}=e^{(z-1) \log t}\right)$

- Show the integral $\int_{0}^{\infty} e^{-t} t^{z-1} d t$ converges absolutely for $\{$ Re $z>0\}$. Thus, $\Gamma(z)$ is well-defined on $\{\operatorname{Re} z>0\}$.
- Show $\Gamma_{n}(z)=\int_{\frac{1}{n}}^{n} e^{-t} t^{z-1} d t$ is analytic in $\{\operatorname{Re} z>0\}$.
- Show $\Gamma_{n}(z)$ converges uniformly to $\Gamma(z)$ on any compact subset of $\{R e z>$ $0\}$. Conclude that $\Gamma(z)$ is analytic on $\{\operatorname{Re} z>0\}$.

Problem 27. Suppose that $f(z)$ is a meromorphic function in \mathbb{C}. Show that if $|f(z)|$ is bounded for $|z|>R$ for some R, then $f(z)$ is a rational function.
Problem 28. Let $\left\{z_{n}\right\}$ be a convergent sequence in \mathbb{C}. Let $f(z)$ be analytic in $D \subset \mathbb{C}$. Prove or disprove (by giving a counter example) that if $f(z)$ vanishes at z_{n}, then $f(z) \equiv 0$ in D.

Problem 29. Let $f(z)$ be an entire function. Assume that there exists $R>0$ such that $|f(z)| \leq C|z|^{n}$ whenever $|z|>R$. Show that $f(z)$ is a polynomial of at most degree n.

Problem 30. Show that

$$
\prod_{n=1}^{\infty}\left(1+\frac{1}{n^{2}}\right)=\frac{e^{\pi}-e^{-\pi}}{2 \pi}
$$

Problem 31. Show that $\prod_{n=1}^{\infty}\left(1+a_{j}\right)$ converges if and only if $\prod_{j=m}^{n}\left(1+a_{j}\right) \rightarrow 1$ as $m, n \rightarrow \infty$.

Problem 32. Let $f(z)$ be analytic and satisfy $|f(z)| \leq M$ for $\left|z-z_{0}\right|<R$. Show that if $f(z)$ has a zero of order m at z_{0}, then

$$
\left|f(z) \leq \frac{M}{R^{m}}\right| z-\left.z_{0}\right|^{m}, \quad\left|z-z_{0}\right|<R
$$

Show that equality holds at some point $z \neq z_{0}$ only when $f(z)$ is a constant multiple of $\left(z-z_{0}\right)^{m}$.

Problem 33. Show that the conformal maps of the upper half-plane onto the open unit disk are of the form

$$
f(z)=e^{i \phi} \frac{z-a}{z-\bar{a}}, \quad \operatorname{Im} a>0,0 \leq \phi \leq 2 \pi
$$

Show that a and $e^{i \phi}$ are uniquely determined by the conformal map.
Problem 34. Show that amy conformal self-map of the punctured complex plane $\{0<$ $|z|<\infty\}$ is either a multiplication $z \mapsto a z$ or such multiplication followed by the inversion $z \mapsto 1 / z$.

