PRELIMENARY EXAM: LEBESGUE INTEGRALS

Scope of the subject
The exam will cover the following topics:

- Riemann integrals
- Measurable sets, σ-algebra, Borel sets.
- Measurable functions, Lebesgue integration
- Convergence theorems
- L^{p} spaces and related inequalities.
- Product measure and Fubini theorem on \mathbb{R}^{n}.
- Differentiation and integration e.g. Hardy-Littlewood maximal inequality, Lebesgue differentiation theorem, Fundamental theorem of calculus.
- Function of bounded variation and differentiability of functions on \mathbb{R}.

The exam will NOT include the following topics:

- Hahn-Banach theorem and its applications
- Baire category
- Weak topology
- Fourier transform

These topics will be included in Ph.D. qualifying exams.

Sample Problems

Problem 1.

(1) Let $\left\{E_{k}\right\} \subset \mathbb{R}^{d}$ be an decreasing sequence of measurable sets. (i.e. $E_{k} \subset$ $\left.E_{k-1}\right)$ Suppose $\lambda\left(E_{1}\right)<\infty$. Show that

$$
\lambda\left(\bigcap_{k=1}^{\infty} E_{k}\right)=\lim _{k \rightarrow \infty} \lambda\left(E_{k}\right) .
$$

Find an example of a decreasing sequence $\left\{E_{k}\right\}$ with $\lambda\left(E_{1}\right)=\infty$ that the equality does not hold.
(2) Let $\left\{B_{k}\right\}$ be a sequence of measurable sets. Show that if $\lambda\left(\bigcup_{k=1}^{\infty} B_{k}\right)<\infty$, then

$$
\limsup _{k} \lambda\left(B_{k}\right) \leq \lambda\left(\bigcap_{j=1}^{\infty} \bigcup_{k \geq j} B_{k}\right)
$$

Problem 2. Let X be a nonempty set. State the definition of σ-algebra of X. Let $\left\{\mathcal{F}_{t}\right\}_{t \in I}$ be a collection of σ-algebras of X. Show that $\bigcap_{t \in I} \mathcal{F}_{t}$ is a σ-algebra.

Problem 3. Let \mathcal{M} be a collection of subsets of \mathbb{R}^{d} satisfying $E \in \mathcal{M}$ if and only if for any $\epsilon>0$, there exists an open set $G \supset E$ and a closed set $F \subset E$ with $\lambda^{*}(E-F)+\lambda^{*}(G-E)<\epsilon$. Show that \mathcal{M} is a $\sigma-$ algebra.

Problem 4. Prove the following and state what convergence theorem you used.

- $\int_{0}^{1} \log \frac{1}{1-x} d x=\int_{0}^{1} \sum_{n=1}^{\infty} \frac{x^{n}}{n} d x=1$
- $\int_{0}^{\infty} \frac{\sin x}{e^{x}-1} d x=\sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-n x} \sin x d x=\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$

Problem 5. Let (X, \mathcal{M}, μ) be a finite measure space.(i.e $\mu(X)<\infty)$ Suppose that $\left\{f_{n}: X \rightarrow \mathbb{R}\right\}$ are integrable. Show that if $f_{n} \rightarrow f$ uniformly in X, then f is integrable and

$$
\lim _{n} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

Problem 6. Let A be a subset of $[0,1]$ which consists of all numbers which do not have the digit 5 appearing in the decimal expansion. Find its Lebesgue measure $\lambda(A)$.

Problem 7. Let (X, \mathcal{M}, μ) be a measure space where \mathcal{M} is a σ-algebra and μ : $\mathcal{M} \rightarrow[0, \infty]$ satisfying the countable additivity:

For disjoint $A_{k} \in \mathcal{M}, k=1,2, \cdots, \sum_{k=1}^{\infty} \mu\left(A_{k}\right)=\mu\left(\bigcup_{k=1}^{\infty} A_{k}\right)$.
Prove that
(1) If $\left\{A_{k} \in \mathcal{M}: k=1,2, \cdots\right\}$, then $\mu\left(\bigcup_{k=1}^{\infty} A_{k}\right) \leq \sum_{k=1}^{\infty} \mu\left(A_{k}\right)$.
(2) If $A_{k} \subset A_{k+1}$ for $k=1,2, \cdots$, then $\lim _{k \rightarrow \infty} \mu\left(A_{k}\right)=\mu\left(\bigcup_{k=1}^{\infty} A_{k}\right)$.

Problem 8. (1) Let $\left\{f_{k}: \mathbb{R}^{n} \rightarrow[-\infty, \infty]\right\}_{k=1}^{\infty}$ be a sequence of measurable functions. Assume the following:

- $\lim _{k \rightarrow \infty} f_{k}(x)$ exists a.e. in \mathbb{R}^{n}.
- There are nonnegative integrable functions $\left\{g_{k}\right\}_{k=1}^{\infty}$ such that

$$
\left|f_{k}(x)\right| \leq g_{k}(x) \text { a.e. and } \quad \lim _{k \rightarrow \infty} g_{k}(x)=g(x) \text { a.e. }
$$

- $g \in L^{1}$ and

$$
\int g d \lambda=\lim _{k \rightarrow \infty} \int g_{k} d \lambda
$$

Prove that

$$
\int \lim _{k \rightarrow \infty} f_{k} d \lambda=\lim _{k \rightarrow \infty} \int f_{k} d \lambda
$$

(2) Let $\left\{f_{k}\right\}_{k=1}^{\infty}, f \in L^{1}$ and $f_{k} \rightarrow f$ a.e.. Prove that $\lim _{k \rightarrow \infty} \int\left|f_{k}-f\right| d \lambda=0$ if and only if $\lim _{k \rightarrow \infty} \int\left|f_{k}\right| d \lambda=\int|f| d \lambda$.
(Hint: Use (1). You are allowed to use (1), even if you cannot prove it.)

Problem 9. Prove the following identity for $p, q>0$.

$$
\int_{0}^{1} \frac{x^{p-1}}{1+x^{q}} d x=\frac{1}{p}-\frac{1}{p+q}+\frac{1}{p+2 q}-\frac{1}{p+3 q}+\cdots
$$

(You need to justify the convergence.)
Problem 10. (1) Prove the Borel-Cantelli lemma, that is, if $\left\{A_{k}\right\}_{k=1}^{\infty}$ is a collection of measurable set with

$$
\sum_{k=1}^{\infty} \lambda\left(A_{k}\right)<\infty
$$

then $\lambda\left(\bigcap_{k=1}^{\infty} \bigcup_{j \geq k} A_{j}\right)=0$.
(2) Prove that the set of those $x \in \mathbb{R}$ such that there exist infinitely many fractions $\frac{p}{q}$, with relatively prime integers p and q such that

$$
\left|x-\frac{p}{q}\right| \leq \frac{1}{q^{3}}
$$

is a set of meausre zero.
Problem 11. Give an example of a sequence of measurable functions $\left\{f_{k}: \mathbb{R} \rightarrow\right.$ $\mathbb{R}\}_{k=1}^{\infty}$ satisfying

- $\int\left|f_{k}\right| d \lambda \leq M<\infty$ for some $M>0$,
- $\lim _{k \rightarrow \infty} f_{k}$ exists a.e.,
- $\lim _{k \rightarrow \infty} \int f_{k} d \lambda \neq \int \lim _{k \rightarrow \infty} f_{k} d \lambda$.

Problem 12. Let $\left\{f_{n}\right\}$ be a sequence of functions in $L^{p}, 1 \leq p<\infty$., which converge a.e. to $f \in L^{p}$. Show f_{n} converges to f in L^{p} if and only if $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$.

Problem 13. Let $E \in \mathbb{R}^{d}$ be measurable with $\lambda(E)<\infty$. Let \mathcal{F} be the collection of balls centered at each point $x \in E$. Then for any $\epsilon>0$, there exists a finite subcollection of balls $\left\{B_{1}, \cdots, B_{N}\right\}$, which are disjoint and there exist $F \subset E$ with $\lambda(E-F)<\epsilon$ and

$$
F \subset \bigcup_{j=1}^{N}(2+\epsilon) B_{j}
$$

(This is a variant of Vitali covering lemma. Please do not use it directly.)
Problem 14. (Scaling of inequality) We have learned the log-convexity inequality:

$$
\begin{equation*}
\|f\|_{r} \leq\|f\|_{p}^{\theta}\|f\|_{q}^{1-\theta}, \quad \text { where } \quad \frac{1}{r}=\theta \frac{1}{p}+(1-\theta) \frac{1}{q} . \tag{1}
\end{equation*}
$$

Show that if (1) is true for f with $\|f\|_{p}=1=\|f\|_{q}$, then (1) is true for any f. Moreover, show that the scaling condition is necessary.

Problem 15. (Rearrangement) Let f be measurable and nonnegative in \mathbb{R}^{d}.

- Show for $\infty>p \geq 1$,

$$
\begin{equation*}
\|f\|_{p}^{p}=\int_{0}^{\infty} p t^{p-1} \lambda(\{x: f(x)>t\}) d t \tag{2}
\end{equation*}
$$

(Hint: Fubini's theorem)

- Define a radial function $f^{*}(|x|)=\inf \{t: \lambda(\{x: f(x)>t\}) \leq|x|\}$. Show that

$$
\lambda(\{x: f(x)>t\})=\lambda\left(\left\{x: f^{*}(|x|)>t\right\}\right)
$$

and conclude that $\|f\|_{p}=\left\|f^{*}\right\|_{p}$.
Problem 16. Let $\left\{f_{n}\right\}, f \in L^{2}\left(\mathbb{R}^{d}\right)$. Suppose that $\int f_{n} g d x \rightarrow \int f g d x, \quad \forall g \in L^{2}$, and $\left\|f_{n}\right\|_{2} \rightarrow\|f\|_{2}$ as $n \rightarrow \infty$. Then f_{n} converges to f in L^{2} - norm.

Problem 17. Suppose that E is a Borel set in \mathbb{R}^{2}. Show for every y, the slice E_{y} is a Borel set in \mathbb{R}.

Problem 18. Let $1<p<\infty$ and $f \in L^{p}\left(\mathbb{R}^{d}\right)$.

- Prove a refined Hardy-Littlewood maximal theorem: There is $C>0$ such that

$$
\lambda(\{x: M f(x)>t\}) \leq \frac{C}{t} \int_{\{\mid f(x)>t / 2\}}|f(x)| d x .
$$

- Prove that $M f \in L^{p}$ with $\|M f\|_{p} \leq C\|f\|_{p}$ for some $C>0$. (You may use (2), if needed, without proof.)
Problem 19. Let $f \in L_{l o c}^{1}\left(\mathbb{R}^{d}\right)$ and ϕ_{t} is an approximation of identity. ${ }^{1}$ In a lecture, we have shown that for $f \in L^{p}, \phi_{t} * f$ converges to f in L^{p}. Prove that for $f \in L_{l o c}^{1}$, we have $\phi_{t} * f \rightarrow f$ almost everywhere.

Problem 20. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be integrable. Define $F(x)=\int_{a}^{x} f(y) d y$ and $G(x)=\int_{a}^{x} g(y) d y$.
(1) Show $F(x) G(x)$ is absolutely continuous.
(2) Show that $(F(x) G(x))^{\prime}=F(x) g(x)+f(x) G(x)$ a.e. and conclude that for $x \in[a, b]$,

$$
F(x) G(x)=\int_{a}^{x} F g+\int_{a}^{x} f G
$$

Problem 21. For any continuous increasing function $F:[a, b] \rightarrow \mathbb{R}$, we can decompose F into $F(x)=\int_{a}^{x} f(y) d y+h(x)$ where f is a nonnegative integrable function and $h(x)$ is continuous increasing function satisfying $h^{\prime}=0$ a.e. Show that this decomposition is unique.

[^0]We define a rescaled function $\phi_{t}(x)=\frac{1}{t^{d}} \phi\left(\frac{x}{t}\right)$.

Problem 22. Let $1 \leq p<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$. For given $g \in L^{q}(\mu)$, we define a linear functional $L(f)=\int f g d \mu$ for locally integrable function f. Show that $L: L^{p} \rightarrow \mathbb{R}$ is a bounded linear functional with $\|L\|=\|g\|_{q}$.

Problem 23. Let (X, \mathcal{M}, μ) be a measure space. Assume $1 \leq p<q \leq \infty$.
(1) For the Lebesgue measure space $\left(\mathbb{R}^{n}, \mathcal{L}, \lambda\right)$, find examples which are in L^{p} but not in L^{q}, and L^{q} but not in L^{p}.
(2) For a finite measure space, show that $L^{p} \subset L^{q}$.
(3) For $(\mathbb{Z}, \mathcal{P}, c)$, show that $L^{q} \subset L^{p}$.

Problem 24. Let $M f(x)$ be the Hardy-Littlewood maximal function for $f \in L_{l o c}^{1}$.
(1) Prove that for any measurable function f defined on \mathbb{R}^{n},
$\lambda(\{x \mid M f(x)>t\}) \leq \frac{C_{n}}{t} \int_{\{|f(x)|>t / 2\}}|f(x)| d x \quad$ for some constant C_{n}.
(2) Let $1<p<\infty$, and suppose $f \in L^{p}\left(\mathbb{R}^{n}\right)$. Prove that also $M f \in L^{p}\left(\mathbb{R}^{n}\right)$ and

$$
\|M f\|_{p} \leq D_{n}\|f\|_{p}, \quad \text { for some constant } D_{n}
$$

Problem 25. Find an example of function $f:[0,1] \rightarrow \mathbb{R}$, which is uniformly continuous but not absolutely continuous. Moreover, find an example f, which is absolutely continuous but not Lipschitz continuous. (You need to prove your examples satisfy the conditions.)

Problem 26. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a nonnegative measurable function. For $1 \leq p<$ ∞, show the followings are equivalent:
(1) $f \in L^{p}\left(\mathbb{R}^{n}\right)$,
(2)

$$
\sum_{k=-\infty}^{\infty} 2^{k p} \lambda\left(\left\{x \in \mathbb{R}^{n}: 2^{k} \leq f(x)<2^{k+1}\right\}\right)<\infty,
$$

(3)

$$
\sum_{k=-\infty}^{\infty} 2^{k p} \lambda\left(\left\{x \in \mathbb{R}^{n}: 2^{k} \leq f(x)\right\}\right)<\infty .
$$

Problem 27. Let $1 \leq p<q \leq \infty$. Prove that $L^{p}([0,1]) \subset L^{q}([0,1])$, while $l^{q} \subset l^{p}$. Here $l^{p}=L^{p}(\mathbb{Z}, \mathfrak{c})$ where \mathfrak{c} is a counting measure. Provide counterexamples disproving the opposite inclusions.

Problem 28. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of measurable functions on \mathbb{R}. Show that if $\left\{f_{n}\right\}$ converges to f in $L^{1}(\mathbb{R})$, then there is a subsequence $\left\{f_{n_{j}}\right\}$ converging to f almost everywhere.

Problem 29.

(1) Let $1 \leq p<q<r \leq \infty$. Show if $f(x) \in L^{p}\left(\mathbb{R}^{d}\right) \cap L^{r}\left(\mathbb{R}^{d}\right)$, then $f \in L^{q}\left(\mathbb{R}^{d}\right)$.
(2) Assume that $f(x) \in L^{2}\left(\mathbb{R}^{d}\right)$ and $|x|^{\frac{d+1}{2}} f(x) \in L^{2}\left(\mathbb{R}^{d}\right)$. Show that $f(x) \in$ $L^{1}\left(\mathbb{R}^{d}\right)$.

Problem 30. Let $W: \mathbb{R} \rightarrow \mathbb{R}$ be the function

$$
W(x):=\sum_{n=1}^{\infty} 4^{-n} \sin \left(16^{n} \pi x\right)
$$

$W(x)$ is well-defined as the series converges absolutely.
(1) Show that $W(x)$ is a bounded continuous function.
(2) Show that for any $x \in \mathbb{R}, W$ is not differentiable.
(Hint: Verify that for $j \in \mathbb{Z}, n \in \mathbb{Z}_{+},\left|W\left(\frac{j+\frac{1}{2}}{16^{n}}\right)-W\left(\frac{j-\frac{1}{2}}{16^{n}}\right)\right| \geq c 4^{-n}$ for some constant $c>0$.)

Problem 31. Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be integrable functions. For $1 \leq p<\infty$, prove the Young's inequality:

$$
\left(\int\left|\int f(x-y) g(y) d y\right|^{p} d x\right)^{1 / p} \leq\left(\int|f(x)|^{p} d x\right)^{1 / p} \int|g(x)| d x .
$$

Problem 32. For a given nonnegative measurable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$, we have defined its integral by

$$
\int f d \mu=\sup \left\{\int s d \mu: 0 \leq s \leq f \quad s \text { is simple }\right\} .
$$

Prove that if f and g are nonnegative measurable functions, then

$$
\int f d \mu+\int g d \mu=\int(f+g) d \mu
$$

Problem 33. Show that the class

$$
\mathcal{R}=\left\{A \subset[0,1]: \chi_{A} \text { is Riemann integrable }\right\}
$$

is an algebra. Moreover, show that \mathcal{R} is not a σ-algebra. Note that χ_{A} is the characteristic function, i.e. $\left(\chi_{A}(x)=\left\{\begin{array}{l}1, x \in A \\ 0, x \in A^{c}\end{array}\right)\right.$.
Problem 34. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be an integrable function. Show that for $\epsilon>0$, there exists $\delta>0$ so that

$$
\int_{A}|f(x)| d x<\epsilon \quad \text { whenever } \quad|A| \leq \delta .
$$

Problem 35. Recall the Hardy-Littlewood maximal function

$$
M f(x)=\sup _{0<r<\infty} \frac{1}{B(x, r)} \int_{B(x, r}|f(y)| d y
$$

Show that if $M f \in L^{1}$, then $f=0$.

[^0]: ${ }^{1}$ Consider a smooth function $\phi(x)$ satisfying

 - $\phi(x) \geq 0$,
 - $\phi \in C_{c}^{\infty}$ with $\operatorname{supp} \phi \subset B_{1}$,
 - $\int \phi(x) d x=1$.

