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CHAPTER 1
Introduction

1.1. Elements of Integrals

The main goal of this course is developing a ‘new’ integral theory. The development of the
integral in most introductory analysis courses is centered almost exclusively on the Riemann integral.
Riemann integral can be defined for some ‘good’ functions, for example, the spaces of functions which
are continuous except finitely many points. However, in this course, we need to define an integral
for a larger function class.

A typical integral consists of the following components:
The integrator

L
The set of integration (or the domain of integration)

The integrand
Roughly speaking, an integral is a summation of continuously changing object. Note the sign [
represent the elongated S, the initial of ‘sum’. It approximates

S max f@)Aal or Y min f(@)Aal

acl acl

where we decompose the set of integration A into disjoint sets, i.e., A = (J,c; Ao so that f is
almost constant on each A,. Here we denote |A,| as the size of the set A,. And max,ca, f(z) or

minge 4, f(z) are chosen for the representatives of function value in A,. Here we can naturally ask
QUESTION. How can we measure the size of a set?

For the Riemann integral, we only need to measure the size of intervals (or rectangles, cubes for
higher dimensions).

EXAMPLE 1.1. Let f be a R-valued function from [a, b] which is described in the next figure. First
we chop out [a,b] into small intervals [zg = a,z1], [x1,22], ---, [Tn—1,2Zn = b] and then we can
approximate the value of integral by

n

Z fli)|zi — 2l

i=1
The limit of this sum will be defined to be the value of the integral and it will be called the Riemann

integral. Here we use intervals to measure the size of sets in R.

Lone can replace max,c 4, by any representative value of f in Ay
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For the R?, we chop out the domain into small rectangles and use the area of the rectangles to

<
N
N

xT

measure the size of the sets.

For some ‘ugry’ functions (highly discontinuous functions), measuring size of intervals (or rectangles,
cubes for higher dimension) is not enough to define the integral. So we want to define the size of

the set for larger class of the good sets.

Then, on what class of subsets in R™ can we define the size of sets? From now on, we will call

‘the size’ of sets ‘the measure’ of sets. We want to define a measure function
m: M — [0, 00],

where M C P(R"), i.e., a subcollection of P(R™). Hence, our aim is finding a reasonable pair

(m, M) for our integration theory.

Can we define m for whole P(R™)? If it is not possible, at least, we want to construct a measure
on M appropriately so that M contains all of ‘good’ sets such as intervals (rectangles in higher
dimension), open sets, compact sets. Furthermore, we hope the extended measure function m to

agree with our intuition. To illustrate a few,

e m(z)=0
e m([a,b]) = b — a, or m(Rectangle) = |vertical side| X |horizontal side|
e If A C B, then m(A) < m(B).
e If A, B are disjoint, then m(AU B) = m(A) + m(B).
Furthermore, we expect countable additivity:
o If 4;, i=1,2,--- are disjoint, then Y =, m(A;) = m(U2, A4;).

In summary, in order to have a satisfactory integral theory we need to construct a measure
function defined in a large class of subsets in R™. In Chapter 2, we construct the Lebesgue measure

and proceed to its integral theory. Before then, we briefly review an ‘old’ theory, Riemann integrals.

1.2. A Quick review of Riemann integrals

Here we recall definitions and key theorems in Riemann integrals and observe some of its limi-
tation. I ask you look back your textbook of Analysis course to recall proofs. Later we will revisit

Riemann integrals in order to compare with Lebesgue integral after we develop Lebesgue theory. For
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simplicity, we will work on only R. (The case for higher dimension will be very similar.) Suppose
we have a bounded function f : [a,b] — R such that |f(z)] < M for all z € [a, b].

Define a partition p of [a,b] by p = {zo,z1, - ,Zpn:a =20 <21 < -+ < 2, = b}. We continue
to define the upper Riemann sum with respect to a partition p by

URS(f;p) :== max  f(x)|z; — xi-1]-

P x€[wi_1,T4]

The lower Riemann sum can be defined in a similar way by

T€[Ti—1,T4]

LRS(f;p) := Z 6[min f@)|zs — zi—1
i=1

By the definition, we can easily see that
~M(b—a) <LRS(f;p) < URS(f;p) < M(b—a)
for any partition p of [a,b]. We can also define a refinement partition p, of p if p. D p.

ExXAMPLE 1.2. Let p; and ps be partitions of [a,b]. Then p; U ps is also a partition of [a,b] and
moreover p; Ups is a refinement of p; and py. Note that the collection P of all partitions is partially

ordered by inclusion.

Note that
LRS(f;p) < LRS(f;p«) < URS(f;p.) < URS(f;p).
Observe that difference between URS and LRS is getting smaller as we refine a partition.

Now we may define the upper Riemann integral by

/bf(x)dx := inf URS(p; f).

pEP

Similarly, we can define the lower Riemann integral by

b
/ f(z)dx = sup LRS(p; f).

peP

/Lbf(x)dx < ff(x)dw

from definition. Finally, we say f is Riemann integrable if

Then we have

and moreover we define

/ab f(z)dx == £f(:v)d:v = ff(x)dw.

Theorem 1.1. If f : [a,b] — R is continuous then f is integrable on [a,b].



6 1. INTRODUCTION

PROOF. First, note that f is uniformly continuous on [a,b], i.e., for given ¢ > 0, we can choose §
such that |f(z) — f(y)| < € whenever |z —y| < 4.

Let p be a partition of [a, b] such that |z; — ;1| < 6. Then

URS(f;p)—LRS(f;p) = Z [ max f(z) — min f(x)} |xi—xi1| < Z€|117i—117z'—1| < e(b—a).

P r€[wi_1,%4] r€[xi1,24] )

By choosing e sufficiently small, we can make URS(f;p) — LRS(f;p) arbitrarily small. O

Corollary 1.2. If f : [a,b] = R is piecewise continuous, i.e., it is continuous except finitely many

points, then f is integrable on [a,b].

PROOF. To prove this theorem, we slightly modify the above proof. Let {y1,---,yn} be the set
of points of discontinuity. Even if we cannot shrink the size of the difference between max,er f ()
and minges f(x), we can still shrink the size of intervals in our partition which contains ¥, -- -,
Yn. Since our function is boundedE we can estimate the difference between URS and LRS on the

intervals around discontinuity
< 2M - (the length of intervals around discontinuity).

And we can choose the length of those intervals to be arbitrarily small. O

Corollary 1.3. If f : [a,b] — R is continuous except countably many points, then f is integrable

on [a,b].

PRrROOF. For the case when there are infinitely many points of discontinuity, we may use the
convergent infinite series > .- (e27%)/M. But you still have to be cautious about the fact that
there are infinitely many points of discontinuity but you have only finitely many intervals in your

partition. O
Exercise 1.1. Write the proof of Theorem 0.1, Corollary 0.2 and Corollary 0.3 in detail.

EXAMPLE 1.3 (A function which is not Riemann integrable). Define

. )1 ifreq
Joir(@) '_{ 0 ifze Qe

Then on any interval I C R,
rjrﬁlg;( fouw(x) =1 and I;lelIll fou(x) =0.

Hence fpji; is not Riemann integrable. Also, note that fp;, is nowhere continuous.

Theorem 1.4. Let f : [a,b] — R be bounded.

If f is monotonic, then f is Riemann integrable.

2Note that every piecewise continuous functions on the compact domain is bounded.
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PROOF. We may assume that f is nondecreasing. Let p = {xo, 21, ,z,} be a partition such that

|xi_xi71|:b;_av 7;:1527"'571

URS(f;p) — LRS(f;p) Z [ max  f(z) — min f(:v)} |z — 1| = Z fa) — f(xi—l)b ; ¢
i=1

P T€[Ti—1,2] r€[Ti—1,24]

by choosing n sufficiently large. 0

The last thing we want to mention is

Theorem 1.5 (Fundamental theorem of calculus). (1) Let f be a continuous R-valued function on

[a,b]. Then
0= [ f
is differentiable on (a,b) and moreover F' = fE
(2) Let f be a Riemann integrable R-valued function on [a,b]. Then
)= [ Fwiy

is continuous on [a,b]. Furthermore, if f is continuous at xo € (a,b), then F is differentiable at xo
and F'(xo) = f(xo).

PRrROOF. Exercise. O

REMARK 1.4 (Limitation of Riemann integrals). First of all, to be Riemann integrable, in ‘most’ of
small intervals max f — min f must be small enough. So, we can say that the Riemann integrability
depends on the continuity of functions. In fact, f is Riemann integrable if and only if f is continuous

‘almost everywhere’, where the term almost everywhere to be defined later.

Second, in Riemann integration theory, we only consider only intervals (rectangles or cubes for
higher dimensions) to decompose the domain of integration. So we needed to know how to measure
intervals. But for some functions, other type of decomposition would be natural. For example, if

we can define measures of the sets like Q or Q¢, then we can naturally define
1
/ fpir(z)dz :==1-1QN[0,1][+0-|Q°N[0,1]].
0

Finally, if we define a sequence {f, : [0,1] — R} of functions by

1 if x = p/q where p, ¢ € Z and q < n,
0 otherwise.

Then f,,’s are Riemann integrable since they are continuous except finitely many points. Moreover
fn — fpir as 1 — oo. But we have already seen that fp;, is not Riemann integrable. This example
shows us that even though all functions in the sequence is Riemann integrable, their limit can fail
to be Riemann integrable. Note that if a sequences of Riemann integrable functions { f,,} converge

uniformly to f, then f is also Riemann integrable. (Exercise)
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1.3. Jordan measure

We begin to construct a measure which agree with our intuition, such as length, area, or volume
for each dimension. First we consider very restricted class of sets, so called elementary sets(or special

polygouns in Jones's book).

The A will be constructed to satisfy the following properties.

e A(a,0)) = A(
e A(R) = cd = (the area of the rectangle),
e \(C) = efg = (the volume of the cube).

- <>

I=(a,b)eR R e R? CeR?

a, b)) = A([a, b)) = A([a,b]) = b — a = (the length of the interval),

—~

—~

DEFINITION 1.1. We say an interval is a subset of R of the form [a,b], (a,b],[a,)), or (a,b). We
define a measure of intervals by A (I) = b — a. In higher dimensions, we define a boz by a subset of

R" of the form B = I; x I3 x - -- x I, where I; are intervals. Then, we define a measure of boxes by
AB) =[] 1))
j=1

An elementary set is any subset of R” which is written as a finite union of boxes. B

P : an elementary set(or special polygon)

Then, the set of elementary sets in R™, denoted by &, form a Boolean algebra. In other words,
if E,F C R" are elementary sets, then EUF, ENF,and E\ F(={z € R":z € Eand x ¢ F})

are also elementary.(Exercise)

In order to define a measure on a elementary set, we need the following:

Lemma 1.6. Let E C R™ be an elementary set.

(1) E can be expressed as the finite union of disjoint bozes.

4n Jones’s book, boxes and elementary sets are referred as special rectangles and special polygons, respectively.
In their definition, they consider only closed boxes and closed elementary set. Then, in many statements in the

following, one has to change ’disjoint’ to 'nonoverlapping’ which means that two sets has disjoint interior.
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(2) If E is partitioned as a finite union By U Bs U --- U By of disjoint boxes, then then the
quantity Zle)\(Bi) is independent of the partition. We define the measure of E by

M(E) = i1 M(B)).

PROOF. (1) We first prove for 1 dimensional case. Given any finite collection of intervals Iy, - - - , I,
one can place the 2k end points in increasing order. We see that there exists a finite collection of
disjoint intervals Jy, - - - , Jg such that each of I1, - - - , I are a union of a sub collection of Jy, - -+, Ji.
For higher dimension, we express E as the union By, --- , By of boxes B; = I;; X - -+ X I;;,. For each
j =1,---,n, we use the one dimensional argument to express Ii;,---,I; as the union of sub
collections of Jy; - - -, Jk; ; of disjoint intervals. One can express By, - - , By as finite unions of boxes
Ji1 X oo, xJy,n, where 1 <i4; < k; forall1 <j<n.

(2) We use discretization argument. Observe that for any interval I, the length of I can be recovered

by the limiting formula

. 1 1
M) = lim —#(1 N0 Z),

where Z = {n/N : n € Z}. In higher dimension, for any box B, we see that

Mm=1m-i#wm%m)

N—oco N™
If F is a finite disjoint union of By, - - - , B, then
i 1 1 1 1
. . L ) L d 9 L L d
E) =3 Jim (B0 ) = i B0 2
In particular, A(E) is independent of decompositions of disjoint boxes. O

One can easily check fundamental properties: Let E, F, E;,j = 1,2,--- , k be elementary sets.
e \(@)=0
A({p}) =0

P1(monotonicity)

ECF = ME)<A(F)

(finite subadditivity)

MELU---UER) <A(E1)+ -+ X (Eg)
o P2(finite additivity) If E;, j =1,--- , k are disjoint, then
MELU---UER) =X(E1) 4+ -+ X (Eg).

(translation invariance)

ME+2z)=A(E)
So far, we have defined a measure function
A: € —[0,00],

which satisfies fundamental conditions. However, the set of elementary sets is too restricted. We
want to extend the measure function to a larger class of sets.

First, we discuss the Jordan measure, which associated to Riemann integrals.
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DEFINITION 1.2. Let E C R™ be a bounded set.
o Jordan inner measure

An(E) = sup  A(A)
ACE
A elementary

o Jordan outer measure

MU(E) = inf  A(B)
Belemcentary

o If \(y)(E) = X*U)(E), then we say that E is Jordan measurable, define X (E) by the

common number. We denote by 7, the collection of all Jordan measurable sets.

Note that we consider only bounded set so that Jordan outer measure to be defined. There is a
way to extend Jordan measurability to unbounded sets, as this is not our final destination, we will

not pursue this direction. One can observe elementary properties:

Lemma 1.7. Let E, F be Jordan measurable.

e FUF, E\F, ENF are Jordan measurable.

o MEUF) < \(E)+ \(F)

If E and F are disjoint, then A\(EUF) =X (E) + X\ (F).
IfECF, then A\(E) < A(F).

o £+ x is Jordan measurable and A (E + x) = A\ (E).

Exercise 1.2. Let E be a bounded set.

(1) Show that E and the closure E have the same Jordan outer measure.
(2) Show that E and the interior E° have the same Jordan inner measure.
(3) Show that E is Jordan integrable if and only if the topological boundary OF of E has Jordan

measure zZero.

EXAMPLE 1.5.

(1) [0,1]NQ and [0,1] N Q° are not Jordan measurable as the topological boundary is [0, 1].

(2) There are open sets that are not Jordan measurable. Let denote [0,1]NQ = {r, : n =
1,2,---}. Consider an open set E = U (r, — m,rn + 5agz). The Jordan inner
measure A,y (E) < e but The Jordan outer measure NU)(E) = 1. Indeed, if UX., I; D E,
then [0, 1]\ UN | I;, which is also a finite union of disjoint intervals, cannot contain any non
degenerate intervals by construction. Thus, A([0,1] — UY,I;) = 0 and so A(UX, [;) = 1.
Hence, A*(/) (E) = 1. Later, we will see that E is Lebesgue measurable. Then, by countable
additivity, one can show A(E) < e.

Similarly, considering [0, 1]\ E, one can show that there are compact set which are not

Jordan measurable.

(3) The above examples show that a countable union or a countable intersection of Jordan
measurable sets may not be Jordan measurable. For instance, consider a sequence of
elementary sets £, ={z € [0,1]: 2 =1 where p<n} or E.
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Theorem 1.8. (A connection to Riemann integral)

E is a Jordan measurable set in [a,b] if and only if the indicator function 1g is Riemann integrable.

PrOOF. Assume E is Jordan measurable. Fix € > 0. We can find elementary sets A, B such that
A C E C Band A(B\ A) < e.(Provel) Obviously, 14 < 1g < 1p and 14,1p are Riemann inte-
grable. Make a partition p consisting of end points of A, B. As A, B are elementary, URS(14,p) =
LRS(14,p) = AXA), URS(1p,p) = LRS(1p,p) = A(B). Then we have URS(1g,p) < URS(1p,p),
LRS(1g,p) > LRS(14,p) and so we conclude that URS(1g,p) — LRS(1g,p) < e.

Conversely, assume that 1g is Riemann integrable. For a fixed € > 0, we can find a partition p
such that Zi\il MaxXy,  <z<g; 1p(T) —ming, | <g<q, 1g(x)(z; — 2;-1) < e. Choose elementary sets
A C FE C B so that

B = Ui[Ii,1,$i], max 1E' =1on [Ii,1,$i]
A= Ui(xi,l,xi), min 1E' =1on [:171-,1,331-].

Then, we have \(B) — A\(A) <e. O



CHAPTER 2
Lebesgue measure on R”

2.1. Construction

We want to extend ‘measure’ to a larger class of sets. We will denote the Lebesgue measure
A M — [0, 00].
The A\ will be constructed to satisfy the following properties.

A(a, b)) A((a, b)) = AM[a, b)) = A([a,b]) = b — a = (the length of the interval),
AMR) =cd= (the area of the rectangle),
ACO) = = (the volume of the cube).

- <>

c

I=(a,b)eR R eR? CeR3

We shall give the definition in six stages, progressing to more and more complicated classes of
subsets of R™.

Stage 0 : The empty set. Define
A@) = 0.

Stage 1 : Special rectangles. In R", a special rectangle is a closed cube of the form
I = [al,bl] X - X [an,bn] C R™.
Note that each edge of a special rectangle is parallel to each axis. Define

MI) = (b1 —a1) -+ (b —an).

Stage 2 : Special Polygons. In R", a special polygon is a finite union of nonoverlapping special
rectangles. Here the word ‘nonoverlapping’ means having disjoint interiors, i.e., a special polygon
P is the set of the form

k
P = U I;,
j=1

where I;’s are nonoverlapping rectangles. Define
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P : a special polygon

One can naturally ask
QUESTION. Is A(P) well-defined?

For a given special polygon, there are several way of decomposition into special rectangles. Intu-
itively, it is an elementary but boring task to check the well-definedness. 1 leave it as an exercise.

Furthermore, on the way to check it one can also show

Proposition 2.1 (P1, P2). Let P; and P> be special polygons such that Py C Ps. Then A\(Py) <
A(Pz2). Moreover, if Py and Py are nonoverlapping each other, then \(Py U Py) = A(P1) + A\(P).

ExampPLE 2.1. In R, a special polygon is a finite union of nonoverlapping closed intervals. Write

n

P = U[ai,bi].

Then we can see that

Exercise 2.1. Prove the proposition 2.1.

Stage 3 : Open sets. Let G be a nonempty open set in R". Before we define Lebesgue measure
on open sets, we observe the characterization of open sets. For one dimensional case, the structure

of open sets is quite simple.

Proposition 2.2 (Problem 6 in the page 35 of the textbook). Every nonempty open subset G of

R can be expressed as a countable disjoint union of open intervals.

PRrROOF. For any z € G, define a, := inf{a € R: (a,2) C G} and b, := sup{b € R : (z,b) C G}.
Here we allow a, and b, to be +oo. Let © € I = (a,b) C G. Then I C I, = (ay,b,). Indeed,
(a,z) C G, (z,b) C G and hence a; < a and b < by). Thus, I C I,. So we can say that I, := (ag, by)

is the maximal interval in G containing .

It is evident that G C U, ¢ Iz On the other hand, for y € |J, ¢ I, there exists z € G such
that y € I, C G. Thus
G=J L.

zeG
Now we claim that | J,.q
exists z € I, N I,. Since I, is the maximal interval in G containing z and z € I, C G, we have

I, is a countable disjoint union. First, assume that I, NI, # @ then there

I, C I,. Similarly, we can see that I, C I, and hence we get I, = I,. With the same argument,
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we can see that I, = I,. Therefore, I, = I, or I, NI, = &, and so UmeG I, is a disjoint union.
Also, by picking a rational number from each I, since Q is countable, we can conclude that G is a

countable union of disjoint intervals. O

Note that the decomposition above is unique.(Exercise)

In higher dimension, we have a weaker version of the above proposition.

Proposition 2.3. Let G € R™ be open. Then G is expressed by a countable union of non overlapping

special rectangles.

PRrROOF. We use multi-index (§) := (j1,Jo2, - ,jn). We decompose R™ by special rectangles side of
which is of length 27*. For j; € Z, k € Z,, denote

Ck _[271’ on ]X X[2n7 on ]

For k € Z, we define inductively a index set I, = {(j) : C’,gj) C G, but C,ij) ¢ C’,g/) for any (j') €
I, k' < k}. Then, we claim that

G= [j U 2.
k=1 (el

”

For the proof, ” D ” is obvious. The other inclusion is followed from openness of G. Indeed, for

x € G, there is a shrinking sequence of {C,(Cj")} containing x. As there exist a e—neighborhood of
z, Be(z) C G, one of C’,gjk) C B.(z) C G. O

A(G) will be obtained by approximating the measure of polygons within G. Define
MG) :=sup{A(P) : P C G, P is a special polygon}.

Note that there exists at least one special polygon P C G with A(P) > 0, since G is nonempty. So,
AMG) > 0 for any nonempty open set G. Also, even though A(P) < oo for every P C G, A\(G) could

be co. For example, we have

AR"™) = sup{A\(P): P C R"}

> sup{A([—a1,a1] X -+ [—an,an)) s a1, ,a, € R}

n
= sup{Q"Hai:al,--- ,anER}.
=1

Since a; > 0 can be arbitrarily chosen, A(R™) = oco.

Here is the list of properties that A\ satisfies.
Proposition 2.4. Let G and Gi, k =1,2,---, be open sets and P be a special poligon. Then the
followings hold:

(01) 0 < A\(G) < 0. (02) \(G) =0 if and only if G = @.
(03) )\(Rn) = Q. (04) If G C GQ, then /\(Gl) < /\(GQ)
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(05) A <Loj Gk> < i)\(Gk)
k=1 fe=1l

(06) If Gy ’s are disjoint, then X (U Gk> = Z)\(Gk)

k=1 k=1

(O7) M(P) = A(P°).

ProOF. For O4, fix a special polygon P C G;. Since P is also a special polygon in Gs, by definition,
A(P) < A(G2). Hence A(G1) = sup{A\(P) : P C G, P is a special polygon} < A\(G2).

For O5, note that |J;—; G is open and hence A ({J;—; Gi) can be defined. Fix a special polygon
P c Ui~ G- For each z € P C | J,—, Gk, © € Gy(y) for some index i(z). Moreover, we can find e,
so that B(x, ;) C Gj(z). Note that

{B(z,e;/2) : x € P}
is an open covering of P. Since P is compact, there exists a finite subcovering
{B(zi,€z,/2):x; € P, i=1,--- ,N}.

Let € := min{e;,/2 : ¢ = 1,--- ,N}. For given x € P, x € B(x;,€,/2) for some ¢ and B(z,e) C
B(.’L‘i,emi) C G'L(z) C UZOZI G

Let P = U?il I;, where I;’s are nonoverlapping rectangles. We may assume that each I; has the
diameter] less than e. (We can divide I; into small rectangles whose diameter is less than e.) Let
x; be the center of I;. Then each I; C B(z;,€) C Gy for some k. Merge I;’s which belong to Gy, to

form a new special rectangle Q). Indeed, we can define
Q. := (the union of I;’s such that I; C Gy but I; ¢ G1,--- ,Gr—1)

Then each I; is contained in one of G, and P = Uzozl Q. In fact, P is a finite union of Qy’s.
Suppose Q = @ for every k > K. Then

ZQkS

Since P is chosen arbitrarily, by deﬁn1t1on,

A <fj Gk> < ix(ak)

k=1

Mw

AGr) Si
=1

>
Il

1

ISuch € is called the Lebesgue number and the existence of such Lebesgue number is referred as the Lebesgue

number lemma.
2In general, the diameter of a subset of a metric space is the least upper bound of the distances between pairs

of points in the subset.
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For 06, it suffices to show that

i)\(Gk) <A <[j Gk> .
k=1 k=1

Fix N and then fix special polygons Pj, ---, Py such that P, C Gg. Since G’s are disjoint, so are
Py’s. Note that Uivzl Py, is a special polygon in (i, Gi. So we have

S OAPE) = A (U Pk> <A <D Gk> .
k=1 k=1 k=1

Since P, ---, Py can be chosen arbitrarily,

N 00
Z)\(Gk)ﬁ/\< Gk)-
1

k=1

Since N is arbitrary, finally we have

For O7, let P be a special polygon and write P = Ujvzl I;, where I;’s are nonoverlapping
rectangles. First of all, it is obvious that A(P°) < A(P). To prove the other direction, fix ¢ > 0.
Then we can find a rectangle I such that [ C I? and A(I}) > A([;) — €. For example, if I; =
[agj),bgj)] X e X [ag),bg)], then we may take I; = [agj) -0, bgj) +0] X% [agj) — 6,09 + 6], where
0 < & < ¢€/(2n). Since J, I’ C P°, we get

Jj=17J
N N
A(P°) =D A1) =Y (AIk) — €= A(P) — Ne.
j=1 j=1
Since € is arbitrary, finally we obtain
A(P) < A(P°). O

Stage 4 : Compact sets. Let K € R™ be a compact set. The Heine-Borel theorem asserts that

a subset in a metric space is compact if and only if it is closed and bounded. Define
AMK) :=inf{\(G) : K C G, G is open}.

For a special polygon P, since it is also a compact set, we have two definitions of A (P), as a special
polygon and a compact set. We need to check two definitions coincide. Denote Apew(P) (resp.

Aold(P)) as a Lebesgue measure of P when we view P as a compact set (resp. a special rectangle).

Proposition 2.5. For any special rectangle P, Apew(P) = Aoa(P).

PROOF. First, let G be an open set such that P C G. Then, by definition, \oia(P) < A(G). So
Aold(P) <inf{A(G) : P C G, G is open} = Apew(P).

For the other direction, write G = Ujvzl I, where I;’s are nonoverlapping rectangles. Fix e > 0.

Then we may choose a closed rectangle IJ’», which is little bigger than I;, so that I; C IJ’»O and
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A(I}) < X(I;) + e Then P c UYL, I'° and we have

N N N
Anew(P) S MU TP ) <D NIP) <Y M) + Ne = Agua(P) + Ne.
j=1 j=1 j=1
Since ¢ is arbitrary, we can conclude that Ajew (P) < Aoia(P) and hence Ayew, (P) = Aola(P). O

Here is the list of properties that A\ satisfies.

Proposition 2.6. Let K, K1 and K3 be compact sets in R™. Then the followings hold:
(C1) 0 < A(K) < 0. (C2) If K1 C Ka, then A\(K1) < A(K32).
(C3) MK1UKs) < A(K7p)+ A (Ka).

(C4) If K1 and Kz are disjoint, then \(K1 U Ks) = A (K1) + A (K2).

PRrROOF. For C1, note that the equality sign in the right side is dropped because K is bounded.
For C2, let G be an open set containing K. Then Ky C G and A (K1) < A(G). So AM(K7) <
inf{\(G) : K» C G, G is open} = A\(K>).
For C3, let G; and G5 be open sets containing K1 and K» respectively. Then K1UKs C G1UGs.
Here K71 U K> is a compact set and G; UG> is an open set. So we have A(K1 UK3) < A (G; UG3) <
A(G1)+ A (G2). Since Gy and G2 can be arbitrarily chosen, we obtain A(K; UK3) < A (K1)+ A (K2).

For C4, it is enough to show that A (K1) + A (K2) < A(K3 U K3). Suppose that an open set
G such that K3 U Ky C G is given. Since K; and K, are disjoint open set, we may assume that
dist(K1, Ks) = ¢ > 0. Let Gy == G N(K1,e/2f] and G = G 1 N(Ka,¢/2). Then K, C Gi,
K5 C G5. Also, we can know that G; and G are disjoint. So we have

A(K) + A (K2) < A(G1) + A (G2) = A (G1UG2) < A(G).

Since G is an arbitrary open set containing K7 U Ko, it follows that A (K1) + A (K2) < MK U K>).
and hence A (K1) + A (K2) = MK U K»). O

. . N N . ,
REMARK 2.2. Iterating the above proposition, we have A (szl Kj) < Yim A (K, if Kj's are
compact sets. Eventually, we will have A (Uj’;l K j) < 22721 A(K;). However, at this moment,
U;’;l K do not have to be compact and so A (U;il Kj) does not make sense.
EXAMPLE 2.3 (Cantor ternary set). Let Gh = (1/3,2/3), Go = (1/32,2/3%) U (7/3%,8/3%), --- and

define Cy = [0,1] — G1, C3 = C1 — G2, C3 = C3 — G3, ---. Then the Cantor ternary set is defined
to be - -
C:=()Cr=[0,1- ] Gx.
k=1 k=1
0 1/3 2/3 1 =
0 1/3 2/3 1 Cs
0 1/3 2/3 1 Cs

3Here N(K71,€/2) denotes an e/2-neighborhood of K7, i.e., N(K1,¢/2) := {x € R" : |z —y| < ¢/2 for all k € K1}
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Thus C is compact. For each n, C,, = [0,1] — J;_; Gk. So A(C) < X(C,,) = (2/3)™ for every n and
hence A (C) = 0.

Now observe the relation between the Cantor set and its ternary expansion. Every z € [0, 1]
can be written

where a; = 0, 1 or 2. We call this representation of x its ternary exzpansion. To simplify the

notation, we express this equation symbolically in the form
r = 0.cha0a3 - - - .

The ternary expansion is unique except when a ternary expansion terminates, i.e., a; = 0 except

finitely many indices j. For example,

1 1 1 =2
stE=3tly

Jj=3

Theorem 2.7. Let z € [0,1]. Then x € C if and only if x has a ternary expansion consisting only
of 0’s and 2’s.

PROOF. Write z = Z;’;l 52. Observe that, for each k, if 2 € Cy, then ay # 1. Therefore, if z € C,
then a; # 1 for every j.

Conversely, assume by the contradiction that ¢ C. Then = € |J;—; Gx. In other words,
x € Gy, for some k. Now check the fact that

G; = xzzg—j €0,1):aj=1land x #0.---a;000---, 0.--- ;222 -
j=1
Then it follows the contradiction. O

Proposition 2.8 (Problem 23 in the page 42 of the textbook). C is uncountable.

PRrROOF. One of the ways to prove this claim is using a diagonal method in the ternary expansion. [

REMARK 2.4 (Hausdorff dimension of the Cantor set). The Cantor set stimulated a deeper study
on geometric properties on sets. Indeed, one can generalize the notion of dimension to real numbers.
It is called Hausdorff dimension and Hausdorff measure, which generalize a-dimensional Lebesgue
measure. See, for instance, [Fol|, [StSh], [Tao] for detail. For any F C R", we define the a-

dimensional Hausdorff outermeasure of E by

my,(E) := lim inf {Z(diaka)o‘ :E C | J Fi, diam F), < for all k} ,
k k=1

which satisfies the countable additivity when one restricted to a measurable class.
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In particular, if F is a closed set, it is known that there exists a unique « such that
oo iff<a

mE(E):{ 0 ifa<§. L

In this case, we say that E has Hausdorff dimension «. For instance, the Cantor set C' has Hausdorff
dimension logs 2 < 1.

Exercise 2.2. Verify that the Cantor set C has Hausdorff dimension logs 2 < 1. Construct a set
E C R? having Hausdorff dimension logs 5, logs 4. For any 0 < r < oo, find a set having Haudorff

measure r.

We proceed to define the Lebesgue mesure,

DEFINITION 2.1. Let A € R be an arbitrary set. Define

A*(A) =the outer measure of A :=inf{\(G): AC G, G is an open set}.

A« (A) =the inner measure of A :=sup{A(K): K C A, K is a compact set}.
For any open set G and compact set K such that K € A C G, A\(K) < A(G). It implies that
A«(A) < A*(A). Let G be an open set and K be a compact set. Then

A(G) = sup{\ (K) : K C G, K is a compact set}
> sup{A(P): P C G, P is a special polygon} = A\(G) = X\*(G).
So we have \*(G) = A (G) = A«(G). Also, we can obtain
A(K) =inf{\(G): K C G, G is an open set} = A(K) = M\ (K).

Proposition 2.9. Let A, A, k=1,---, and B be subsets in R™. Then the followings hold:
(*2) If A C B, then A\*(A) < X*(B) and A\(A) < \(B).

(*3) X" <U Ak> < Z)\* (Ag). (*4) If Ay ’s are disjoint, then A, (U Ak> > Z)\
k=1 k=1

k=1

PRrROOF. For *3, fix € > 0. Then there exists open set G} such that Ay C Gy and A (Gy) <
N (Ag) + €27, So we have

<UAk><A<UGk><ZA (Gr) < Z *(Ag) +e27F Z/\*Ak

k=1
Since € can be chosen arbitrarily, we have A\* (Up—; Ax) < Y peq A (Ag).

For *4, fix N. For j=1,--- ,N, let K; C A; be the compact sets. Then

(O] o () 4 (0 - S
k=1 k=1 k=1 k=1

Since K can be chosen arbitrarily, we have A, (U, Ax) > Zivzl A«(Ag). Also, since N is arbitrary,
we can obtain Ay (Upey Ak) > > ey A(Ag). O

4n fact, there exists such unique « if E is a Borel set, i.e., E is contained in the smallest o-algebra containing

all open set. We will see the definition of o-algebra soon or later.
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Stage 5 : Sets having finite outer meausure.
DEFINITION 2.2. Let A € R™ with A\*(A4) < co. Define
Lo:={AcR": \(A) = \"(4) < o0},
that is, Lo is the class of measurable sets with finite measure. For A € Ly, define A(A) := A\, (4) =
A*(A).
Any open sets and compact sets with finite measure are contained in L.

REMARK 2.5. Readers should understand why we have to confine to finite measure sets when we
check measurability. Measurability is a local property. If we have a non-measurable set, by putting
together countable translated copy of that, one can construct a set A with A\*(A4) = A (A) = oo.
If not finite, the measurability condition is essentially void. We will see non-measurable sets such
that A*(A4) = M\ (A) = 0.

Lemma 2.10. If A, B € Ly are disjoint, then AU B € Ly and A\(AU B) = A(4) + \(B).

PRrROOF. First, note that A*(AU B) > A.(AU B). On the other hand,
A (AUB) <X (A)+ X (B) = AMA) + AM(B) = A\(A) + M(B) < A (AUB).

So all the terms in the above must be equal. In particular, we have AU B € Ly and A\(AU B) =
AA) + A(B). O

Theorem 2.11 (Approximation lemma for Lo). Suppose that A € R™ with \*(A) < co. Then
A € Ly if and only if there exist a compact set K and an open set G such that \(G\ K) < € for
each € > 0.

PROOF. First, assume that A € Ly. By definition of A* and \,, for each ¢ > 0 there exist a
compact set K and an open set G such that A(K) > A (4) — €/2 and A\(G) < A\*(A4) + €¢/2. Then
MG\ K)=XMG) - MK) <e

Conversely, fix € > 0. Let K and G be a compact set and an open set such that A\(G\ K) < ¢

for each € > 0. Then we have
A(A) S AMG)=MEK)+ MG\ K) < MK)+e< A(A) +e.

Since € is arbitrary, we have A\*(A4) < A.(A). O

Corollary 2.12. If A, B € Ly, then AUB, ANB, A\ B € Ly.

PRrOOF. Fix € > 0. Let K7 and Gy (resp. K5 and G2) be a compact set and an open set such that
Ky CACG; and /\(Gl \Kl) < 6/2 (resp. Ki C AC Gy and /\(GQ \KQ) < 6/2) Then K3 \GQ is
compact and Gy \ K> is open. Moreover, K1 \ Go C A\ B C G; \ K> and

(G1\ K2) \ (K1\ G2) C (G1\ K1) U (G2 \ K2).
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[] (Gi\E)U(G2\K2)

F (Gi\ K2)\ (K1 )\ G2)

So we have
A(GL\ K2) \ (K1 \ G2)) S A((G1\ K1) U (G2 \ K2)) <
Therefore A\ B € L.
Also, by lemma 2.9, we can conclude that ANB = A\ (A\ B) € Ly and (A\B)UB € Ly. O

Theorem 2.13 (Countable subadditivity). Suppose that Ay € Lo for k =1, 2, ---. Let A :=
Ui Ak, and assume X\*(A) < co. Then A € Ly and

AA) < 3 A4,
k=1

In addition, if the Ay’s are disjoint, then

PROOF. Assume that Ay’s are disjoint. Then we have
A(A) DTN (AR) <A (AR) S A(A) S A (A).
k=1 k=1

So all the terms in the above must be equal. In particular, we get A(A) = Y72 | AM(Ag).
For the general case, let By := Ay, -+, By :== A — (A1 U---U Ag_1), ---. Then By’s are

disjoint sets in £y and moreover | J;—, Bx = A. So we have

MA) =D AB) < D A(Aw),
k=1 k=1
since By C Ay, for each k. O

Stage 6 : Arbitrary measurable sets.

DEFINITION 2.3. Let A € R™. We call A measurable if for all M € Ly, ANM € Ly. In case A is

measurable, the Lebesgue measure of A is
AA) :=sup{A\(ANM): M e Ly}
Moreover, we denote £ by the class of all measurable sets A € R"™.

REMARK 2.6. One can later show by a property of £ (M2) that A € £ if and only if AN Br € L
for any ball Bg.

Of course, we have to check the consistency of this definition. In other words, we will show
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Proposition 2.14. Let A € R™ with \*(A) < co. Then A € Lq if and only if A € L. Moreover,
the definition of A(A) in Stage 5 and 6 produce the same number.

PRrROOF. Suppose that A € Ly. For arbitrary M € Lo, ANM € Ly. Thus A € L. Conversely,
assume that A € L. Let By, := B(0,k) for k € Z. Then, by definition, Ay := AN By € Ly for each
k. By countable additivity, A = (J,—; Ak € Lo.

To show the consistency of the definition of the measure, assume A € £ and let A(A) (resp.
A(A)) stands for the measure of A which we have defined in Stage 5 (resp. Stage 6). Then we can
see that

MA) :=sup{AMANM): M € Lo} > A(AN A) = \(A).

Also, since ANM C A for each M € Lo, (AN M) < MA) for each M € Ly and we can conclude
that A(A) < A(A). In conclusion, we have A(4) = A(A). O
2.2. Properties of Lebesgue measure

Proposition 2.15. Let A, B and Ay, k = 1, 2, --- be measurable sets(€ L) in R™. Then the
followings hold:

(M1) Ac e L.

(M2) A := GAk,B:: ﬁAkelj.
k=1 k=1

(M3) A\ B € L.

M4) A (UpZy Ar) < 3520 A (A)-

If Ap’s are disjoint, then X (Ugey Ak) = D peq A (Ag).

(M5) IfAl C Ay C Ag (@RELP then A (U;Oﬂ Ak) = limg_, o )\(Ak)

(M6) If Ay D Ay D -+ and A (A1) < oo ,then A((Nreq Ak) = limg—y00 A (Ag).

PROOF.

M1 Note that AN M =M\ A=M\(ANM) € Ly for any M € L.

M2 Let M € Ly be given. Note that AU M = [J;—,(Ax U M). Since Ay, N M € Ly for each k
and A*(AN M) < AMM) < oo, Countable additivity of Ly implies that AU M € Ly. Since M is
arbitrary, we can conclude that A € £. Proof for B is similar.

M3 Since A\ B = AN B¢, the statement M3 directly follows form M1 and M2.

M4 For given M € Lo, we have A (Upeq Ae N M) < 302 A(AxNM) < 3272, A(Ag). Since
M € Ly is arbitrary, A (Upe; Ak) <> peq A (Ag)-

If Ay’s are disjoint, fix N € Z,. Furthermore, fix M;,---, My € Ly. Denote M = Uivzl M.
Then, we have A(A) > AN(ANM) = ngvzl AMANM) > A (Uszl AN Mk) from the countable
additivity of Lo. Since My,---, My are arbitrary, we have A (4) > Zszl A(Ag). Finally, as N is
arbitrary, we conclude that A (4) = Y72 | A (Ax).
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M5 Express [J;- ; Ay as a disjoint union A; |JJreo(Ak \ Ag—1). Then, apply M4:

A ([j Ak) :)\(Al)‘Fi/\(Ak\Akfl)

k=1 k=2
N
= lim <A1 © HQ(Ak \Ak1)>
= M (Aw)

M6 Similar to the proof of textbgM5 Note that one has to use A (A1) < oco. O
Proposition 2.16 (M7). All open sets and closed sets are contained in L.

PROOF. Any open set G is a countable union of GN B(0,i) € Ly for i = 1,2,---. Then use M4. A

closed set is a complement of open set and so in £ by M2.
O

Proposition 2.17 (M8). Let A € R™. If \X*(A) =0, then A € L.

Proposition 2.18 (Approximation property, M9). Let A € R"™. The followings are equivalent.

(1) A is measurable
(2) For every € > 0 there exists an open set G such that

ACG and N(G\A) <e.
(3) For every € > 0 there exists a closed set F' such that
FcA and N(A\F)<e.

Proor. (1)=(2)
Decompose A into Ay, = AN B(k,k —1) where B(k,k—1)={z € R" : k— 1 < |z| < k}. For each
k, find open sets G} such that Gy, D Ay with A (G \ Ax) < €/2%. Then G = U, Gk is a desired
open set satisfying A (G \ A) < epsilon.
(2)= (1)
For each k € Z, find an open set G, D A such that A (G \ A) < 1/k. By M6, A (Ny—, Gx \ A) =0
and so (=, Gk \ A € L. Hence, A € L.
(1) < (3)
Use M2 and the previous steps.

O

REMARK 2.7. Indeed, in some other textbooks ([StSh|, [Tad]), it is used for the definition of
Lebesgue measurability. Note that For A € £, we can express A = (), Gx UN = Uz~ Fr U N,
where G’s are open, F} are closed and N, N are measure zero sets.
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Proposition 2.19 (M10). If A € L, then A(A) = A (4) = X\*(A).

PrOOF. We have already see that this statement is true when A € Ly. In case of \*(A) = oo,
suppose that A(A) = ¢ < co. Then, by M9, there exist a closed set F' and an open set G such that
FCACGand \M(G—F) <e. Wehave A\(G) < MG — F) + AMA) < e+ C < oo which yields the
contradiction. So we may assume that A(A) = co. Since AN B(0,k) € Ly, by M5,

oo = lim A(ANB(0,k)) = lim A\(ANB(0,k)) <A (A4)
k—o0 k— o0
and therefore A\, (A4) = oco. O

Proposition 2.20 (M11). If AC B and B € L, then \*(A) + A\ (B \ 4) = A(B).

PRrROOF. Fix an open set G D A. Then

MG) + A (B\ A) > A(BNG) +A(B\ A)
ABNG)+M\(B\G)
AMBNG)+ AB\G)=\B).
Since G is arbitrary, \*(A4) + A(B \ G) > A(B).

Now fix a compact set K C B\ A. Then A C B\ K and
A (A) + A(K) < M (B\ K) + A(K)
= ANB\ K) + A\ (K) = X(B).

Since K can be arbitrarily chosen, A*(A4) + A.(B\ A) < A(B). O

>
2>

Proposition 2.21 (Carathéodory condition, M12). Let A € R™. Then A € L if and only if
AN(E)=X(ENA)+ X(EnNAS).

PROOF. Suppose that A € L. Fix an open set G D E. Then
MG) = AGNA) +ANGNAS) > N(ENA) + X (BN A°).

Since G is arbitrary, \*(E) > M*(E N A) + \*(E N A°). But we already have \*(E) < A\*(EN A) +
A*(E N A¢) from proposition 2.8, *3.

Conversely, let M € Ly. If we choose E = M, then from the hypothesis we have
AM) =N (MNA)+ X (Mn A°).
Also, by M11, we get
AMM) =X (MNAS)+ A(M\ (M NA)) =X (MNA®) + N\ (MNA).
Comparing these two identities and using the fact that M € Ly, we have
ANM(MNA) = M(MNA) <o

and thus M N A € Ly. Since M is arbitrary, we can conclude that A € L. 0
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REMARK 2.8. The above proposition gives another definition of measurable set. Several other texts
([Fol], [Roy]) use the Carathéodory condition as the definition of measurability.

2.3. Miscellany

2.3.1. Symmetries of Lebesgue measure.

The Lebesgue measure in R™ enjoys a number of symmetries. Firstly, it is translation-invariant.
For a measurable set F and v € R", E4+v = {z+v : « € E} is also measurable and A (E + v) = A (E).
This invariance inherited from the special case when FE is a cube and a special polygon. For general
sets, since the Lebesgue measure is defined as an approximation of measures of special polygons, it
hold true for all measurable set. By the same reason, (and more complicated and tedious proof), one
can check the Lebesgue measure is invariant under rotation, reflection, and furthermore, relatively

dialation-invariant. In general, we can summarize as follows:

Theorem 2.22. Let T be an n x n matriz and A C R™. Then
A (TA) = |detT| A" (4), and M (TA)=|detT| .(A).
In particular, if A € L, then TA € L and
ANTA) = |det T| A(A).

See [Jon| Chapter 3 for detail.

2.3.2. Non-measurable set.

We show the existence of non-measurable sets in R™. The proof is highly nonconstructive, that

relies on the Aziom of Choice.

Theorem 2.23. There exists a set E C R™ such that E is not measurable. (i.e. L C P(R"™) )

Proor. We will use the translation invariance. For given x € R", consider the translate z + Q™ =
{z 4+ r:r € Q"}. Crucially, we observe that either

z+Q"=y+Q" or (z+Q")N(y+Q") =2.

This means that R™ is covered disjointly by the translates if Q™. Now, we invoke the Axiom of Choice
to collect exactly one element from each translate of Q™. Let denote E is the set of collection. Then

we have a representation

R = | (x4 Q).
zeE
For another representation, we denote Q™ = {ry,r9,---}. Then
R" = U (Ti + E)
i=1

Since A (r; + E) = A (E), we conclude that A*(E) > 0. Decomposing R™ into non-overlapping cubes
I; with sides of length 1, i.e., R" = U;’il I;, we see at least one of XN I;’s has positive measure.
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We call it E. Then,
U r+Ec+B(01).
reQrnB(0,1)
If E were measurable, due to the countable additivity and the translation invariance of measure, the
left-hand side is equal to > A (E), while A (I; + B(0,1)) < 3", which leads contradiction.
a

countable

Corollary 2.24. If A € R" is measurable and X (A) > 0, then there exists B C A such that B is
not measurable.

PROOF. Proceed similarly to the previous one with

A=J@ri+E)NA. O

i=1

Using the corollary, one can easily construct a non-measurable set with A*(A4) = \.(A) = cc.

2.3.3. The Lebesgue function.

Recall the construction of Cantor set. At each step, we remove a third intermediate open
interval from each closed intervals. Here, G, a removing open set at k-th step, is the union of
disjoint open intervals of length 37% and the number of intervals is 2°=1. Then the leftover C} is
the finite disjoint union of closed intervals of length 37%. C} = [0,1] — U§:1 G; and then the Cantor
set C' = \>1 Ck. Now we will denote G, = |, Jr, where J,. is the m-th interval in G}, from the
left with r = 241 1y = 0,1,---,2%=1 — 1. Then,

ok
Uei=Us
j=1 T

with r = 2’;,;"1 for 0 < r < 1. The union is disjoint. We define a function
FJai =101
j=1

so that for each « € J,., f(x) =r. f is constant on each J,.. One can check that f is nondecreasing.
Claim: f is uniformly continuous on its domain.

For a proof, pick z,y € G = Uj’;l G; with |z —y| < 37%. We look at the decomposition of
[0,1] = Cx UG U---UGy. Since Cy and G;,j < k are the union of disjoint intervals of length

> 3% x,y are contained in the same interval or adjacent intervals. Either case,

In general, one can extend a function f to the closure of domain G. If f is uniformly continuous
function, the extended function f: G — [0, 1] is also uniformly continuous. Since fis constant on G,
it is differentiable with f/ = 0 except a measure zero set(=Cantor set). However, the Fundamental
Theorem of Calculus fails:

1= (1) - F0) £ / F(s)ds = 0.



2.3. MISCELLANY 27

In Chapter 4, we will revisit to this example when we investigate the condition on f to hold the

Fundamental Theorem of Calculus.



CHAPTER 3
Integration

3.1. algebras and o-algebra

So far we have constructed (R™, £, \), where X\ is the Lebesgue measure
A: L —[0,00].
Recall that £ has properties :

(i) o eL,
(ii) If A € L, then A° € L,
(iii) If Ay € L for k=1, 2, -+, then i, Ak € L.
And from these properties, we can deduce also that (,—; Ax € £ and R" € L.

DEFINITION 3.1 (Algebra and o-algebra). Denote the power set of X as 2% or P(X). Then
M C P(X) is called algebra if M satisfies

(i) @ e M,
(ii) If A € M, then A° € M,
(iii) If A, B € M, then AUB € M.
If an algebra M satisfies the property :
(ii") f Ay € Lfor k=1, 2, -, then Ul?;l A € M,

then we call M a g-algebra.

EXAMPLE 3.1. L is a o-algebra. The power set P(X) itself is a o-algebra. Also, {@, X} forms a

o-algebra.

Proposition 3.1. Suppose that M; is a o-algebra for all i € . Then M = (\,c.z M; is also a

o-algebra.

PROOF. First of all, since @ € M; for all i € Z, & € M. Moreover, if A € M, then A € M; for all
i €Z. So A° € M, for all i € 7 and hence A° € M. Finally, if A, € M for k=1, 2, ---, then, for
each k, Ap € M, for alli € Z. So U,;“;l A € M, for all i € Z and therefore we can conclude that
Ure, Ak € M. a

Now let N € P(X), i.e., N is a collection of subsets of X. Then we can define

oN) = [ M,

MeX

28
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where ¥ is the collection of all o-algebras which contain A'. Then from the above proposition, o(/N')
is a o-algebra. We say o(N) the o-algebra generated by N. Indeed, o(N) is the smallest o-algebra
containing N.

DEFINITION 3.2 (Borel o-algebra). Define by B, (or simply we denote B) the smallest o-algebra
containing all open sets in R™. B is called the Borel o-algebra. Each element of B is called a Borel

set.

Since £ contains all open sets in R™, we have B C £. Indeed, we will see that B C £ C P(X).
In particular, closed sets are Borel sets, and so are all countable unions of closed sets and all
countable intersection of open sets. These last two are called F,’s and Gs’s respectively, and plays
a considerable rolel] With this notation, we can also define Fi 5, Gso505 € B and so onﬁ

DEFINITION 3.3. A set A € £ with A(4) = 0 is called a null set.

Theorem 3.2. Let A€ L. Then A= FEUN, where N is a null set, E is a F, set, and N and E

are disjoint.

PROOF. See Remark 271 For any k € N, there exists a closed set Fj, such that F, C A and
AA\ Fy) < 4. Let E=p2; Fi. Then E is a F, set and A\(4\ E) = 0. O

Theorem 3.3. Let E be a Borel set in R™. Suppose that a function f: E — R™ is continuous. If
A is a Borel set in R™, then f~(A) is a Borel set.

PRrOOF. Define
M:={A:AcR™and f~'(A) € B,}.
We want to show M is a g-algebra containing all open sets.

o f71(2) = 2. Hence @ € M.
e Suppose A, € M, k=1,2,---. Then f~Y(A;) € B, for k=1,2, ---. Now

1 (G Ak> = [j (A € B,.
k=1 k=1

Therefore, |J;—, Ar € M.
e Suppose A € M. Then f~1(A) € B,,. Now

FTHA) = fTHR™)\ fTH(A) = E ~ f7H(A) € By,
Thus A° € M.
To show that M contains open sets, we use the continuity of f. By definition, if G is open, then,
f7YG) is open in E, i.e., f71(G) = EUH for some open set H in R™. So, f~}(G) € B,,. It implies
that G € M. So all the open sets are contained in M. Finally, we have B, C M, which completes
the proof. O

IThe notation is due to Hausdorff. The letters F and G were used for closed and open sets (Fermé and Gebeit),
respectively, and o refers to union (Summe), ¢ to intersection (Durchschnitt).

2For example, F,s is the countable intersection of Fy’s.



30 3. INTEGRATION

Theorem 3.4. BC L

PROOF. Let C be a Cantor set on [0,1]. Let f be a Lebesgue function on C. We define g(z) :=
f(z) +x for 0 < z < 1. Then g is strictly increasing, continuous, and g(0) = 0, g(1) = 1. Thus
g : [0,1] = [0,2] becomes a homeomorphism. For = € J,, g(z) = = + r. Hence g(J,) is an open
interval of length A(J,), i.e., A(g(J;-)) = A(J;). Now we have

AMg(C)) = A ([o, 2]\ Ugur)) =10

Since g(C) has positive measure, there exists a nonmeasurable set B C g(C). Let A :== g~ *(B).
Then A C C, and hence A*(A) < A(C) = 0. Therefore, A € L. If A € B, g(A) = B € B. However,
B is not even measurable. Finally, we can conclude that A € £ but A & B. 0

Now, we can generalize the Lebesgue measure on R"™ to a general measure on a set X.
DEFINITION 3.4. A measure space is a triple of (X, M, ) as the following:

e X is a nonempty set.
e M C P(X) is a o-algebra on X
o 1 : M — [0,00] is a function satisfying u(2) = 0 and

if Ay, Ag, .-+, € M are disjoint, then ,u(U Ag) = Z,u(Ak).
k=1

A measure space (X, M, p)(or simply denoted by X or (X,m)) is said to be finite if p(X) < co. If
X =2, X; with pu(X;) < oo, then we say X is o- finite.

REMARK 3.2. One check that fundamental properties of measures such as the monotonicity, M4,
M5, M6.

EXAMPLE 3.3.

1

(1) Lebesgue measure space (R™, L, \).
(2) Borel measure space (R, B, \).
(3)
(4)

3) (2", P(Z™),¢) where ¢ is the counting measure.
4 D1rac delta measure (X, M, d,) where p is a point of X. For A € M,

1, ped
0, p¢A

We will revisit the general measure theory later in this chapter.

3.2. Measurable Functions

We turn our attention to integrand functions. In order to define a integral, we restrict a natural
class of functions on which the integral is well-defined and satisfies fine properties.

We consider the extended real line [—00, 00] and a function defined on X:

f:X = [—o0,00].
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Let M be a g-algebra on X. We say f is M-measurable if f~([—o0,t]) € M, ie., {z € X :
f(z) <t} e M, for all t € [—00,00]. If X = R"™, we naturally consider £-measurable functions or
B-measurable functions. In short, we say it is a measurable function if f is £L-measurable and f is

a Borel function if it is B-measurable.

Proposition 3.5. Let M be a o-algebra of a space X. Let f be an extended real-valued function

on X. Then the followings are equivalent.

(i) f is M-measurable.

PRrROOF. Observe that

F ot = |J £ (=00 ).
r:r;t>i(§nal

So (i) implies (ii). And similar observations leads us to the conclusion that statements (i) to (iv)

imply each other.
(v) implies (i) trivially. It remains to show that (i) implies (v). First, (i) implies that f~*({—oc}) €
M. And (iii), which is equivalent to (i), implies f~1({c0}) € M. Now, define
S={EcR: fE)ec M}
You can easily check that S is a g-algebra. If G is a open set in R, then we can write G = Uj’;l 1;,
where I; = (a,b) = [—00,b) U (a,00]. Note that f~*(I;) C M for each j. So, I; € S for all j and
thus G € S. Hence, B C S and for any E € B, f~1(E) € M. O

Proposition 3.6. Let f, g: X — R be M-measurable functions.
(MF 1) If ¢ : R — R is Borel measurable, then ¢ o f is M-measurable.
(MF 2) If f #0, % is M-measurable.
(MF 3) For 0 <p < oo, |f|P is M-measurable.
(MF 4) f + g is M-measurable.
(MF 5) fg is M-measurable.
(MF 6) Suppose that fr, : X — [—o0,00] is measurable for all k € N. Then the following

functions are M-measurable.

sup fx, inf fr, limsup fx, lminf f, lm fx (if it exists).
k k k—s00 k—o0 k— o0

ProOF. MF 4 Fix t € R. f(z) + g(x) < t if and only if there is a rational number r such that
f(z) <r <t—g(z) . Therefore,

{z: f@)+g(@) <t} =] F((—o0,m) Ng~ ((—00,t = 1)).
reQ
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For MF 5, write fg = £((f + 9)* — f? — ¢*) and use MF 3.
Others are left as exercise. O

DEFINITION 3.5. Define

1. 1, z€A,
XAZ2ATY 0 2 A

We call x4 a characteristic function (or indicator function). Note that A € M if and only if x4 is
M-measurable.

A M-measurable simple function s : X — [—00, o0] is any function which can be expressed in

m
s = g OEX Ay
k=1

for some m € N and a € R, where Ay’s are disjoint M-measurable functions.

REMARK 3.4. The notion of simple function is more general than step function, which is written by

m
8= E CkX Ry
k=1

where Ry’s are nonoverlapping rectangles.

EXAMPLE 3.5. Let A=QnN|[0,1] and B = [0,1]\ A. Then both fpir = x4 and xp are characteristic

function.

For an extended real valued function f from X, there is a way to write f as the difference of two

nonnegative functions. First, define

IN IV
o o

" and f_(x)= {
Then f= fy — f_ and f4, f- > 0.

Theorem 3.7. Let f: X — [—00,00] be a nonnegative [M-measurable] function. Then f can be

approzimated pointwisely by an increasing sequence of [M-measurable] simple functions.

PROOF. Define

< flo) < &, i=1,2,--- k2~

Then {s} is an increasing sequence of (M-measurable) simple functions such that s converges to
f pointwise. O

We can further approximate by step functions.

Corollary 3.8. Let f : X — [—00,00] be a nonnegative [M-measurable] function. Then f can be

approzimated almost everywhere by a sequence of step functions.



3.2. MEASURABLE FUNCTIONS 33

Proor. It suffices to approximate a characteristic function 14 for a measurable set A. From
Theorem 3.2 except for a null set A is Gs-set, (,—; G where Gi’s are open. Each A, =/, Gk
is a countable union of non overlapping rectangles, A, = J;2, RJ . Then {1g,, : S, = Uiz, RI}

O

converges to 14 a.e.

In view of f = fi — f_, the nonnegative condition is not necessary.

Theorem 3.9. Suppose that f : R™ — [—o00, 0] is Lebesgue measurable. Then there exists a Borel
measurable function g such that the set {x € R™ : f(x) # g(z)} is a null set.

ProoFr. In view of f = f4 — f_, we may assume f > 0. Find a nondecreasing sequence of simple
mp
=1

sets B]lc with A (AfAB]’?) = 0. Then o}, = Z;njl CiXph is a Borel function which agrees its values

with s;, except for a null set Ni. Thus, {03} converges to f pointwise except for N = |J;— | N, a

functions {sx} converging to f. For each s, = )" ¢jx 4x, we replace measurable sets Af by Borel
J

null set. The limit limg_,, 0x = ¢ is the Borel function. ]

DEFINITION 3.6. If some property is valid except on a null set, we say that the property hold almost

everywhere, abbreviated a.el] For instance, Theorem 3.9 tells that f = g almost everywhere.

Finally, we introduce two useful theorems.

Theorem 3.10. (Egorov) Suppose {fr}32, is a sequence of measurable functions defined on E C
R™, M(E) < oo and assume that fi, — f a.e. on E. For given € > 0, there exists a closed set A C F
such that N(E'\ A) < € and fr — [ uniformly on A.

PRrROOF. Fix ¢ > 0. We may assume fi(z) — f(x) for every € E. Let n,k € Z4 and
Ep ={x e E:|fi(x) - f(z)|<1/n, forallj>k}.

For a fixed n, {EJ}32, is increasing to E. By M5, we can find ky so that A(X \ E}') < 5. Then,
we have |f;(z) — f(z)| < 1/n whenever j >k, and x € E}! .

We choose N so that Y707 27" < €/2, and let B = (55 B . Then A(E\ B) < ¢/2. On the
other hand, f; — f uniformly on B. Indeed, for given § > 0 we choose n > max(N,1/§). For
reBCEL,|fj(z)— f(x)] <0 whenever j > k. Lastly, using approximation lemma, we can find
a closed set A C B with A (B\ A) < ¢/2. O

Theorem 3.11. (Lusin) Suppose f : E — (—00,00) is measurable with A (E) < co. Then for given
€ > 0, there exists a closed set A C E satisfying A (E \ A) < € and f|4 is continuous.

PrROOF. We use Egorov’s theorem. Let {f;} be a sequence of step functions converging to f.
Then we can find sets Fj so that A (Fg) < 27% and fr is continuous outside Ej. By Egorov’s
theorem, we can find a set B on which fi — f uniformly and A\ (E' \ B) < €/3. Choose N such that
S e n 27" < ¢/3. Define A’ = B\ U~y Ex- As fi is continuous on A’ for k > N and fi, — f

uniformly on A’, f is continuous on A’. Lastly, we approximate A’ by a closed set A. O

3Probabilists often say this almost surely.
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REMARK 3.6. Egorov’s theorem and Lusin’s theorem hold true in general setting. In general case,
A in the conclusions may not be closed. (In fact, a general measure space may not be a topological

space.)

3.3. Integration and convergence theorems

To define the Lebesgue integral, we start with a nonnegative, £-measurable, simple function

s = Z;nzl ckx A, where 0 < ¢, < co. In this case, we define

/sd/\ =) o A(Ap),

k=1

where {Ag}r=1,... m is a finite collection of disjoint M-measurable sets.

We first need to check the well-defineness of the definition. Suppose that s has two different
representations. Suppose that s = > }_; ckxa, = Z?:l djxB, where {A} and {B;} are disjoint
collections. Decompose sets into C; := A N By, if C; = @, then s = ¢, = d;. We have

a b
/sd)\ =Y aA(Ar) =D ar(Cry) =D diX(Chj) = > djmsp,.
k.,j j=1

k=1 k,j

Proposition 3.12. Let s,t be simple measurable nonnegative functions.

e 0< [sdr< o0

° Forcz(),fcsd/\:cfsd/\
J(s+t)dA= [sd\+ [tdX
If s <t, then [sd\ < [tdA.

PRrOOF. Exercise. O
For a general nonnegative function f : R™ — [0, oo, we define
/fd/\ = sup {/sd)\ :s < f, s: simple, nonnegative, E-measurable} .

REMARK 3.7. It is instructive to compare this definition with Riemann integral. In the Riemann

integral, the integral is approximated by that of step functions.

For a general measurable function f : R™ — [—o0, o], we write f = f1 — f_ and define its integral

by
/fd/\:/erd)\—/f,d)\,

when both [ f1 A and [ f_ dX are finite. In this case, we say f is integrable (or in L').
For a measurable set £ C R", we define the integral on E by

/Efd)\::/fXEd/\.
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Proposition 3.13. Let f, g be integrable functions.

(1) [efdh=c [ fadx

2) [(f+g)dr=[fdr+ [gdr

3) For disjoint measurable sets E, F, [p . fdX= [, fd\+ [, fdA.
4) If f < g, then [ fdA < [gdA.
)

5 ‘ffd)\‘gflfld)\

~ o~ o~ o~

PRrROOF. We leave (1),(4), and (5) as exercise. The proof of (2) will be given after next theorem.
(3) follows from (2). O

We begin to discuss convergence theorems. For monotone sequence of measurable sets {A : k =
1,2} with Ay C Apq1. we have limg_,00 A (Ax) = A (A) where A = (J;; Aj. That is,

lim [ xa, d)\z/XAd/\.
k—o0

This is true for a monotone sequence of measurable functions.

Theorem 3.14. (Monotone Convergence Theoremﬂ Assume that {fy : k =1,2,---} is increasing

sequence of nonnegative measurable functions on R™. Then

i [ sar= f (i 5

PROOF. Denote f = limj o fi and I = limy_,o [ frd\. As we have I < [ fdX, we show the
other inequality. Fix ¢ < f fdA. Tt suffice to show I > c. By definition of the integral of f, there
exist a simple function s such that [sd\ > cand 0 < s < f. Let s be of the form s = > 1" | ¢ixa,
where A;’s are disjoint and measurable. We replace s by a new simple function, still denote by s
by changing ¢; to ¢; — €, where € > 0 is small, so that ¢ < [ sd\.(Verify!) Then if f(z) > 0 then
s(z) < f(x). Define Ey, := {z : fr(x) > s(x)}. Then we have |J;—, Ex = R".(Verify!) For a fixed k

we have

m

fe 2 fuxe, = sxB, = ZCiXAimEk-
i=1

Therefore, [ frd\ > > 1" ¢;A(A; N Ey). Taking limit of k, limg_0o A (A; N Eg) = A(A;), we
conclude

I_klgiolo/fkd)\zZICZ/\(Al)—/Sd/\>C
O

Corollary 3.15. Let {fr : k = 1,2,---} be a decreasing sequence of nonnegative measurable
functions on R™. Assuem [ f1d\ < co. Then

i [ fear= f (i 5)ar
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PrOOF. Use Theorem BI4 for {fi — fr}72,. O

Proof of Proposition [F13 (2)

First, we prove this for nonnegative functions.

Let {sr} and {t;} be an increasing sequence of simple function converging to f,g, respectively.
Then si + tj is increasing to f + g. We use additivity property of simple function’s integral and
MCT to obtain

/(f‘f'g)d)\:kli_{{)lo/(sk—i—tk)d)\
:kggo[/skdwr/tkdx}
:/fd)\+/gd)\

For general case, denoting h=f+g=hy —h_=fy — f_ 49+ — g,

hy + f-+9-=h_+ f+ + 94+,

/h+d/\+/f,d/\+/g,d/\:/h,d)\+/f+d/\/g+d)\.

Hence, we conclude [hy d\ < [ frd\+ [grd\<ocoand [hd\= [ fd\+ [gdA. O

which implies

Corollary 3.16. (Fatou’s Lemma) Assume that {fi : k = 1,2,---} are nonnegative measurable

/ (liminf fk) d) < lim inf / Fr dA.
k— o0 k— o0

functions. Then

PrOOF. Define g = inf{fx, fk+1, - }. Then gr > 0, g < fi, and {gx} is increasing sequence of
measurable functions. Using MCT, we obtain

/(likrgir;f)fkd/\:/(limgk)d)\

= khm g dA

—00
< liminf/fk d.
k— o0

O

Corollary 3.17. (Lebesque’s Dominated Convergence Them’em,ﬁ Assume {fr, : k=1,2,---} is a
sequence of measurable functions on R™ that converge to f a.e. Assume that there exist g € L' such
that | fr(2)] < g(x) a.e.

Then f € L' and

[ () nmp f n
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PrROOF. We apply Fatou’s Lemma to nonnegative functions g + fx, and g — fx. Indeed, we have

/g:l: fdx < 1imkinf/(g:|: fr) dA
That is,
/:I:f dX\ < hmkinf/:lsz d.
Hence,
limksup/fk d\ < /fd)\ < limkinf/fk d.
O

Corollary 3.18. Let {fx : k = 1,2---} be a sequence of measurable functions on R™. Assume
either fr, >0 or [ (Y52 [fr]) dX < co. Then

/(ka ar = /fde

Corollary 3.19. (Bounded Convergence Theorem) Let {fi : E — [—-M, M|} be a sequence of
bounded measurable functions. Assume \(E) < oo and fi, — f a.e. Then

lim [ frd\= / Hm fi dA.
k—o0 E Ek?—)OO

REMARK 3.8. MCT, Fatou’lemma, and LCT are almost equivalent. More precisely, one can show
Fatou’s lemma first and use it to show MCT. If f € L' in MCT, it can be proved by LCT.

3.4. Examples

EXAMPLE 3.9.

lim (1 - E)nxs dzr = / e “xtdx, (s> -1)
0 0

n— 00 n
Set fn(z) = (1— —) “1[9,n]- One can observe {f,} is nonnegative increasing sequence converging

to e~*. Then use monotone convergence theorem.

ExAMPLE 3.10.

* sinx = [ = 1
/0 em_ldx—;/o e s1nxdx:1;n2—+1

Expanding em—lfl , use LCT for the first identity.

ExampLE 3.11.  Consider a double sequence {amn}py ,—1- Assume either (i) amn, > 0 or (ii)
Y on 2om l@mn| < 00. Then

DD amn =D ) mn (3.1)

m=1n=1 n=1m=1
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For proof, we understand that the summation over m as an integral over N with counting measure.

Setting f, : N = R with f,(m) = @mp. Then [ fude= >

m=1

méizﬂﬂc_gilgh@'

One can use either MCT or LCT (or its corollary) to verify the (BI).
As a corollary of (B)), we can show Riemann’s rearrangement theorem as follows. Let a : N — N

amn and we rewrite [B.1) as

be a one-to-one correspondence. Assume either (i) a, > 0 or (ii) >.° ; |an| < oco. Then

) )
Z Ap = Z aa(n).
n=1 n=1
For a proof, set @, = 5™,
As an exercise, find an example of {am,,} so that @) fails.
Later, we will understand the double summation as a double integral and use Fubini or Toneli
theorem to show (B In fact, under an analogous condition, we can switch the order of integral in

double integrals.

EXAMPLE 3.12. Consider a function with two variable f : R x R — R. Integrating over a variable

:/ﬂawm-

Main question here is under what condition we can switch the integral and differentiation. i.e.

0

Since differentiation is defined as a limit, this problem is reduced to see when one can switch the

we define

order of limits and integral sign. Thus, we can use convergence theorem obtained in the previous
section.
Let f(x,y) be integrable in z-variable. Assume that there exist a dominating function g(z) € L*
such that |f(z,y)| < g(z). Then LCT says that
lim [ f(x,y)dx :/ lim f(z,y)dz

Y—Yo

Y—Yo

In other words, if f(x,y) is continuous with respect to y-variable and satisfies above condition, then
F(y) is also continuous.

Next, consider a derivative. Denote D} f(z,y) = w Then limy,_y0 D} f(x,y) =
2 f(z,y). 1f Dk f(w,y)| < g(x) € L, then

—F —hm/D :vydx—/hmDQf(xyd:v—/a (z,y) dx.

In view of mean value theorem, if |8—y(:v, y)| < g(z) € L', then we have the same conclusion.
In fact, the assumption of Lebesgue convergence theorem replaces uniform convergence in compact
setting. Recall that if f, : [a,b] — R uniformly converges to f, then lim,, f: fo(z)dz = [ f(z)dx

t
/ sin df —

ExaMPLE 3.13. Show
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We understand the integral as an improper integral on [0, n] as n — co.

Note that lim; ¢ Si?t = 1. One can show this by a contour integral in complex variable (exercise).
In this example we use Lebesgue convergence theorem for an alternative proof.
Define g, (z) := [, e~ **52L d¢. Then by direct computation,

—zsinn —cosn) + 1
1+ a2

)

n e—n;ﬂ(
gn(z) = —/ e sintdt = —
0

and |g,, (z)| < % € L'. Using LCT,

[ timg @) do =t [ g1 2) do = tnlgn () ~ 90 0).

By computation, we obtain [lim, g, (z)dz = — [° 75z do = —F, lim,, g(0) = [~ 22 dt, and
% <1, gn(n) < fon e "t < % — 0 as n — oo. This completes the proof.

3.5. A relation to Riemann integrals

In the introduction, we discussed Riemann integrals on [a, b] and its limitation. In many ways
we can understand Lebesgue integral is an extension of Riemann integral. Now we discuss Riemann
integrability in the context of Lebesgue measure theory. The discussion below works for higher
dimension, too. For simplicity, we restrict ourselves to one dimension. Let f : [a,b] — R be a

bounded function. (Recall that we defined Riemann integral for such a function).

Theorem 3.20. If f is Riemann integrable, then f is measurable and

R c
(x)dx = f(z)dA. (3.2)
[a,b] [a,b]

f is Riemann integrable if and only if f is continuous almost everywhere (= except a null set).

PROOF. By definition of Riemann integrability, we can find a sequence of partitions {P;} so that
limy URS(Py, f) = limy, LRS(Py, f) = f[z},b} f(z) dz. For each k, denote P, = {xo,--- ,zn} and step
functions
N N
s*(x) = max  f(@) X,y e k(@)=Y min (@)X, 0

— z; 1<z<z; — z;_1<z<z;
1=1 1=

Then s*, s, are measurable function and by definition of Lebesgue integral of simple functions,
URS(Py, f) = f[sb] sk and LRS(Py, f) = f[fb} sg. Furthermore, sx(x) < f(x) < s¥(x). Define
U(z) = limy, s*(x) and L(z) = limsk(z). Then using Lebesgue convergence theorem (check the

assumption!) and Riemann integrability,

R L L
x)dx = U(x)d\ = L(z)d\,
fwde= [ v@ar= [ 1w

[a’)b] a;b] a,b]

and so U = L almost everywhere. Since L(z) < f(z) < U(x), f(z) is measurable, f = U = L

almost everywhere and
L R
fdx= f(z) dx.
]

[a,b] la,b
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For the second statement, we show that f is continuous at x if and only if L(z) = U(x). Then
It follows that f is continuous a.e. < L(x) = U(x) a.e. < f is Riemann integrable, as the second
equivalence is verified at the first step.
For ’only if’ part, suppose that f is continuous at z. For a fixed € > 0 there exists § > 0 such
that |f(y) — f(2)| < € for z,y € [x — d,x + 8]. Choose a partition P, the interval containing
x of which belongs to [x — §,x + 6]. Then |U(z) — L(z)| < |sP(z) — sp(x)] < e. Since € is
arbitrary, U(z) — L(z) = 0. Conversely, from U(z) = L(z) there exist a partition P such that
|sP(z) — sp(z)| <e. Let § =min{|z — z|: 2 € P}. Then if |z — y| < §, 2,y are in the same interval
of partition and hence |f(x) — f(y) < |s¥(z) — sp(z)] < e.
O

3.6. Fubini’s theorem for R"

When an integrand has more than one variable, a repeated integral is often an efficient tool to
evaluate the higher dimensional integral. In this calculation, we implicitly use the Fubini’s theorem.
In this section, we discuss Fubini and Tonelli’s theorem for a special case, Lebesgue measure on
R™. Without much difficulty this theorem is extended to general measure spaces. We just refer the
general case.

Let I,m, and n be dimensions with [ +m = n. Consider a measurable function f : R™ x R} —
[—00, 00] with respect to the Lebesgue measure £". We denote f = f(x,y) = f(z) where z €
R™, y € R, and z = (2,y) € R™. For a fixed y, f,(z) = f(x,y) is a function on R™.

Theorem 3.21. (Fubini-Tonelli) Let f : R™ — [—00, 00| be a measurable function. Assume either

f is nonnegative or f is integrable. Then, we have

o The function fy(x) : R™ — [—00, 0] is measurable y a.e.
The function f.(y) : Rt — [—o00, 00] is measurable = a.e.
o F(y) = [ f,(z)dx is measurable on R
G(z) = [ fz(y) dy is measurable on R™

/ f(x,y) drdy = f(x,y)d)\(x,y) :/ f(x,y) dydz
R! JR™ R™ m JR

PROOF. By symmetry of z,y variables, we only prove the theorem for f,(z), F((y). We prove the
theorem when f is nonnegative and integrable. If f is integrable, we obtain the same result by
writing f = fy — f_. If f is just nonnegative, we use MCT to obtain it. We first consider a special

case, the characteristic functions. We rephrase it as follows:

Claim: Let A C R™ be a bounded measurable set. Then,

o A, :={zx € R"|(z,y) € A} is measurable a.e. in y.
o )\ (A,) is a measurable function of y.
o [mA(Ay) dy=X(A).
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Proof of Claim
Step 1 J C R" is a special rectangle.
Clearly, J = J; x Jo where J; are special rectangles in R™ and R!, respectively. Then,

Ji, yea
Qu y¢J2

Hence, J, is measurable, A (J,) = A (J1) 1,,(y) is a measurable function, and [ X (J,,) dy = X (J1) A (J2).

Step 2 G C R” is an bounded open set.
G is expressed by a countable union of special rectangles, G = i, Ji. Thus, Gy = [y Jiy is

measurable as each Jj ,, is measurable. Moreover, A (Gy) = Y 7o A (Jiy) and

JEXCAYTED Y PYUSETED SPYARSY(E]
k=1 k=1

where we used Step 2 in the second equality.

Step 3 K C R” is a compact set.
We choose a bounded open set G D K. Then G \ K is open. Since G, = (Gy \ Ky) U K, K, is
measurable and A (K,) = A (G

y) —
/ / //\(Gy\Ky)dy:/\(G)—/\(G\K)
AMG) = A(G)+A(K) = A(K).

A (Gy \ Ky) is a measurable function by Step 2. Moreover,

Step 4 B = U;’il K; where {K;} is an increasing sequence of compact sets. C = ﬂj’;l G; where
{G,} is an decreasing sequence of bounded open sets.
Since B, = U;Z, Ky, By is measurable, and A (B,) = lim;, A (K;,). By MCT,

[ dy= tim 3, dy
j‘)OO
= lim A(K,) = A(B)
Jj—o0
The case for C is proved similarly to Step 3.

Step 5 General case. A C R" is a bounded measurable set.
From approximation by open sets and compact sets, we can find a decreasing sequence of open sets,

and an increasing sequence of compact sets:
K1CK2C"'CAC"'G2CG1,

and lim; 00 A (K;) = A(A) = limj0 A(Gj). Define B = J;2, K; and C = ();2, G;. Then
A(B)=A(A)=A(C)and BC AcCC.

/)\(Cy)—/\(By) dy = \(C) = A(B) = 0.
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Since A (Cy) — A (By) > 0, A(Cy) — A(By) =0 a.e. y. Thus, Cy \ By is a null set, and so is Cy \ 4,.
Hence, A, is measurable and A (4,) (= A (Cy) a.e.) is a measurable function a.e. Moreover,
[au) = [A©) d=r©) =r),
0

The theorem is valid for simple functions with bounded support as the conclusion is valid for a
finite linear combination.

Claim : If the theorem is valid for a increasing sequence of functions {f; > 0}72,, then it is

valid for its limit function.

Proof of Claim We use MCT. Denote limy_ o fi = f. As {f;,} is also increasing sequence of
measurable functions, f, is also measurable. Similarly,

0= [ f@ydo= tim [ fiyfe)do = lin Fily),

which implies F'(y) is a measurable function. Again by MCT and assumption,

[ Pwdy=jin [ Ry = i fue)irwo) = [ o) iro).
O

When f is nonnegative, from Claim above, considering a sequence of increasing simple functions,
we obtain the same conclusion. For general integrable function f, writing f = f; — f— where fi

are nonnegative integrable, we have the conclusion. O

This theorem is extended to general measure space without much difficulty. Here we just sketch
and state theorem. For more detail we refer Chapter 11 of [Jon|] or Section 2.5 of [Foll.

Let (X, M, u), (Y,N,v) be measure spaces. We define a product measure space on X x Y.

DEFINITION 3.7. A subset of X x Y of form A x B where A € M and B € N are measurable is
called a measurable rectangle. We denote M x N :=o({AxB: A€ M, Be N}). That is, M xN
is the smallest o-algebra containing all measurable rectangles.

To construct a product measure space, we need to construct a measure 7 : M X N'— [0,00] on a

measurable space (X x Y, M x N). Intuitively, for each measurable rectangle, we expect
m(A x B) = u(A) v(B).

DEFINITION 3.8. We say (X, M, ) is o- finite if X = (J;Z, A; with u(4;) < .

There exists a unique product measure under o-finite assumption.

Theorem 3.22. Let (X, M, pn), (Y,N,v) be o-finite measure spaces. Then, for any E € M x N,
we have

(1) E, e M for ally €Y and E, € N for all z € X.
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(2) x— v(Ey) is a M-measurable function.
y +— u(Ey) is a N-measurable function.
3)
| uE) = [ () dp = ()

X
This defines a measure ©: M x N — [0, 00| satisfying

(A x B) = u(A) v(B),

and such a measure is unique.

Once we have Theorem [3.22] the general Fubini-Tonelli’s theorem follows.

Theorem 3.23. Let (X, M, u),(Y,N,v) be o-finite measure spaces and (X x Y, M x N, x) is the
product measure space. Assume f: X XY — [—00,00] is M X N'-measurable. Furthermore, assume

either f is nonnegative or integrable. Then we have

o fy(x) is M-measurable, and f,(y) is N -measurable.
o The function y — [y f,(x)dp is N-measurable.
The function x — [, f.(y)dv is M-measurable.

/Y/Xfy(fc)dudu/xxyf(x,y)dwz/X/Yfz(y)dudu.



CHAPTER 4
LP spaces

4.1. Basics of LP spaces

Let (X, M, 1) be a measure space and let 1 < p < co. Let f: X — [—00,00] be a measurable

function. Then |f|? is also measurable. We define

l<p<oo.  er(Xp) [ IfPd<o
p's
p = 00, fel>X,p) < sup{M:|f(z)] <M ae} <o

Note that we regard f as the equivalence class of all functions which are equal to f almost every-
where. Thus, LP () is the set of the equivalence class of functions rather than functions. With usual
addition and scalar multiplication of functions, we see that LP(u) is a vector space. In fact, LP(u)

is a normed space with

1/p
1l = < /. Ifl”du>
1l = sup{M : |f(z)] < Mace.} = inf{t : u(|f(x)] > 1)}

We need to check the conditions for a norm || - ||,

(1) If f € L?, then || f|, < oo.

(2) f=0a.e. < |fllp, = 0.(This is the main reason that we understand an element of LP is
an equivalence class.)

@) lefllp = lelll 1l

(4) (Triangle inequality) — [[f +gllp < [Ifllp + gl

Readers can easily check (1) ~ (3). Triangle inequality which is often referred as Minkowski’s
inequality will be proven later. For simplicity of notation, denote simply LP for Lebesgue measure.
When the measure space is (Z", P, ¢), we denote LP(c) = [P.

REMARK 4.1. (Complex valued functions)
We can extend our integration theory to complex valued functions without any difficulty. For given
f: X — C, writing f(x) = Re f(z) + Im f(z), we say f is measurable if and only if Re f and Im f

are measurable. Define LP-norm as usual

1/p
1l = (/X Ifl”du> .

Then, it is easy to check f € LP if and only if Re f,Im f € LP.
In view of Fourier transform, it is natural to work on complex valued functions. Fortunately, the
integration theory extends without further difficulty. One thing you should aware of is that in

complex plane, functions cannot take oo as a value. In other words, in the extended real line,

44
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sup,, | fn| exists always in [—o00, 00] but sup,, f,(z) may not exist in complex plane. This may cause
a little inconvenience, but when one work with L? functions, there is no problem since |f(z)| < oo
almost everywhere.

REMARK 4.2. For any measurable function f, one can find a Borel function g such that f = g¢
a.e. Hence, for LP-functions, we do not see that difference between measurable functions and Borel

functions. We can simply assume they are Borel functions.

EXAMPLE 4.3. Consider the Lebesgue measure space (R™, £, \) with p < g. There are several notion
of convergence with respect to each norm.

(1) A sequence which converges in LP but does not converge in a.e.
Write n =27 + 7 with 0 < r < 2. Define fn = X{r2-s (r41)2-4). Then || full, = 279/7 but
the sequence does not converge to zero at every points in [0, 1].

(2) A sequence which converges in a.e. but does not converge in a.e.

fn= nl/pX[O,%]v [ fnllp =1
(3) A sequence which converges in LP but does not converges in L9.
p_
Fa=n"%p 1 Il =1 fallp=n""

This counter example employs a set with arbitrarily small positive measure.

(4) A sequence which converges in LY but does not converges in LP.
— _aq 1
fn:n 1/pX[0,n]a ||an;D:17 anHq:n Chl

This counter example employs a set with arbitrarily large measure.

EXAMPLE 4.4. In the measure space which does not have arbitrarily large set or arbitrarily small

set in measure, we have an inclusion between LP.

(1) LP(Z,c) =17
This measure space with counting measure does not have sets of arbitrarily small positive
measure. For p < ¢, we have [P C 9. Let {a,} € [P. Then

Z|an|q: Z lan|? + Z |an|?

lan|<1 |an|>1
< D laal’+ 3 Jaal?
lan|<1 |an|>1

< [Han}lly +C <00

where we used {n : |a,| > 1} is finite because of {a,} € 19.

(2) LP(X,p) with p(X) < oo, on which there is no arbitrarily large set. For p < ¢, we have
LY C LP.
Let f € L9. Then

Pdy = Pd Pd
/lel y /f|<1|f| u+/f|>1|f| y

SM(X)'1+/

|f1* dp < oo.
[fI>1
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4.2. Completeness of LP spaces

One of the most important gain of the Lebesgue theory is the completeness of LP function spaces.(You

may recall that a limit of Riemann integrable functions may not even Riemann integrable.)

Theorem 4.1. (Rietz-Fischer) Let 1 < p < oco. LP is a complete normed space.

In general, a complete normed vector space is called a Banach space. For a proof, we need to verify
triangle inequality and the completeness. To proceed for the proof, we begin with the Hélder’s

inequality. This can be viewed as a generalization of the Cauchy-Schwartz inequality.

Proposition 4.2. (Hoélder’s inequality)
Let 1 < p,q,r < o0 with % = % + %. Suppose f € LP and g € LY. Then fg € L" and

I1£gllx < 1 1pllgllq

PrOOF. Holder inequality is a consequence of the convexity of exponentials, which formulated as
Young’s inequality: Let a,b > 0 and % + % = 1. Then,
ab < lap + 1bq.

p q

To verify this, set A=aP, B =0 and t = %, 1 —+¢ = =. Then we reduce to show
A, A
(E) Sty + (1-1),

which is followed by the convexity of f(t) = at.
Back to the Holder inequality, we may assume that = 1(considering |f|?, [¢|?) and f,g > 0 but f, g
are nonzero functions. (Check!) If p = 0o or ¢ = oo, then the inequality is easy to verify. Assume
1<p,qg<oo,r=1.
By Young’s inequality, we have

[ @@ [ir@rane . [ la@

For any A > 0 we can apply the above inequality to Af(z) and g(x)/X to obtain

[ t@at@yan< - i@ du+ < [ 1ot dn

Optimizing the right hand side by A, we reach to the Holder’s inequalityﬂ
One can observe that the equality holds if and only if «|f(z)[? = B|g(x)|? a.e. for some «, 5.
Alternatively, before applying Young’s inequality, one can normalize ||f|, = ||gllq = 1 (by replacing

by f,g9 by f/Ifllp, 9/llgllq if needed). Then, Young’s inequality gives

[t@a@dn< o [ir@rane [la@r =42 =1,

IThis trick is sometimes called arbitrage. One can make use of the symmetry of inequality to reduce an inequality

O

into a weaker inequality.
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REMARK 4.5. The scaling condition % = 1—1) + % is a necessary condition when the measure p has a
scaling invariance. (eg. Lebesgue measure on R?) As an exercise, readers can check % > 1—1) + é for
1P, but L < % + % for LP([0,1]).

In fact, L? has a richer structure, an inner product,
(f,9) = / fgdu
X

from which || - || is generated. Using Hélder’s inequality, one shows (f, g) is finite for f,g € L% So,

L? is a complete inner product vector space that is usually called a Hilbert space.

Proposition 4.3. (Minkowski’s inequality)
For 1 <p < oo, we have

If+9lle < 1 £llo+ llgll»

PROOF. For p = o0, it is easy to deduce from |f(x) + g(z) < |f(x) + |g(x)]. Assume 1 < p < occ.
One can observe that |f(x) + g(z)|” < (|f(2)] + |g(z))If () + g(x)P~.

/|f+g|pdué /(Ifl ClaDIf + 9Pt du
< IFIIE + 9P + gl + gP g

= (171l + gl / |f + g|®=De)V/a

Using 2 + 1 =1, we have
R
I1f +gllp < 1F1lp =+ llgllq-

Proof of Rietz-Fischer’s theorem
We are left to show the completeness. For given a Cauchy sequence {f,} in LP, we can extract a

subsequence such that
||fnk+1 - fnk”p S 27k'

We denote f,, =: fi for simplicity of notation.

Lemma 4.4.

1D fells <D Ml
k=1 k=1

PRrOOF. Exercise. Use Minkowski’s inequality and MCT. 0

Define F(z) = |f1(@)| + Y peq | fet1(x) — fe(x)]. Then by the lemma, F' € L? and so F(z) < oo
a.e. (l.e. F(x) < oo for x € N® with u(N) =0. )

Define the limit function

fi(@) + 300 frr(x) = fr(x), xeN°¢

fla) =
0, reN
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Then, we have

f(ff)—fk(x):ijﬂ(x)—fj(:r), a.e.
=k

If = fllp < Z | fi+1 = fillp < 9 k+l

j=k
Hence, fr — f in LP. O

As a byproduct of the proof, we obtain a useful corollary.

Corollary 4.5. If a sequences f, — f in LP, the there exists a subsequence {fn,} converging to f
almost everywhere.

4.3. Approximation of L? functions

Next, we discuss approximation of LP-functions by smooth functions in LP-norm. This is an
analogue of Stone-Weierstrauss theorem in a compact setting, i.e., a continuous function is approx-

imated by polynomial in the uniform norm.

Theorem 4.6 (Density theorem). Let 1 < p < oo. CXR?Y) = {f : R - R : f €
C> and supp f is compact.} is dense in LP(R?), i.c., for any e > 0 and f € LP, there ewists
g € CX(RY) such that ||f — gllp, < e.

PROOF.

1. We take two steps. First, we approximate f by a continuous function with compact support and
then approximate the continuous function by a smooth function.

For a fixed € > 0, let 1 = €¢/10. We use MCT to choose R > 0 so that | f|[Ls(Bs) < €1 since

Ifll Lr(ray < oo. Moreover, we choose M > 0 such that || f1y s>}l < €1 also by MCT. We can
approximate f by flp,n{f<my in LP. From this observation, we may assume supp f € Bgr and
[fl < M.

Now, we approximate f by a simple function s such that |f(x) — s(z)| < X8 &¢ in Br and
s is supported in Bg. Then, ||f — sl[zr(By) < €. Say s = Eszl arla,. By approximation
theorem of measurable sets, we find open sets G, and closed sets F}. such that Fy, C Ax C G with
MG\ Fy) < % where M = N max{ay}_,. Now, we can use Uryson’s lemma, to find a continuous
function hg(z) so that 0 < hg(x) <1, supphr C Gy and hi(x) =1 on Fy. Set § = lezl aphy.

Then s is a continuous function supported on Bpy; satisfying

N
ls = 3llp < Y el L, — Al
k=1

N
<l (G \ F)P < e
k=1

Hence, combining all together, we obtain || f — 5], < €/2.

2. For simplicity of notation, assume f € LP is continuous and supported in Bpg.
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Before getting into the proof we prepare two things, which are independently useful for many ap-

plications.

Convolution
The convolution of two sequences naturally appears in the product of two power series expansion.
Let {an}22, and {b,}22, be sequences. We define the convolution a * b by

(a * b)n = agpb,, + arbp—1+ -+ anby = Zajbn_j.

Then when f(z) = >0 janz™ and g(z) = >..°  byz™, the power series expansion of fg is
f(@)g(x) = 307 o(a*b),a™. In particular, if f, g are periodic functions with period 27, then one
has Fourier series expansion, f(z) =3 ., fln)e"* and g(z) = > nez g(n)e™*. Then formally, we
obtain

fg( ) = (f*9)(n), Fm)g(n) = f = g(n),
where (f * g)( fo —y) dy.

We extend the convolution to functions on R™. For f, g measurable functions, we define a con-

(F+9)@) = [ fe =ty

whenever the integral is well-defined. (i.e f |[fz—y)g(y)|dy < oo a.e. inx) (eg. f € LP and g € L9)

One can easily check the commutativity and associativity for good functions (i.e. f,g,h € C°).
frg=g+f and  (frg)xh=[x(g=hi

The convolution is useful to modify a rough function to a regular function. If f € L, g € C! with

volution by

|0,,9] < M, then using Lebesgue convergence theorem we have f x g € C! and

O (f % 9)(@) = (f * O, 9)(x)

Approximation of identity

Consider a smooth function ¢(z) satisfying

* ¢(z) 20
o ¢ € C2° with supp ¢ C By,
o [¢(x)dx =1.

Define a rescaled function ¢:(z) = tid¢(£) Then supp ¢, € B; and [ ¢, = 1. As ¢t — 0, the support
of ¢, gets smaller but its integral is preserved. However, lim;_, ¢; does not exist as a measurable
functlonE We call ¢y an approzimation of identity in view that for a measurable function f, we
have

lim 6+ /(2) = f(2)

2Proof for associativity requires Fubini theorem
3The limit is in fact the Dirac delta measure. So, there is no limit as a function. One you show ¢; converge to

do in a weaker sense of limit
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in several senses. For a full account of property of this, see, for instance, [Fol| pp.242.

To finish the proof, we want to show || f — ¢ * f|l, < €/2 for small ¢. Since f is a compactly

supported continuous function, f is uniformly continuous, i.e. there is § > 0 so that

If(z) — flz —y)| < e whenever |y| <6
F(@) =+ f(@)] = [ () - / o) f ( — ) dy|
< o) f(z) = f(z —y)|dy

ly|<t

< €q choosing ¢t < 9§

£ =ore Sl < [ 1@ = dux flo) do
R
S A (BR) 612).
Choosing €3 = €/2X (BRr), show ¢; x f =: g € CS° is an approximation of f in LP norm. O

Exercise 4.1. Combining Theorem[{.0 and Stone- Weierstrauss theorem, show that LP is separable
for 1 <p < oo. To the contrary, show that L>([0,1]) is not separable.

4.4. Duality of L?

In the linear algebra course, we have learned a dual space V* of a vector space V of finite
dimension. V* is a vector space of linear functionals, i.e. V* = {L : V — R|L is linear}. Due
to a basis of V, we can characterise V* and verify V = V*. In infinite dimensional spaces, not
every linear functional is bounded and so cannot give a norm of V*. A natural analogue of linear
functionals are bounded linear functionals.

Let B be a Banach space. A linear functional L : B — C is bounded if sup,_ ‘ﬁgjl)‘ =:||L] < 0.
Then, B* = {L: B — C| L is a bounded linear functional } is a normed space with ||L||.(Check!)
Exercise 4.2. Show B* is a Banach space for any normed space B. (One has to use the complete-
ness of C.)

Exercise 4.3. Let L : B — C be a linear functional for a normed space B. The followings are

equivalent:

(1) L is continuos.
(2) L is continuous at 0.
(3) L is bounded.

Now we discuss the duality of LP(u) spaces for 1 < p < oco.
Let (p,q) be a conjugate pair, i.e. - + % = 1. For each g € LY, one define a linear functional on LP

by

1
P

L) = [ fodn
Due to the Holder’s inequality, L, is bounded linear functional with ||Lg|| < ||gllq- In fact, when
1 < g < o0, [|[Lgl| = |lgllq by choosing f € LP such that fg = |g|? a.e. To be more precise, choose
f =0 where g = 0 and if g # 0, then f = |g|?"'sgng. Then we obtain [ fgdu = |g||2 and
1£1l, = llglld~", which gives equality of Holder’s inequality. This provides an isometry L? — (L)*.
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When g = oo, we assume p is the Lebesgue measureE For given € > 0, let A = {z : |g(z)| >

lglloc — €}. Then A(A) > 0. Pick a measurable set B C A with A (B) < co. Define f = xpSgn g.
Then ||f|ls = A (B) and

1241 = [ saaniflit = 2@ [ ol = gl =

Since € > 0 is arbitrary, || Ly|| = ||¢]|co- Therefore, we have L9 is isometrically embedded into (LP)*.

Theorem 4.7. Let (p,q) be a conjugate pair with 1 < p < co. Assume p is o-finite. Then, LY is
isometrically isomorphic to (LP)*.

PROOF. From the above discussion, we are left to show that for a given L € (L?)*, there exists a
g € L? such that L = L.

Step 1

We may reduce to the case p is finite. Indeed, write X = WX; where u(X;) < oco. Assume that
we have Theorem for X;. Then there is g; € L9(X;) such that for f; € LP(X;), L(f;) = f figi du.
Define g = .2, g;. Since supp g; are disjoint, we have L(f) = > o2, [ flx,gidp = [ fgdu. In
order to show that g € L%, we use the boundedness of L. When 1 < p < oo, choose f = |g|? !sgn g.
Then || f[|5 = [lgll¢ = L(f). Setting Y, = U, X, we have ‘T2 = || f1y, [[2=1 < |[L]|. Thus,
|| fllp < oo and so g € L1.

When p = 1,¢ = oo, Consider a set E = {x € X : |g(x)] > ||L|| + 1} and a subset F' with 0 <
f(F) < co. Chooing f = 1psgn g, we estimate L(f) > [ |g|dp > (| LIl + 1)u(F) = (IL]| + )] f11.
which makes a contradiction.

Step 2

We may reduce to the case L is positive. (i.e. L(f) > 0 for any nonnegative f € LP). Indeed, we have

Claim For any L € (LP)*, we have a unique decomposition L = Ly — L_, where Ly are posi-
tive definite.

PROOF. We say a measurable set F is totally positive if L(1g) > 0 for any F C E. Set M :=
supy L(1g) > 0 where the supremum is taken over all totally positive sets. Then there exists a
sequence of totally positive sets {E, € X : k = 1,2,---} such that L(1g,) - M. Then X, =
Uie; Er is a maxima, i.e. L(1x,) = M. (Check!) Then it is easy to check L4 is positive
definite. (first, do it for nonnegative simple functions) Letting L_ = L, — L = —L(-1x\x, ), we
have to show that L_ is positive definite. Suppose not. Then, there exist a set F; in X_ such
that L(1g) > 0. If E; is totally positive, then replacing Xy by Xy U F; makes a contradiction.
Thus, E; must contain a subset Fy such that L(1g,\p) > L(1g,). We choose F| such that
L(1g\p) > L(1g,) + 1/n1, and E> := Ey \ Fi, where n; is the smallest integer for which such
Fs exists. FE5 cannot be totally positive due to the same argument. Then we repeat to pick
Es C Ej such that L(1g,) > Llg, + 1/n2, where ng is the smallest for which such Ej5 exists.
Continuing this procedure we construct a decreasing sequence F; D FEy D --- D X_ such that

4n general, we need the ”semi-finiteness” assumption on measures. See [Fol| for general discussion.
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L(1g,., > L(1g, + 1/ng. Then E := ()}, is totally positive since E cannot contain any subset F
such that L(1p) > L(1g. As L(1g) > 0, it contradicts to the choice of X . O

Now, we assume that L is positive definite and p is finite. We consider the collection of mea-

surable functions

S={O§g€Lq:/flEdu§L(1E) for all E € M}, Kzsug/gdu

S
Then, the maximum is attained for some measurable function g € S by MCT and the fact that if
g1,92 € S, then max{g1,¢g2} € S. (Check!)
For a fixed € > 0, we define L.(f) = L(f)—infgf du—e [ f du. We claim that L. is negative definite
for all € > 0. Assume not. Then, by Claim (decomposition) for some €, L.y # 0, and so there exist
a non measure zero set E such that Ley (1p) > 0. That is, L(1p) > [glpdp+ € [ 1pdp for any
F C E. Then we can replace g by ¢’ = glx\g + (g + €)1p and obtain ¢’ € S but [ ¢ du > M,
which makes a contradiction. Next, we can verify that L(f) = [ fgdu for f € LP. (first, show this
for nonnegative simple functions and use the continuity of L and MCT to show it for nonnegative
functions, and then write g = g4y — g_.)
Finally, we show that g € LY. The argument is similar to Step 1, except that we do cut off function
value instead of its support. Indeed, for 1 < p < oo define gy = min(g, N) and fy = |gn]?9 " sgn g.
Then, L(fn) > [lgn|®dp = |[fnlE~ I fn]lp. Since |[L| is bounded, ||fn|[5~" is bounded in N,
and so is ||gn|lq- Hence, by MCT, g € L. When p = 1,¢ = oo, one can also argue as Step
1.(Exercisel). O

When p = oo, it is known that (L>°)* 2 L. For more discussion, see [Fol] p.191.

Exercise 4.4. Show the uniqueness of the decomposition in Claim and uniqueness of f € L9.

Corollary 4.8. For 1 < p < oo, LP(u) is a reflerive Banach space. i.e. (LP)** = LP.

The proof of Theorem A7 is similar to the discussion of signed measure and the proof of the Radon-
Nikodym theorem.

DEFINITION 4.1. Let (X, M) be a measurable space. A signed measure is a map p: M — [—00, ]
such that

* w@)=0
e ;i can take either the value co or —oo but not both,
o If By, E5, -+ C X are disjoint, then > - u(Ex) converges to (s, Ex), with the former

sum being absolute convergent if the latter expression is finite.

Exercise 4.5. Let (X, M, pu) be a signed measure space. Then, there exists a decomposition of
X =X, UX_ such that p|x, >0 and p|x_ < 0. That is, for any E C X [X_], u(E) > [<]0.

Argue that this decomposition is unique up to null sets. This decomposition deduce a decomposition
of signed measure into unsigned measures. Indeed, there is unique decomposition j = 4 — p— where

U+ are unsigned measure.
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Exercise 4.6 (Radon-Nikodym). Let u be an absolute continuous signed measure to the Lebesque
measure \. (i.e. If \(E) =0, then u(E) =0) Then, there exists f € L*(R™,\) such that

ue)= [ rar
E
4.5. More useful inequalities

We discuss some more useful inequalities.

Proposition 4.9. (log-convezity inequality) Let f : R* — R. and 1 < p < r < q < o0 and
1_pl 1
2 =0,+00-0);. Then, —

£ 1l < ISR Nl

PROOF.

1. Use Hoélder’s inequality for f = |f|® and g = |f|*~°.

2. Directly show the convexity of s — log || f||s by taking the second derivatives.

3. (Tensor power trick) By scaling we may assume that || f||, = || fllq = 1. First, it is easy to verify

£l < 20 lIp0F1l5° (4.1)

by dividing into two cases |f| > 1 or |f| < 1. Observe that the coefficient 2 is independent of
dimension n. We use this symmetry of the inequality to the dimension. Set f®---® f = f®F :
—

k
R — R by f®*(zy,--- ,2) = f(x1)f(22) - f(xx) where x; € R™. Then, we have (£I]) for f&":

1FZ* N 2oy < 20 F2N sy 1 E* N Gy -

A computation shows that || f®*|| s gnk) = ||f||LP(Rn), hence, we obtain

17z @ny < V210 @y 1F 1 aany
Since k is arbitrary, we conclude the result. 0

Exercise 4.7. Prove the Holder’s inequality by the tensor power trick.

Theorem 4.10. (Minkowski’s inequality(integral form))
Let f(x,y) be a measurable function on R™+'. Then, for 1 < p < oo,

//f:z:ydaz)dy ”_/ /|f3:y|pdy ”x. (4.2)

PRrROOF. If p = 1 it is merely Fubini’s theorem and if p = oo, then it is a simple consequence of

integral. Assume 1 < p < co. We use the dual formulation. Let ¢ is the conjugate exponent and

g € Li(y).
/ | / £ ) dz]lg(w)ldy < / / (@ 9)llg(w)) dy de

< / lgllallf (. ) de
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Using
swp [ o= 151
llgllq=1
we conclude (4.2)). O
Theorem 4.11. (Young’s inequality)
For 1 <p < oo, we have
I1f * gl < I 1lpllglls- (4.3)

More generally, suppose that 1 < p,q,r < oo with % + % = % + 1.
If f € LP(R™) and g € LY(R™), then f * g € L"(R™) and

1 glle < 11fllallgllq- (4.4)

PrOOF. To prove [@3), we use (@2
/p /p
d:z: / /|f x — y)IP da:) dy

(JI[ e
< 1l lglh-

For the general case ([@4]), we may assume f,g > 0 and normalize f,g so that ||f|, = ||lgllq = 1.

Using the Holder’s inequality, and observing exponents numerology.

frot /f (z = 9)""g()"" fl@ =) =P g(y) = dy

/fx— qdy 1/r /fx— - p/r)q) 1/p'
( /g<y><1fq/rw> .

| A

X

Hence, (f xg(z))" < f¥ *g%(x)
Using (£3) for p =1,
[rards [ s gtan < Uhg = L01glol = 1

Note that we have used the translation invariance of measure in the proof. Generally, Young’s

inequality holds true for translation invariant measure, so called a Haar measure. 0



CHAPTER 5
Differentiation

The differentiation and integration are inverse operations. Indeed, the fact is formulated as the
Fundamental Theorem of Calculus. More precisely, if f : [a,b] — R is a continuous function, then

its primitive function:
Fo)i= [ ) dy,

is continuously differentiable with F/ = f. On the other hands, if F' is differentiable, then

b
F(b)—F(a):/ F'z) da.

The goal of this chapter is to extend this relation of integral and differentiation to more general
functions, Lebesgue measurable functions. We will also extend the analogous statement to higher
dimension.

We formulate two questions.

QUESTION 1. Let f be an integrable function and define F'(z) = faz fly)dy. Is f

differentiable? If so, under what condition on f do we guarantee F’ = f7

It is easy to see that F' is continuous (actually a bit stronger than continuous). We already know the
answer is yes if f is continuous or piecewise continuous. The questions turns to a limiting question

of averaging operator:

x+h
%(F(:E—Fh)_F(I_h)):%/z,h fly)dy — f(xz) as h — 07

We will study this question in general dimension as follows:

1

A(B, () /BT(QC) fy)dry = f(z) asr— 07

Next question is to find a mild sufficient condition for the Fundamental Theorem of Calculus.

QUESTION 2. What condition on F guarantee that F’ exist a.e., that F’ is
integrable, and that

F(b)— F(a) = / F'(x)dx?
In Chapter 2, we have seen an example, the Lebesgue-Cantor function (See Subsection 2:33)), for

which F’ exists and is equal to zero a.e. but Question 2 fails. Hence, we need a stronger condition,

so called absolute continuity, than just continuity.

55
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5.1. Differentiation of the Integral

5.1.1. Hardy-Littlewood maximal function.
We begin with a geometric lemma.

Theorem 5.1 (Vitali’s Covering Lemma). Let E C R™ be a bounded set. Let F denote a collection
of open balls which are centered at points of E such that every point of E is the center of some ball in
F,i.e., F ={By@)(x) : x € E}. Then there exists a countable (at most) subcollection {By, Ba, - - -}
in F such that B;’s are disjoint and E C U;’il 3B;.

PRroOF. Without loss of generality, we may assume radii of balls are bounded. Inductively, assume
that By, ---, B,_1 are selected. Let

n—1

d, =sup{rad B: B € F and BN U B; = o}.

j=1
If there are no B € F such that U;:ll B; = @, then we stop the procedure. Otherwise, we choose
B,, € F such that B,, is disjoint with U;:ll B; and %dn < rad B,,. The selection gives a countable
subcollection {B1, Ba, - - } in F such that B;’s are disjoint.

Pick z in E and let B = B,.(;)(z).
Claim : B has a nonempty intersetion with at least one of the balls By, B, ---.

If not, this process never terminates. In deed, r(x) < d,, for any n = 1, 2, ---. However, d,, — 0,
since E is a bounded set (of finite measure). Let o > 1 be the smallest number such that B,

intersects with B. Hence .
a—

Bn|JBj=2
j=1
and we can conclude that
r(z) < dy < 2rad B,.

Let y € BN B,. Then if z is the center of B,, we have
lz—z| < |z —y|+ |y — 2|
< r(z) +rad B, < 3rad B,.

3rad B,
Voor(x)
\Y \

e N
- 4 A Y
L=~
’, S N
7 \ \
’ N \
1 [ \
1 — 1ol o 1
\ (O] = 1
\ 2 \/ ]
\ ’
< N /
S o - Al 4
- Y 4
Buc \\ /’B

Therefore, x must lie in 3B,. O
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Corollary 5.2. Let E C R™ be a bounded set. Let F denote a collection of open balls which
are centered at points of E such that every point of E is the center of some ball in F, i.e., F =
{Byz)(z) : x € E}. Then, for any € > 0, there evists {B1,--- , By} in F such that B;’s are disjoint

and
N

ME-|B| <e

=il

DEFINITION 5.1. Let f be a function in L{ (R"), i.e., [ |f| < oo for any compact set K € R™.

loc

Then we define the Hardy-Littlewood mazximal function

1
me%g&EEELQJMWy

The followings are basic properties of the Hardy-Littlewood maximal function:

e M f is measurable.

e M is sublinear, that is, M(f +g) < Mf+ Mg.

o If f is continuous, M f(x) > f(x). Later, we will see that M f(x) > f(z) a.e. for f €
Lie(R™).

e In general, M f & L'(R") even though f € L'(R"). In fact, if M f € L'(R"), then f = 0.
Let a > 0. For |z| > a, we have

1
Mf(z) = 7/ fy)ldy
@) Az, 2|x[) B(x,2\z\)| Wl
w1
> [f(y)l dy
)\(0,2|{II|) B(0,a)
1
= — / |f(y)|dy. (Vg : the volume of the n-dimensional unit ball)
Vi |z B(0,a)
Fix a. Then
1
Mp@ds= [ fldy [ o=,
|z|>a B(0,a) |z|>a |z]

unless fB(o o |f(y)|dy = 0. Therefore, if M f € L*(R"), then f =0 a.e. on B(0,a). Since

a can be chosen arbitrarily, f =0 a.e. on R™.

EXAMPLE 5.1 (A function f € L' such that M f & Li ). Let

loc

1 1
f(z) = zlog?x 0<z <3
0 otherwise.
Then f € L'(R), since
% 1 log z=t log% 1
/ s—dr = / —th < 00.
o zlog”x oo U
However,
1 [ 1 [ 1
M > — dy > — dy = — L2 _(R).
f(x) =9, o f(y) Y 2 o ylong Y 2.’L'lOg(E g loc( )
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Theorem 5.3. If f € L*(R"), then
tA{z s M f(z) > t}) < 3"[| L

for 0 <t < 0.

PROOF. Let E = {z: M f(z) > t}. For k € N, denote Ey, = E N B(0, k), which is bounded. Then
for each z € FE, there exists an open ball B, around z such that ¢t < ﬁ me |f(y)|dy. Denote
F ={B; : z € E};}. Using Vitali’s covering lemma, we can extract disjoint sets By, Ba, --- from F
so that Ey, C J;2, 3B;. Then

MED < S AGB) =Y 84(B)
=1

- nyp—1 _ aony—1
<;3t /lef(y)ldy—3t /U;Ollef(:v)ldw

< 3"t_1/ \f(2)|da
Letting k& — oo, we obtain t A\({z : M f(z) > t}) < 3" flL:. O

REMARK 5.2. Theorem 1.1 is a weaker version of the statement (4) in the following sense: We
denote

[fllree = sup tA{z: [f(x)] > 1}). (< (fle)
0<t<oo

Then || || g1, defines a norm and we call this norm the weak L'-norm. So M is a bounded operator
from L' to weak L'. Moreover, it is easy to check that M : L>° — L*°.

REMARK 5.3. (optional) As we have the boundedness of M from L! — L% and L>® — L, one
can use real interpolation theorem to conclude

M fllLe < Cpllfllze

for some constant C, depending on p. Therefore, we can conclude that M is a bounded sublinear
operator from LP to LP, 1 < p < co. See [Fol|, [Tao] for detail.

5.1.2. Lebesgue’s Differentiation Theorem. Now we are ready to answer to Question 1.

Theorem 5.4 (Lebesgue’s differentiation theorem). Suppose f € L} (R™). Then

loc
(1) for a.e. z € R™,
1
limi/ fy) — f(z)|dy = 0.
3B ) Joeny T T
(2) In particular, for a.e. v € R™,

. 1 i
B SBT) Jo, T O = )
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ProoF. We first show (2). By replacing f by f - 1gy1 and considering |z| < R, we may assume
that f € LY(R™). (2) is true if f is a continuous function. Let g be a continuous function such that

|/~ gllz < e. Denote A, f = limy 0 xegryy fa(en) /() dy- Then
limsup |4, f(2) = f ()] = limsup |4, (f = g)(@) + (Arg = 9)(2) + (g = )(@)]
< M(f—g)(@) +1f —gl(x)
Let
By ={z:limsup | A, f(z) - f(@)| > 1} and Fi={z:[f —gl(z) > t}.
Then E; C Fyjp U {z: M(f — g)(z) > t/2} and
A(E) < MFy2) + A({z : M(f = g)(x) > t/2})

€ 3"e

<42
TP RRTE

Since € is arbitrary, A(E;) = 0 for all ¢ > 0. Therefore, lim,_,g A, f(x) = f(z) for every z ¢
Un—i E1/p, e, z € R ace.

Now we continue to prove (1). For x € C, let g.(x) = |f(x) — ¢|. From (2),

r—0

lim )\(B(x,r))/B( )|f(y)—C| dy = |f(x) — ¢

for z ¢ G, with A(G.) = 0. Let D be a countable dense subset of C. (for example, complex numbers
with rational coordinates) Then E = J..p G is a null set. If 2 ¢ E, there exists ¢ € C such that

|f(x) = c| < eandso |f(x) = f(y)] <|f(y) — |+ e Hence

lim NB) [ 1)~ 1)y < BB ) [ 1)~ cldy+e

r—0 B(z,r)
=|f(x) —c|+ €< 2.

Since € is arbitrary,

lim A(B(z, 7)) /B @) = Sy =o. 0

r—0

Corollary 5.5. Let E C R™ be a measurable set. Then

REMARK 5.4. The left hand side of (5.)) is often referred as the density of F at x.

DEFINITION 5.2. Suppose f € L _(R™). Then the set

loc

{z € R" : there exists A such that lirr%) A(B(z, 7“))/ |f(y) — Aldy = 0}
(s B(z,r)

is called the Lebesgue set of f.
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REMARK 5.5. In the Lebesgue’s differentiation theorem, using a ball is not crucial. We can generalize
that result to the case when a sequence {Ej} of measurable sets ‘shrinking nicely’. More precisely,
we say that {U,}52; shrink nicely to z if z € U, A(U,) — 0, and there exists a constant ¢ > 0
such that for each n there exist a ball B with

r € B, U, C B, and U, >cA(B).

Thus, U, is contained in B but its measure is comparable.

We can generalize the averaging operator to weighted averaging operator.
Exercise 5.1. Let f € LP(R™). Let ¢y be an approximation of identity. That is, ¢ is radial,
nonnegative, ¢(x) = ¢(|z|) > ¢ > 0 for |z| < 1 and supp ¢ € By. Set ¢(x) =t "¢(x/t). Then, we

have

lim [+ du(@) = f@),  ac.

5.2. Differentiability of Functions

Now, we turn to the second question, that is , finding a sufficient condition on F' to guarantee

b

F(b) — F(a) :/ F'(x)dx.

5.2.1. Functions of bounded variation.

DEFINITION 5.3. Let F'(x) be a real valued function defined on [a, b]. For a partition g = a < 21 <
- < xy = b, we say Zszl |F(z) — F(xk—1)| is a variation. We say F is of bounded variation
(f € BV) if the variations for any partition is bounded by a constant M. Furthermore, we denote

the supreme over all partitions is the total variation.

N
Tp(z) = SUPZ |F(x) — F(2p-1)].
k=1

EXAMPLE 5.6.

(1) If f : [a,b] = R is monotone, then f € BV and Tr(z) = f(z) — f(a).
(2) If f € C', then f € BV. However, there is a continuous function f : [a,b] — R which is
not BV.

(3) Let F(X) = [ f(y)dy where f is integrable. Then F is continuous and of bounded

variation. Furthermore,
7o) = [ 17wy

Indeed, for any partition {xg,x1, - ,zn},

N N T N Tp b
S 1P - Fap )l =S [ fyde <y / £ ()| d < / F@)]dy.
k=1 k=1"Tk-1 @

k=1"%Tk—1
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Hence, we have Tp(z) < [7|f(y)|dy and F € BV. For the other side of inequality, we
approximate f by a step function s such that ||f — s|j1 < e. One can check the equality

holds true for step functions. Then,

Tr(s) > Ts(a) ~ Tr—s(a) < [ “Js(w)|dy — e > / 1) dy — 2.

(4) Any BV function is bounded and Riemann integrable. But, as seen above, not every

Riemann integrable function is BV.

Theorem 5.6. A real-valued function F on [a,b] is of bounded variation if and only if F is the

difference of two increasing bounded functions.

PROOF. ’if’ part is obvious. We prove the ’only if” part. Assume that F' € BV. Define g(x) =
Tr(x) — f(x). It suffices to show that g(z) is increasing. For z < y,

9(y) —g(x) = Tr(y) — F(y) — Tr(z) + F(z)
= [Tr(y) = Tr(x)] = [F(y) — F(x)]
2 F(y) = F(x) = [F(y) - F(z)] = 0
|

This theorem tells that it suffices to consider monotone functions when studying bounded vari-
ation functions.

Now, we show a deep theorem due to Lebesgue.

Theorem 5.7 (Lebesgue). Functions of bounded variation are differentiable a.e.

For a proof, we need to use a form of Vitali’s covering lemma.

Lemma 5.8 (Vitali’s covering lemma, infinitesimal version). Let E C R™. Let F be a collection of
closed balls with positive radii such that for x € E and € > 0, there exists a ball B € F containing x
with rad B < €. Then there exists a countable subcollection {B1, Ba, - -} such that B;’s are disjoint
and E C |J,_, Ba except for a null set.

PrOOF. We may assume that E is bounded. We may further assume that all the balls in F have less
than some positive constant. Moreover, we discard balls in F which are disjoint with E. Suppose
By, ---, B, have been selected. If E C Uﬁ<a Bg, then we stop our procedure. Otherwise, let

d, =sup{radB: BNUy_, = o}
0

PROOF (Proof of Theorem). It suffices to show theorem for increasing function f on a bounded
interval [a, b]. Let

Df(z) = limsup
6—0

{If(y)—f(Z)I

ca<y<ax<z<bh O<z—y<5},
y—z
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df(a:)—liminf{M:aSnySsz, O<Z—y<5}.
6—0 y—z
Then 0 < df(z) < Df(z) < oo. We want to show that
{z:Df(z) =00} Uf{z: df(x) < Df(2)} = [ {z: Df(x) > k}U |J {z: df(z) < s <t< Df(x)}
k>1 s<t

s,teQ

isanull set. Let E={z: Df(x) >k} and F = {z:df(z) <s <t < Df(x)}.
Claim 1. \*(E) = £ for some c.

If x € E, then there exists arbitrarily small interval z € [y,z] C [a,b] containing z such that
f&-IW) > ko Let I = [y,2] and T = (f(y), f(z)). Then MI) > kA(I). We collect all such

Z=y
closed intervals. Then it satisfies the condition for Vitali’s covering lemma, so we can find an at

most countable subcollection of disjoint intervals {I,}5%; such that F C Ua21 I, a.e. Since f is

increasing, {I,} are also disjoint. We estimate

AME) <A UL ] =Y ) %Z () @;M)

a>1 a=1
Claim 2. X*(F) = 0.
We will show A (F) < ZA(F) and so conclude A (F) = 0. For given € we choose an open set G O F
such that A (G\ F) < e. For the first inequality, for each x € F we can find arbitrarily small

intervals = € [y, 2] such that [y, 2] C GNla,b] and w < s. By Vitali’s covering lemma, we
can find a collection of disjoint intervals {I,} such that F C |J,~; Io a.e. Thus, we estimate

UL ZA()mX} ) =2 UL | <sMG) < sON(F) +e)

a>1 a>1 a>1 a>1

For the other side of inequality, we begin with F' N Ua>1 ~. Note that since I,’s are disjoint
closed intervals , A (Ua>1 Ig) =A (Ua>1 ) For each x € F'NJ,5, I3, we can find arbitrarily

small intervals [y, z] C Uas1 1o such that M > t. We use Vitali’s covering lemma to obtain
a countable collection of disjoint intervals { Jg} s>1 such that

Uncl s
a>1 B>1

a.e. We also know F' C {4+, Js a.e. Thus, we estimate

<3S A(Up) < }:A( 5) < % UL | <10 +9

B>1 /3>1 a>1

Since € > 0 is arbitrary, we conclude that A (F') < 2X(F'). This complete the proof. O

1
Theorem 5.9. If F' is of bounded variation on [a,b], then F' is integrable and

/bF'(x)deF(b)—F(a)
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PROOF. May assume that F is increasing. By Lebesgue’s theorem, F” exists a.e. We set F/(z) = F(b)
for x > b. Thus,

F'(z) = khﬁrglo k[F(x+1/k) — F(z)] for a.e. .

b

/ab]g[F(x—i-l/k)—F(:v)]dx:k/ F(:v)d:v—k/ F(z)dx

a+1/k a
b+1/k a+1/k
:k/ F(x) d:v—k/ F(z)dx
b a

a+1/k
— F(b) — k/ F(z)dz < F(b) — F(a).

b+1/k

Using Fatou’s lemma, we have

k— o0

b b
/F’(:z:)dargliminf/ ElF(z+1/k) — F(x)]dx < F(b) — F(a).

O

EXAMPLE 5.7. If an increasing function F' has a discontinuity at x, then there is a jump i.e.
F(z—) < F(z+). In this case, we have the strict inequality F'(b) — F(a) < f: F'(y) dy, since F’
do not count its jump. Hence, the continuity is a necessary condition to have FTC. Even if F' is
continuous and of bounded variation, it may not satisfy the Fundamental Theorem of Calculus.
Recall the Cantor-Lebesgue function that is increasing, uniformly continuous, F'(z) = 0 a.e., but
F(1)=1, F(0)=0.

Theorem 5.10. If f is increasing on [a,b], then f is continuous except for countably many points.

ProOOF. Exercise.
O

ExXAMPLE 5.8. There is a monotone function which is discontinous at countably many points. Let
f(z) =0 when x < 0, and f(z) = 1 when x > 0. Choose a countable dense sequence {r,} in [0, 1].
Then,

— 1
)= 5 fa =)
n=1
is discontinuous at all points of the sequence {ry}.

DEFINITION 5.4. An elementary jump function is a function ¢ : R — R which has the form:

a, x < X
o(x)qb, x=umx
C, T > X

for a < b < ¢. A function which can be written as a countable sum of elementary jump functions is
called a jump function. i.e. j(z) = >~ ox(z). jump function
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Theorem 5.11. (First decomposition) Let F : [a,b] — R be a function of bounded variation. Then,

F' is decomposed into a jump function and a continuous function:

F(r) = j(z) + 9(z).

5.2.2. Absolute Continuity.

DEFINITION 5.5. We say F : [a,b] — R is absolutely continuous if for any € > 0, there exists § > 0
such that for any finite union of disjoint intervals J;_, (2%, y&),

Sluk—al <6 = D |F(yk) - Flaw)| <e.
k=1 k=1

REMARK 5.9.

(1) By dfinition, absolute continuity is stronger that uniform continuity, but weaker than
Lipschitz continuity( i.e. |F(z) — F(y)| < Clz — y| for some C.) In summary, C' =
Lipschitz continuity = absolute continuity = uniform continuity = continuity.

(2) Absolutely continuous functions are of bounded variation. Decompose interval [a,b] into
small intervals of length 6. Then on each small interval [z, zk41], we have Tr(zk, Tp+1) <

€. As the number of intervals is (b — a)/d, Tr(a,b) < @.

EXAMPLE 5.10. There are functions which is uniformly continuous but not absolutely continuous.

xsin%, 0<x<l1
f(z) =
0, z=0.

Theorem 5.12. Let F : [a,b] — R be measurable. Then F is absolutely continuous if and only if

there is an integrable function f such that

F(@) = Fl@)+ [ e

In this case, from Lebesgue differentiation theorem, F' = f a.e.

Lemma 5.13. Let f : R™ — R be a integrable function. Then, for any € > 0, there exists § > 0
such that for any E C R™ satisfying A\ (E) < ¢,
/ fl<e
E

PrOOF. We may assume f > 0 without loss of generality. If f € L°°, then the conclusion is
obvious by choosing 6 = ¢/N. Now, we approximate f by fy where fy(x) = min(f(x), N) such
that || f — fw|l1 < €/2. (This is justified by MCT.) Then, we choose § = ¢/(2N)

/ElflS/Elf—fNIJr/EUNl§6/2+e/2N-N=e.
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Lemma 5.14. If F': [a,b] — R is absolutely continuous and F' =0 a.e., then F is constant.

PROOF. Fix ¢ € [a,b]. We also fix small numbers €1, €2 > 0. It suffices to show
|F(c) — F(a)| < €1+ e2(c— a).

For x € E = {y € [a,c] : F'(y) = 0}, we can find arbitrarily small intervals z € [y, z] such that
F(z)=F(y)
Yy—=z
obtain a finite disjoint sub collection Iy = [y1,21], -+, IN = [yn, 2] such that A ([a, \ Uszl Ik) <

0, where § satisfies the absolute continuity condition with respect to €;. We estimate

|F(c) = F(a)] <[F(a) = F(y1)| + [F(y1) = F(z1) + [F(21) = F(y2)| + -+ |[F(2n) = F(0)]

< €y. Collecting all such intervals for each = € E, we can use Vitali covering’s lemma to

N N-1
<D AF(R) = Fla)l + Y 1P (i) = Flyien)l + [F(a) = F(y1)| + [F(zn) = Fle)
k=1 k=1

N

) lyk— 2zl + e < elc—a)+e
k=1

PROOF. of Theorem [512
Lemma [5.13] shows ’if” part. We are left to show ’only if’ part. Since F' is absolutely continuous, it
is of bounded variation and F” is integrable. We can define G(z) = F(z) + [ F'(y) dy. Then, we
have G'(z) = F'(z) a.e. by Lebesgue differentiation theorem. Hence, G — F is absolute continuous
and (G — F)' =0 a.e. By Lemma (.14 and from F(a) = G(a), we conclude G(z) = F(x). O

Finally, we summarize what we have done in this section in the following Theorem.

Theorem 5.15. Lebesque decomposition theorem Let F : [a,b] — R be an increasing function. We

have the following decomposition.

F= @) +9@)+ " ) dy,

where j is an increasing jump function, g is an increasing function with ¢ = 0 a.e., and f is a
nonnegative integrable function.



APPENDIX A

Proof of Theorem [3.22

We do some preparation before giving a proof of Theorem [3.22]

Lemma A.1. Let S be the collection of those subsets of X XY which are finite disjoint unions of

measurable rectangles. Then S is an algebra.

PROOF. It is evident that the intersection of two measurable rectangles is a measurable rectangle.
So, if E,F € § then E(F € S. We are left to check the complement. Any measurable rectangle

A x B is written as a union of two disjoint measurable rectangles,
(A><B)C:AC><YLJA><BC

. Thus, (Ax B)e€ S. If E € S, then FE = Ujvzl E;, where E; are measurable rectangles. Then,
E° = ﬂﬁl Ef. Since Ef € § and S is closed under finite intersection, £ € §. Therefore, S is
closed under finite union. O
DEFINITION A.l. Let X be a set and S C P(X). Then S is a monotone class if S is closed
under countable increasing unions and countable decreasing intersections. That is, if A; € S for

7=1,2,---, then

AjCAyCcAz3C-, = J4es
j=1

A1 DA DA3D -, = [4€S8
j=1

Any o-algebra is a monotone class. Any intersection of monotone classes is a monotone class.
For a collection S of subsets of X, we denote by S, the intersection of all monotone classes containing

S, which is referred as the smallest monotone class containing S or a monotone class generated by

S.

Lemma A.2. Let X be a set and S C P(X) be an algebra. Then

Sm = 0(8S) =: the smallest o-algebra generated by S

PRrROOF. Clearly, S, C 0(S). In view of Lemma [A1] we are left to show S, is an algebra. Let
A,BeS.

e Claim: A° € S,
Define T ={AC X : A° € S,,}. Then § C T. Moreover, T is a monotone class since

66
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Sm is a monotone class. Indeed, for a increasing sequence {A;} C T, A§ € Sy and so
NAS € Sm, UA; € T. It is similar for a decreasing sequence. Therefore, S,;, C T and so
for any A € S,,, we have A° € S,,.

e Claim: AUB € S,
Fix AeS. Defineld ={BC X:AUBE€S,}. Then S C U and U is a monotone class.
It follows that S,, C U, that is, for any B € S,;, and A € S, we have AU B € S,,.
Fix B € S,,, and define V ={A C X : AUB € S,,,}. Then by the same reasoning, we have
Sy CV and for any A,B € S,,, AUB € S,,.

PRrOOF (Proof of Theorem B.22)).
Let W be the collection of all sets E € M x N satisfying the theorem. We will show W = M x N.
For that purpose, we want to show W is a o-algebra. First of all, one can check that

W D § := the algebra generated by {Ax BC X xY : Ae M,BeN}.

(Exercise)

In view of Lemma [A2] we are going to show W is a monotone class.

Claim: W is closed under countable disjoint unions.

PRrROOF (Proof of Claim).

Let {E;}32, C W be disjoint and E' = U2,. Fix y € Y. Then E, = U Ej ,, which is a disjoint
union. Thus, F, € M. From the countable additivity of u, u(Ey) = 3772 u(Ey,y). Since u(Ej,)
are v-measurable, p(E,) is also v-measurable. Similarly, E, € N and v(E,) is p-measurable.

forEoat = [ Suew=3 [ wpw e
_ i / (o By e W)
Therefore, E € W. 0

Since (X, M, ), (Y, N, v) are o-finite, we can write X = (J;2, A;, Y = UgZ, By where A;, By
are disjoint and p(A;), ¥(By) < co. In order to show that W is a monotone class, bring a decreasing
sequence {E,} C W. Then EJ* = E,, ((4; x By) € W for each j,k,n and {E}*} is a decreasing
sequence in n. We will show E%F = N EZF € W. Then E = N E, = Uk E7k € W, thanks to
Claim.

Fix j, k and we consider a decreasing sequence {EJ-*}. We omit the superscript for simplicity. For
afixedy € Y, E, = (E,, ans so E, is p-measurable. Since pu(E,) < p(A;) < oo, we have
w(Ey) = limy, oo i(Ey ) < 0o. Thus, y — u(E,) is a v-measurable function. Similarly, we have
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E, is v-measurable and x — v(FE,) is a py-measurable function.

[ B vt = im [ By vty ovCT)

n—r oo Y

= lim V(Ep ) du(z)

n—oo X

= [ e duta)

The proof for the increasing sequence is similar, in fact, even easier since one do not use the
finiteness of measure. Therefore, we conclude that W is a monotone class and then by Lemma [A.2]
W=MxN.

We define a product measure w(FE) by the common value of (3). We remain to show the countable
additivity. Let E = Ujoil E; be a countable disjoint union. Then {E; ,} are disjoint and,

Finally, we show the uniqueness of such measures. We show for finite measure space, first.
Assume that there two measures 71, 72 on M x A/, which agree on S= the collection of finite unions

of disjoint measurable rectangles. Define
T={EeMxN:m(E)=m(E)}.

Then, clearly, S C 7. One can show 7 is a monotone class. (When you argue with a decreasing

sequence, you need the finiteness of measure) Hence, T = M x N.

For o-finite case, setting as before and fixing A; x By, we define a new measure piy(E) = m(E N

(Aj x By)) for i = 1,2. Then for any measurable rectangle A x B, one can check pi(A x B) =

];ig(A X B). Thus, by the finite measure case, 71 = T2 on M x A. That is, for any £ € M x N,

m(EN(Aj x Bg)) = m2(EN(A; x Bg)). Then by countable additivity, we conclude that
m(E)Y m(EN(A; x Br)) = > m(EN(A; x By)) = m(E).

J.k 7,k
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