QUALIFYING EXAM: COMPLEX ANALYSIS

SCOPE OF THE SUBJECT

The exam will cover the following topics:

- Graphing of elementary functions
- Logarithmic function, power function
- Möbius transform
- Analytic functions, Cauchy-Riemann equations
- Power series including Laurant series, Identity theorem
- Cauchy theorem, Morera's Theorem
- Cauchy integral formula, Liouville's Theorem, Fundamental theorem of algebra
- Harmonic functions, harmonic conjugate, Poisson integral formula
- Mean value property, maximum principle
- Three types of isolated singularities
- Residue calculus, Rouche's theorem
- Evaluation of real integrals
- Argument principle
- Schwartz lemma, Pick's lemma
- Meromorphic functions, infinite product, Weierstrauss product theorem
- Conformal mapping and Riemann mapping theorem

DO NOT include the followings:

- Analytic continuation
- Picard Theorem, Montel theorem
- Special functions, e.g. Zeta function, Gamma functions.
- Riemann surface

EXAMPLE PROBLEMS

Problem 1. Find all values of $(1+2i)^i$ in a + bi form.

Problem 2. Sketch the image of Log z in the following domains.

- (1) the right half plane, Re z > 0
- (2) the half disk, |z| < 1, Rez > 0
- (3) the unit circle, |z| = 1
- (4) the horizontal line, y = e
- (5) the vertical line, x = e

Problem 3. Find all roots of the equation $\log z = i\pi/2$.

Problem 4. Find the radius of convergence of the power series expansion of $(z^2 - 1)/(z^3 - 1)$ at z = 2.

Problem 5. Show that $\sum \frac{z^k}{k^2}$ converges uniformly for |z| < 1. Show that $\sum \frac{z^k}{k}$ does not converge uniformly for |z| < 1.

Problem 6. Let f be an entire function such that, for all z, $|f(z)| = |\sin z|$. Prove that there is a contant c of modulus 1 such that $f(z) = C \sin z$.

Problem 7. Let f be an entire function such that $|f(z)| \leq A|z|$ for all z, where A is a positive constant. Show that $f(z) = a_1 z$, where a_1 is a complex constant.

Problem 8. Show that if z_0 is an isolated singularity of f(z), and if $(z - z_0)^N f(z)$ is bounded near z_0 , then z_0 is either removable or a pole of order at most N.

Problem 9. Determine the order of the pole at z = 0 for

$$\frac{z}{\sin z - z + z^3/3!}.$$

Problem 10. Show that $f(x,y) = x^2 - y^2 + 3xy + x + 2y$ is harmonic. Find a harmonic conjugate.

Problem 11. Show that f(z) has no singularities in the extended plane other than poles if and only if f(z) is a rational function.

Problem 12. Evaluate the following integrals.

(1)
$$\oint_{|z|=3} \frac{2z^2 - z - 2}{z - 2} dz$$
(2)

$$\oint_{|z-1|=2} \frac{dz}{z(z^2-4)e}$$

(3)
$$\int_{-\infty}^{\infty} \frac{\cos x}{1+x+x^2} dx$$

(4)
$$\int_{-\infty}^{\infty} \frac{x^2 + 1}{dx} dx$$

$$\int_0 \quad x^4 + 1^{dx}$$

(6)
$$\int_{0}^{2\pi} \frac{d\theta}{a+b\sin\theta}$$

$$\int_0^\infty \frac{x^{-a}}{1+x} dx$$

$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} \, dx$$

(7)

$$\int_0^{2\pi} \frac{\cos\theta}{5+4\cos\theta} \, d\theta$$

Problem 13. Show that $2z^5 + 6z - 1$ has one root in the interval 0 < x < 1 and four roots in the annulus $\{1 < |z| < 2\}$.

Problem 14. How many roots does $z^9 + z^5 - 8z^3 + 2z + 1$ have between the circles $\{|z| = 1\}$ and $\{|z| = 2\}$?

Problem 15. Let f(z) be a holomorphic function on a domain D. Prove that $f(\overline{z})$ is a holomorphic function on $\{\overline{z} : z \in D\}$.

Problem 16. Establish the identity

$$\int_{-\infty}^{\infty} e^{\alpha x^2} e^{i\beta x} \, dx = \sqrt{\frac{\pi}{\alpha}} e^{-\beta^2/4\alpha}$$

where α, β are real numbers with $\alpha > 0$.

Problem 17. Let $p(z) = a_0 + a_1 z + \cdots + a_n z^n$ be a polynomial of degree n.

- (1) Prove that for any M > 0, there exists a constant R > 0 such that |p(z)| > 0 $M \text{ on } \{z \in \mathbb{C} : |z| > R\}.$
- (2) Prove that if |p(z)| attains a local minimum at z_0 , then $|p(z_0)| = 0$.
- (3) Deduce the fundamental theorem of algebra, saying that p(z) has at least a zero in \mathbb{C} .

Problem 18. Let $f : \mathbb{R} \to \mathbb{C}$ be a continuous function with compact support. Show that if the Fourier transform of f,

$$\widehat{f}(\xi) = \int_{\mathbb{R}} e^{-ix\xi} f(x) \, dx$$

also has a compact support, then $f \equiv 0$. (Hint. Use the identity theorem)

Problem 19. Let f(z) be a nonconstant entire function. Show that $f(\mathbb{C})$ is dense in \mathbb{C} .

Problem 20. Let f(z) be a holomorphic function on \mathbb{C} . Show that if $Ref \geq 0$, then f is a constant.

Problem 21. Let f(z) be continuous on a domain D. Show f(z) is analytic in D, assuming that

- (1) f(z) is analytic except on a point $z_0 \in D$
- (2) f(z) is analytic except on a line segment C in D.

Problem 22. Show the equation $e^z = 3z^2$ has two roots inside the unit circle. Show that two roots are real.

Problem 23. Show that

$$\frac{1}{2\pi} \int_0^{2\pi} \log|a - e^{i\theta}| d\theta = \begin{cases} 0, & |a| \le 1\\ \log|a|, & |a| > 1 \end{cases}$$

Problem 24. Let $\{u_n(z)\}$ be a sequence of harmonic functions uniformly converging to u(z) on any compact subset of D. Show that u(z) is harmonic.

Problem 25. Suppose that f(z) is analytic in a neighborhood of z_0 . Show that f(z) has a zero of degree n at z_0 if and only if 1/f(z) has a pole of degree n at z_0 .

Problem 26. Show the Gamma function $\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$ is analytic on $\{Re \, z > 0\}$ by following steps. ($t^{z-1} = e^{(z-1)Log t}$)

- Show the integral ∫₀[∞] e^{-t}t^{z-1} dt converges absolutely for {Re z > 0}. Thus, Γ(z) is well-defined on {Re z > 0}.
 Show Γ_n(z) = ∫_{1/n}ⁿ e^{-t}t^{z-1} dt is analytic in {Re z > 0}.
- Show $\Gamma_n(z)$ converges uniformly to $\Gamma(z)$ on any compact subset of $\{Rez >$ 0]. Conclude that $\Gamma(z)$ is analytic on $\{Rez > 0\}$.

Problem 27. Suppose that f(z) is a meromorphic function in \mathbb{C} . Show that if |f(z)| is bounded for |z| > R for some R, then f(z) is a rational function.

Problem 28. Let $\{z_n\}$ be a convergent sequence in \mathbb{C} . Let f(z) be analytic in $D \subset \mathbb{C}$. Prove or disprove (by giving a counter example) that if f(z) vanishes at z_n , then $f(z) \equiv 0$ in D.

Problem 29. Let f(z) be an entire function. Assume that there exists R > 0 such that $|f(z)| \leq C|z|^n$ whenever |z| > R. Show that f(z) is a polynomial of at most degree n.

Problem 30. Show that

$$\prod_{n=1}^{\infty} \left(1 + \frac{1}{n^2} \right) = \frac{e^{\pi} - e^{-\pi}}{2\pi}$$

Problem 31. Show that $\prod_{n=1}^{\infty} (1+a_j)$ converges if and only if $\prod_{j=m}^{n} (1+a_j) \to 1$ as $m, n \to \infty$.

Problem 32. Let f(z) be analytic and satisfy $|f(z)| \le M$ for $|z - z_0| < R$. Show that if f(z) has a zero of order m at z_0 , then

$$|f(z) \le \frac{M}{R^m} |z - z_0|^m, \qquad |z - z_0| < R.$$

Show that equality holds at some point $z \neq z_0$ only when f(z) is a constant multiple of $(z - z_0)^m$.

Problem 33. Show that the conformal maps of the upper half-plane onto the open unit disk are of the form

$$f(z) = e^{i\phi} \frac{z-a}{z-\overline{a}}, \qquad Im \, a > 0, \ 0 \le \phi \le 2\pi.$$

Show that a and $e^{i\phi}$ are uniquely determined by the conformal map.

Problem 34. Show that any conformal self-map of the punctured complex plane $\{0 < |z| < \infty\}$ is either a multiplication $z \mapsto az$ or such multiplication followed by the inversion $z \mapsto 1/z$.