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CHAPTER 1

Introduction

1.1. Elements of Integrals

The main goal of this course is developing a ‘new’ integral theory. The development of the

integral in most introductory analysis courses is centered almost exclusively on the Riemann integral.

Riemann integral can be defined for some ‘good’ functions, for example, the spaces of functions which

are continuous except finitely many points. However, in this course, we need to define an integral

for a larger function class.

A typical integral consists of the following components:

∫

A

The set of integration (or the domain of integration)

f(x)

The integrand

The integrator

dx .

Roughly speaking, an integral is a summation of continuously changing object. Note the sign
∫

represent the elongated S, the initial of ‘sum’. It approximates
∑

α∈I

max
x∈Aα

f(x)|Aα| or
∑

α∈I

min
x∈Aα

f(x)|Aα|, 1

where we decompose the set of integration A into disjoint sets, i.e., A =
⋃

α∈I Aα so that f is

almost constant on each Aα. Here we denote |Aα| as the size of the set Aα. And maxx∈Aα
f(x) or

minx∈Aα
f(x) are chosen for the representatives of function value in Aα. Here we can naturally ask

Question. How can we measure the size of a set?

For the Riemann integral, we only need to measure the size of intervals (or rectangles, cubes for

higher dimensions).

Example 1.1. Let f be a R-valued function from [a, b] which is described in the next figure. First

we chop out [a, b] into small intervals [x0 = a, x1], [x1, x2], · · · , [xn−1, xn = b] and then we can

approximate the value of integral by

n∑

i=1

f(xi)|xi − xi−1|.

The limit of this sum will be defined to be the value of the integral and it will be called the Riemann

integral. Here we use intervals to measure the size of sets in R.

1one can replace maxx∈Aα
by any representative value of f in Aα

3
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b bb b b b

x0 = a x1 · · · xn = b
x

f(x)

For the R2, we chop out the domain into small rectangles and use the area of the rectangles to

measure the size of the sets.

a

bR

For some ‘ugry’ functions (highly discontinuous functions), measuring size of intervals (or rectangles,

cubes for higher dimension) is not enough to define the integral. So we want to define the size of

the set for larger class of the good sets.

Then, on what class of subsets in Rn can we define the size of sets? From now on, we will call

‘the size’ of sets ‘the measure’ of sets. We want to define a measure function

m : M → [0,∞],

where M ⊆ P(Rn), i.e., a subcollection of P(Rn). Hence, our aim is finding a reasonable pair

(m,M) for our integration theory.

Can we define m for whole P(Rn)? If it is not possible, at least, we want to construct a measure

on M appropriately so that M contains all of ‘good’ sets such as intervals (rectangles in higher

dimension), open sets, compact sets. Furthermore, we hope the extended measure function m to

agree with our intuition. To illustrate a few,

• m(∅) = 0

• m([a, b]) = b− a, or m(Rectangle) = |vertical side| × |horizontal side|
• If A ⊂ B, then m(A) ≤ m(B).

• If A, B are disjoint, then m(A ∪B) = m(A) +m(B).

Furthermore, we expect countable additivity:

• If Ai, i = 1, 2, · · · are disjoint, then
∑∞

i=1 m(Ai) = m(∪∞
i=1Ai).

In summary, in order to have a satisfactory integral theory we need to construct a measure

function defined in a large class of subsets in Rn. In Chapter 2, we construct the Lebesgue measure

and proceed to its integral theory. Before then, we briefly review an ‘old’ theory, Riemann integrals.

1.2. A Quick review of Riemann integrals

Here we recall definitions and key theorems in Riemann integrals and observe some of its limi-

tation. I ask you look back your textbook of Analysis course to recall proofs. Later we will revisit

Riemann integrals in order to compare with Lebesgue integral after we develop Lebesgue theory. For
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simplicity, we will work on only R. (The case for higher dimension will be very similar.) Suppose

we have a bounded function f : [a, b] → R such that |f(x)| ≤ M for all x ∈ [a, b].

Define a partition p of [a, b] by p = {x0, x1, · · · , xn : a = x0 < x1 < · · · < xn = b}. We continue

to define the upper Riemann sum with respect to a partition p by

URS(f ; p) :=

n∑

i=1

max
x∈[xi−1,xi]

f(x)|xi − xi−1|.

The lower Riemann sum can be defined in a similar way by

LRS(f ; p) :=

n∑

i=1

min
x∈[xi−1,xi]

f(x)|xi − xi−1|.

By the definition, we can easily see that

−M(b− a) ≤ LRS(f ; p) ≤ URS(f ; p) ≤ M(b− a)

for any partition p of [a, b]. We can also define a refinement partition p∗ of p if p∗ ⊃ p.

Example 1.2. Let p1 and p2 be partitions of [a, b]. Then p1 ∪ p2 is also a partition of [a, b] and

moreover p1∪p2 is a refinement of p1 and p2. Note that the collection P of all partitions is partially

ordered by inclusion.

Note that

LRS(f ; p) ≤ LRS(f ; p∗) ≤ URS(f ; p∗) ≤ URS(f ; p).

Observe that difference between URS and LRS is getting smaller as we refine a partition.

Now we may define the upper Riemann integral by

∫ b

a

f(x)dx := inf
p∈P

URS(p; f).

Similarly, we can define the lower Riemann integral by

∫ b

a

f(x)dx := sup
p∈P

LRS(p; f).

Then we have
∫ b

a

f(x)dx ≤
∫ b

a

f(x)dx

from definition. Finally, we say f is Riemann integrable if

∫ b

a

f(x)dx =

∫ b

a

f(x)dx.

and moreover we define
∫ b

a

f(x)dx :=

∫ b

a

f(x)dx =

∫ b

a

f(x)dx.

Theorem 1.1. If f : [a, b] → R is continuous then f is integrable on [a, b].
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Proof. First, note that f is uniformly continuous on [a, b], i.e., for given ǫ > 0, we can choose δ

such that |f(x)− f(y)| < ǫ whenever |x− y| < δ.

Let p be a partition of [a, b] such that |xi − xi−1| < δ. Then

URS(f ; p)−LRS(f ; p) =
n∑

i=1

[
max

x∈[xi−1,xi]
f(x) − min

x∈[xi−1,xi]
f(x)

]
|xi−xi−1| <

n∑

i=1

ǫ|xi−xi−1| ≤ ǫ(b−a).

By choosing ǫ sufficiently small, we can make URS(f ; p)− LRS(f ; p) arbitrarily small. �

Corollary 1.2. If f : [a, b] → R is piecewise continuous, i.e., it is continuous except finitely many

points, then f is integrable on [a, b].

Proof. To prove this theorem, we slightly modify the above proof. Let {y1, · · · , yn} be the set

of points of discontinuity. Even if we cannot shrink the size of the difference between maxx∈I f(x)

and minx∈I f(x), we can still shrink the size of intervals in our partition which contains y1, · · · ,
yn. Since our function is bounded,2 we can estimate the difference between URS and LRS on the

intervals around discontinuity

≤ 2M · (the length of intervals around discontinuity).

And we can choose the length of those intervals to be arbitrarily small. �

Corollary 1.3. If f : [a, b] → R is continuous except countably many points, then f is integrable

on [a, b].

Proof. For the case when there are infinitely many points of discontinuity, we may use the

convergent infinite series
∑∞

i=1(ǫ2
−i)/M . But you still have to be cautious about the fact that

there are infinitely many points of discontinuity but you have only finitely many intervals in your

partition. �

Exercise 1.1. Write the proof of Theorem 0.1, Corollary 0.2 and Corollary 0.3 in detail.

Example 1.3 (A function which is not Riemann integrable). Define

fDir(x) :=

{
1 if x ∈ Q,

0 if x ∈ Qc.

Then on any interval I ⊂ R,

max
x∈I

fDir(x) = 1 and min
x∈I

fDir(x) = 0.

Hence fDir is not Riemann integrable. Also, note that fDir is nowhere continuous.

Theorem 1.4. Let f : [a, b] → R be bounded.

If f is monotonic, then f is Riemann integrable.

2Note that every piecewise continuous functions on the compact domain is bounded.
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Proof. We may assume that f is nondecreasing. Let p = {x0, x1, · · · , xn} be a partition such that

|xi − xi−1| = b−a
n , i = 1, 2, · · · , n.

URS(f ; p)− LRS(f ; p) =
n∑

i=1

[
max

x∈[xi−1,xi]
f(x)− min

x∈[xi−1,xi]
f(x)

]
|xi − xi−1| =

n∑

i=1

f(xi)− f(xi−1)
b − a

n

= (f(b)− f(a))
b− a

n
≤ 2M(b− a)/n ≤ ǫ,

by choosing n sufficiently large. �

The last thing we want to mention is

Theorem 1.5 (Fundamental theorem of calculus). (1) Let f be a continuous R-valued function on

[a, b]. Then

F (x) :=

∫ x

a

f(y)dy

is differentiable on (a, b) and moreover F ′ = f .3

(2) Let f be a Riemann integrable R-valued function on [a, b]. Then

F (x) :=

∫ x

a

f(y)dy

is continuous on [a, b]. Furthermore, if f is continuous at x0 ∈ (a, b), then F is differentiable at x0

and F ′(x0) = f(x0).

Proof. Exercise. �

Remark 1.4 (Limitation of Riemann integrals). First of all, to be Riemann integrable, in ‘most’ of

small intervals max f −min f must be small enough. So, we can say that the Riemann integrability

depends on the continuity of functions. In fact, f is Riemann integrable if and only if f is continuous

‘almost everywhere’, where the term almost everywhere to be defined later.

Second, in Riemann integration theory, we only consider only intervals (rectangles or cubes for

higher dimensions) to decompose the domain of integration. So we needed to know how to measure

intervals. But for some functions, other type of decomposition would be natural. For example, if

we can define measures of the sets like Q or Qc, then we can naturally define
∫ 1

0

fDir(x)dx := 1 · |Q ∩ [0, 1]|+ 0 · |Qc ∩ [0, 1]|.

Finally, if we define a sequence {fn : [0, 1] → R} of functions by

fn(x) :=

{
1 if x = p/q where p, q ∈ Z and q ≤ n,

0 otherwise.

Then fn’s are Riemann integrable since they are continuous except finitely many points. Moreover

fn → fDir as n → ∞. But we have already seen that fDir is not Riemann integrable. This example

shows us that even though all functions in the sequence is Riemann integrable, their limit can fail

to be Riemann integrable. Note that if a sequences of Riemann integrable functions {fn} converge

uniformly to f , then f is also Riemann integrable. (Exercise)
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1.3. Jordan measure

We begin to construct a measure which agree with our intuition, such as length, area, or volume

for each dimension. First we consider very restricted class of sets, so called elementary sets(or special

polygons in Jones’s book).

The λ will be constructed to satisfy the following properties.

• λ((a, b)) = λ((a, b]) = λ([a, b)) = λ([a, b]) = b− a = (the length of the interval),

• λ(R) = cd = (the area of the rectangle),

• λ(C) = efg = (the volume of the cube).

a b
c

d
e f

g

I = (a, b) ∈ R R ∈ R2 C ∈ R3

Definition 1.1. We say an interval is a subset of R of the form [a, b], (a, b], [a, b), or (a, b). We

define a measure of intervals by λ (I) = b− a. In higher dimensions, we define a box by a subset of

Rn of the form B = I1 × I2 × · · ·× In where Ij are intervals. Then, we define a measure of boxes by

λ (B) =
n∏

j=1

λ (Ij) .

An elementary set is any subset of Rn which is written as a finite union of boxes. 4

P : an elementary set(or special polygon)

Then, the set of elementary sets in Rn, denoted by E , form a Boolean algebra. In other words,

if E,F ⊂ Rn are elementary sets, then E ∪ F , E ∩ F, and E \ F (= {x ∈ Rn : x ∈ E and x /∈ F})
are also elementary.(Exercise)

In order to define a measure on a elementary set, we need the following:

Lemma 1.6. Let E ⊂ Rn be an elementary set.

(1) E can be expressed as the finite union of disjoint boxes.

4In Jones’s book, boxes and elementary sets are referred as special rectangles and special polygons, respectively.

In their definition, they consider only closed boxes and closed elementary set. Then, in many statements in the

following, one has to change ’disjoint’ to ’nonoverlapping’ which means that two sets has disjoint interior.
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(2) If E is partitioned as a finite union B1 ∪ B2 ∪ · · · ∪ Bk of disjoint boxes, then then the

quantity
∑k

i=1 λ (Bi) is independent of the partition. We define the measure of E by

λ (E) =
∑k

i=1 λ (Bi).

Proof. (1) We first prove for 1 dimensional case. Given any finite collection of intervals I1, · · · , Ik,
one can place the 2k end points in increasing order. We see that there exists a finite collection of

disjoint intervals J1, · · · , Jk′ such that each of I1, · · · , Ik are a union of a sub collection of J1, · · · , Jk′ .

For higher dimension, we express E as the union B1, · · · , Bk of boxes Bi = Ii1 × · · · × Iin. For each

j = 1, · · · , n, we use the one dimensional argument to express I1j , · · · , Ikj as the union of sub

collections of J1j · · · , Jk′

j
j of disjoint intervals. One can express B1, · · · , Bk as finite unions of boxes

Ji11 × · · · ,×Jinn, where 1 ≤ ij ≤ k′j for all 1 ≤ j ≤ n.

(2) We use discretization argument. Observe that for any interval I, the length of I can be recovered

by the limiting formula

λ(I) = lim
N→∞

1

N
#(I ∩ 1

N
Z),

where 1
NZ = {n/N : n ∈ Z}. In higher dimension, for any box B, we see that

λ(B) = lim
N→∞

1

Nn
#(B ∩ 1

N
Zn).

If E is a finite disjoint union of B1, · · · , Bk, then

λ(E) =

k∑

j=1

lim
N→∞

1

Nn
#(Bj ∩

1

N
Zd) = lim

N→∞

1

Nn
#(E ∩ 1

N
Zd).

In particular, λ(E) is independent of decompositions of disjoint boxes. �

One can easily check fundamental properties: Let E,F,Ej , j = 1, 2, · · · , k be elementary sets.

• λ (∅) = 0

• λ ({p}) = 0

• P1(monotonicity)

E ⊂ F ⇒ λ (E) ≤ λ (F )

• (finite subadditivity)

λ (E1 ∪ · · · ∪ Ek) ≤ λ (E1) + · · ·+ λ (Ek)

• P2(finite additivity) If Ej , j = 1, · · · , k are disjoint, then

λ (E1 ∪ · · · ∪ Ek) = λ (E1) + · · ·+ λ (Ek) .

• (translation invariance)

λ (E + x) = λ (E)

So far, we have defined a measure function

λ : E → [0,∞],

which satisfies fundamental conditions. However, the set of elementary sets is too restricted. We

want to extend the measure function to a larger class of sets.

First, we discuss the Jordan measure, which associated to Riemann integrals.
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Definition 1.2. Let E ⊂ Rn be a bounded set.

• Jordan inner measure

λ∗(J)(E) = sup
A⊂E

A elementary

λ (A)

• Jordan outer measure

λ∗(J)(E) = inf
E⊂B

B elementary

λ (B)

• If λ∗(J)(E) = λ∗(J)(E), then we say that E is Jordan measurable, define λ (E) by the

common number. We denote by J , the collection of all Jordan measurable sets.

Note that we consider only bounded set so that Jordan outer measure to be defined. There is a

way to extend Jordan measurability to unbounded sets, as this is not our final destination, we will

not pursue this direction. One can observe elementary properties:

Lemma 1.7. Let E,F be Jordan measurable.

• E ∪ F , E \ F , E ∩ F are Jordan measurable.

• λ (E ∪ F ) ≤ λ (E) + λ (F )

• If E and F are disjoint, then λ (E ∪ F ) = λ (E) + λ (F ).

• If E ⊂ F , then λ (E) ≤ λ (F ).

• E + x is Jordan measurable and λ (E + x) = λ (E).

Exercise 1.2. Let E be a bounded set.

(1) Show that E and the closure E have the same Jordan outer measure.

(2) Show that E and the interior E◦ have the same Jordan inner measure.

(3) Show that E is Jordan integrable if and only if the topological boundary ∂E of E has Jordan

measure zero.

Example 1.5.

(1) [0, 1] ∩Q and [0, 1] ∩Qc are not Jordan measurable as the topological boundary is [0, 1].

(2) There are open sets that are not Jordan measurable. Let denote [0, 1] ∩ Q = {rn : n =

1, 2, · · · }. Consider an open set E = ∪∞
n=1(rn − ǫ

2(n+2)
, rn + ǫ

2n+2 ). The Jordan inner

measure λ∗(J)(E) ≤ ǫ but The Jordan outer measure λ∗(J)(E) = 1. Indeed, if ∪N
i=1Ii ⊃ E,

then [0, 1]\∪N
i=1Ii, which is also a finite union of disjoint intervals, cannot contain any non

degenerate intervals by construction. Thus, λ([0, 1] − ∪N
i=1Ii) = 0 and so λ(∪N

i=1Ii) = 1.

Hence, λ∗(J)(E) = 1. Later, we will see that E is Lebesgue measurable. Then, by countable

additivity, one can show λ(E) ≤ ǫ.

Similarly, considering [0, 1]\E, one can show that there are compact set which are not

Jordan measurable.

(3) The above examples show that a countable union or a countable intersection of Jordan

measurable sets may not be Jordan measurable. For instance, consider a sequence of

elementary sets En = {x ∈ [0, 1] : x = q
p where p ≤ n} or Ec

n.



1.3. JORDAN MEASURE 11

Theorem 1.8. (A connection to Riemann integral)

E is a Jordan measurable set in [a, b] if and only if the indicator function 1E is Riemann integrable.

Proof. Assume E is Jordan measurable. Fix ǫ > 0. We can find elementary sets A,B such that

A ⊂ E ⊂ B and λ(B \ A) ≤ ǫ.(Prove!) Obviously, 1A ≤ 1E ≤ 1B and 1A, 1B are Riemann inte-

grable. Make a partition p consisting of end points of A,B. As A,B are elementary, URS(1A, p) =

LRS(1A, p) = λ(A), URS(1B, p) = LRS(1B, p) = λ(B). Then we have URS(1E, p) ≤ URS(1B, p),

LRS(1E, p) ≥ LRS(1A, p) and so we conclude that URS(1E, p)− LRS(1E, p) ≤ ǫ.

Conversely, assume that 1E is Riemann integrable. For a fixed ǫ > 0, we can find a partition p

such that
∑N

i=1 maxxi−1≤x≤xi
1E(x) −minxi−1≤x≤xi

1E(x)(xi − xi−1) ≤ ǫ. Choose elementary sets

A ⊂ E ⊂ B so that

B = ∪i[xi−1, xi], max1E = 1 on [xi−1, xi]

A = ∪i(xi−1, xi), min 1E = 1 on [xi−1, xi].

Then, we have λ(B) − λ(A) ≤ ǫ. �



CHAPTER 2

Lebesgue measure on Rn

2.1. Construction

We want to extend ‘measure’ to a larger class of sets. We will denote the Lebesgue measure

λ : M → [0,∞].

The λ will be constructed to satisfy the following properties.

• λ((a, b)) = λ((a, b]) = λ([a, b)) = λ([a, b]) = b− a = (the length of the interval),

• λ(R) = cd = (the area of the rectangle),

• λ(C) = efg = (the volume of the cube).

a b
c

d
e f

g

I = (a, b) ∈ R R ∈ R2 C ∈ R3

We shall give the definition in six stages, progressing to more and more complicated classes of

subsets of Rn.

Stage 0 : The empty set. Define

λ(∅) := 0.

Stage 1 : Special rectangles. In Rn, a special rectangle is a closed cube of the form

I = [a1, b1]× · · · × [an, bn] ⊂ Rn.

Note that each edge of a special rectangle is parallel to each axis. Define

λ(I) := (b1 − a1) · · · · · (bn − an).

Stage 2 : Special Polygons. In Rn, a special polygon is a finite union of nonoverlapping special

rectangles. Here the word ‘nonoverlapping’ means having disjoint interiors, i.e., a special polygon

P is the set of the form

P =

k⋃

j=1

Ij ,

where Ij ’s are nonoverlapping rectangles. Define

λ(P ) :=

k∑

j=1

λ(Ij).

12
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P : a special polygon

One can naturally ask

Question. Is λ(P ) well-defined?

For a given special polygon, there are several way of decomposition into special rectangles. Intu-

itively, it is an elementary but boring task to check the well-definedness. I leave it as an exercise.

Furthermore, on the way to check it one can also show

Proposition 2.1 (P1, P2). Let P1 and P2 be special polygons such that P1 ⊂ P2. Then λ(P1) ≤
λ(P2). Moreover, if P1 and P2 are nonoverlapping each other, then λ(P1 ∪ P2) = λ(P1) + λ(P2).

Example 2.1. In R, a special polygon is a finite union of nonoverlapping closed intervals. Write

P =

n⋃

i=1

[ai, bi].

Then we can see that

λ(P ) =

n∑

i=1

(bi − ai).

Exercise 2.1. Prove the proposition 2.1.

Stage 3 : Open sets. Let G be a nonempty open set in Rn. Before we define Lebesgue measure

on open sets, we observe the characterization of open sets. For one dimensional case, the structure

of open sets is quite simple.

Proposition 2.2 (Problem 6 in the page 35 of the textbook). Every nonempty open subset G of

R can be expressed as a countable disjoint union of open intervals.

Proof. For any x ∈ G, define ax := inf{a ∈ R : (a, x) ⊂ G} and bx := sup{b ∈ R : (x, b) ⊂ G}.
Here we allow ax and bx to be ±∞. Let x ∈ I = (a, b) ⊂ G. Then I ⊂ Ix = (ax, bx). Indeed,

(a, x) ⊂ G, (x, b) ⊂ G and hence ax ≤ a and b ≤ bx). Thus, I ⊂ Ix. So we can say that Ix := (ax, bx)

is the maximal interval in G containing x.

It is evident that G ⊂ ⋃x∈G Ix. On the other hand, for y ∈ ⋃x∈G Ix, there exists z ∈ G such

that y ∈ Iz ⊂ G. Thus

G =
⋃

x∈G

Ix.

Now we claim that
⋃

x∈G Ix is a countable disjoint union. First, assume that Ix ∩ Iy 6= ∅ then there

exists z ∈ Ix ∩ Iy . Since Iz is the maximal interval in G containing z and z ∈ Ix ⊂ G, we have

Ix ⊂ Iz. Similarly, we can see that Iz ⊂ Ix and hence we get Iz = Ix. With the same argument,
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we can see that Iz = Iy . Therefore, Ix = Iy or Ix ∩ Iy = ∅, and so
⋃

x∈G Ix is a disjoint union.

Also, by picking a rational number from each Ix, since Q is countable, we can conclude that G is a

countable union of disjoint intervals. �

Note that the decomposition above is unique.(Exercise)

In higher dimension, we have a weaker version of the above proposition.

Proposition 2.3. Let G ∈ Rn be open. Then G is expressed by a countable union of non overlapping

special rectangles.

Proof. We use multi-index (j) := (j1, j2, · · · , jn). We decompose Rn by special rectangles side of

which is of length 2−k. For ji ∈ Z, k ∈ Z+, denote

C
(j)
k := [

j1
2n

,
j1 + 1

2n
]× · · · × [

jn
2n

,
jn + 1

2n
].

For k ∈ Z+, we define inductively a index set Ik = {(j) : C(j)
k ⊂ G, but C

(j)
k * C

(j′)
k′ for any (j′) ∈

Ik′ , k′ < k}. Then, we claim that

G =

∞⋃

k=1

⋃

(j)∈Ik

C
(j)
k .

For the proof, ” ⊃ ” is obvious. The other inclusion is followed from openness of G. Indeed, for

x ∈ G, there is a shrinking sequence of {C(jk)
k } containing x. As there exist a ǫ−neighborhood of

x, Bǫ(x) ⊂ G, one of C
(jk)
k ⊂ Bǫ(x) ⊂ G. �

λ(G) will be obtained by approximating the measure of polygons within G. Define

λ(G) := sup{λ(P ) : P ⊂ G, P is a special polygon}.

Note that there exists at least one special polygon P ⊂ G with λ(P ) > 0, since G is nonempty. So,

λ(G) > 0 for any nonempty open set G. Also, even though λ(P ) < ∞ for every P ⊂ G, λ(G) could

be ∞. For example, we have

λ(Rn) = sup{λ(P ) : P ⊂ Rn}
≥ sup {λ ([−a1, a1]× · · · [−an, an]) : a1, · · · , an ∈ R}

= sup

{
2n

n∏

i=1

ai : a1, · · · , an ∈ R

}
.

Since ai > 0 can be arbitrarily chosen, λ(Rn) = ∞.

Here is the list of properties that λ satisfies.

Proposition 2.4. Let G and Gk, k = 1, 2, · · · , be open sets and P be a special poligon. Then the

followings hold:

(O1) 0 ≤ λ(G) ≤ ∞. (O2) λ(G) = 0 if and only if G = ∅.

(O3) λ(Rn) = ∞. (O4) If G1 ⊂ G2, then λ(G1) ≤ λ(G2).
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(O5) λ

(
∞⋃

k=1

Gk

)
≤

∞∑

k=1

λ(Gk).

(O6) If Gk’s are disjoint, then λ

(
∞⋃

k=1

Gk

)
=

∞∑

k=1

λ(Gk).

(O7) λ(P ) = λ(P ◦).

Proof. ForO4, fix a special polygon P ⊂ G1. Since P is also a special polygon in G2, by definition,

λ(P ) ≤ λ(G2). Hence λ(G1) = sup{λ(P ) : P ⊂ G, P is a special polygon} ≤ λ(G2).

For O5, note that
⋃∞

k=1 Gk is open and hence λ (
⋃∞

k=1 Gk) can be defined. Fix a special polygon

P ⊂ ⋃∞
k=1 Gk. For each x ∈ P ⊂ ⋃∞

k=1 Gk, x ∈ Gi(x) for some index i(x). Moreover, we can find ǫx

so that B(x, ǫx) ⊂ Gi(x). Note that

{B (x, ǫx/2) : x ∈ P}

is an open covering of P . Since P is compact, there exists a finite subcovering

{B (xi, ǫxi
/2) : xi ∈ P, i = 1, · · · , N} .

Let ǫ := min{ǫxi
/2 : i = 1, · · · , N}. For given x ∈ P , x ∈ B(xi, ǫxi

/2) for some i and B(x, ǫ) ⊂
B(xi, ǫxi

) ⊂ Gi(x) ⊂
⋃∞

k=1 Gk.
1

b

b

xi

x

ǫxi

ǫxi
/2

Gi(x)

Let P =
⋃M

j=1 Ij , where Ij ’s are nonoverlapping rectangles. We may assume that each Ij has the

diameter2 less than ǫ. (We can divide Ij into small rectangles whose diameter is less than ǫ.) Let

xj be the center of Ij . Then each Ij ⊂ B(xj , ǫ) ⊂ Gk for some k. Merge Ij ’s which belong to Gk to

form a new special rectangle Qk. Indeed, we can define

Qk := (the union of Ij ’s such that Ij ⊂ Gk but Ij 6⊂ G1, · · · , Gk−1)

Then each Ij is contained in one of Gk and P =
⋃∞

k=1 Qk. In fact, P is a finite union of Qk’s.

Suppose Qk = ∅ for every k ≥ K. Then

λ(P ) =

K∑

k=1

Qk ≤
K∑

k=1

λ(Gk) ≤
∞∑

k=1

λ(Gk).

Since P is chosen arbitrarily, by definition,

λ

(
∞⋃

k=1

Gk

)
≤

∞∑

k=1

λ(Gk).

1Such ǫ is called the Lebesgue number and the existence of such Lebesgue number is referred as the Lebesgue

number lemma.
2In general, the diameter of a subset of a metric space is the least upper bound of the distances between pairs

of points in the subset.
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For O6, it suffices to show that

∞∑

k=1

λ(Gk) ≤ λ

(
∞⋃

k=1

Gk

)
.

Fix N and then fix special polygons P1, · · · , PN such that Pk ⊂ Gk. Since Gk’s are disjoint, so are

Pk’s. Note that
⋃N

k=1 Pk is a special polygon in
⋃∞

k=1 Gk. So we have

N∑

k=1

λ(Pk) = λ

(
N⋃

k=1

Pk

)
≤ λ

(
∞⋃

k=1

Gk

)
.

Since P1, · · · , PN can be chosen arbitrarily,

N∑

k=1

λ (Gk) ≤ λ

(
∞⋃

k=1

Gk

)
.

Since N is arbitrary, finally we have

∞∑

k=1

λ (Gk) ≤ λ

(
∞⋃

k=1

Gk

)
.

For O7, let P be a special polygon and write P =
⋃N

j=1 Ij , where Ij ’s are nonoverlapping

rectangles. First of all, it is obvious that λ(P ◦) ≤ λ (P ). To prove the other direction, fix ǫ > 0.

Then we can find a rectangle I ′j such that I ′j ⊂ I◦j and λ(I ′j) ≥ λ (Ij) − ǫ. For example, if Ij =

[a
(j)
1 , b

(j)
1 ]× · · · × [a

(j)
n , b

(j)
n ], then we may take Ij = [a

(j)
1 − δ, b

(j)
1 + δ]× · · · × [a

(j)
n − δ, b

(j)
n + δ], where

0 < δ < ǫ/(2n). Since
⋃N

j=1 I
′
j ⊂ P ◦, we get

λ (P ◦) ≥
N∑

j=1

λ
(
I ′j
)
≥

N∑

j=1

(λ(Ik)− ǫ = λ(P )−Nǫ.

Since ǫ is arbitrary, finally we obtain

λ (P ) ≤ λ (P ◦) . �

Stage 4 : Compact sets. Let K ∈ Rn be a compact set. The Heine-Borel theorem asserts that

a subset in a metric space is compact if and only if it is closed and bounded. Define

λ(K) := inf{λ (G) : K ⊂ G, G is open}.

For a special polygon P , since it is also a compact set, we have two definitions of λ (P ), as a special

polygon and a compact set. We need to check two definitions coincide. Denote λnew(P ) (resp.

λold(P )) as a Lebesgue measure of P when we view P as a compact set (resp. a special rectangle).

Proposition 2.5. For any special rectangle P , λnew(P ) = λold(P ).

Proof. First, let G be an open set such that P ⊂ G. Then, by definition, λold(P ) ≤ λ(G). So

λold(P ) ≤ inf{λ (G) : P ⊂ G, G is open} = λnew(P ).

For the other direction, write G =
⋃N

j=1 Ij , where Ij ’s are nonoverlapping rectangles. Fix ǫ > 0.

Then we may choose a closed rectangle I ′j , which is little bigger than Ij , so that Ij ⊂ I ′◦j and
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λ
(
I ′j
)
≤ λ (Ij) + ǫ. Then P ⊂ ⋃N

j=1 I
′◦
j and we have

λnew(P ) ≤ λ




N⋃

j=1

I ′◦j


 ≤

N∑

j=1

λ
(
I ′◦j
)
<

N∑

j=1

λ (Ij) +Nǫ = λold(P ) +Nǫ.

Since ǫ is arbitrary, we can conclude that λnew(P ) ≤ λold(P ) and hence λnew(P ) = λold(P ). �

Here is the list of properties that λ satisfies.

Proposition 2.6. Let K, K1 and K2 be compact sets in Rn. Then the followings hold:

(C1) 0 ≤ λ(K) < ∞. (C2) If K1 ⊂ K2, then λ(K1) ≤ λ(K2).

(C3) λ(K1 ∪K2) ≤ λ (K1) + λ (K2).

(C4) If K1 and K2 are disjoint, then λ(K1 ∪K2) = λ (K1) + λ (K2) .

Proof. For C1, note that the equality sign in the right side is dropped because K is bounded.

For C2, let G be an open set containing K2. Then K1 ⊂ G and λ (K1) ≤ λ (G). So λ(K1) ≤
inf{λ (G) : K2 ⊂ G, G is open} = λ(K2).

ForC3, let G1 and G2 be open sets containingK1 andK2 respectively. Then K1∪K2 ⊂ G1∪G2.

Here K1∪K2 is a compact set and G1 ∪G2 is an open set. So we have λ(K1 ∪K2) ≤ λ (G1 ∪G2) ≤
λ (G1)+λ (G2). Since G1 and G2 can be arbitrarily chosen, we obtain λ(K1∪K2) ≤ λ (K1)+λ (K2).

For C4, it is enough to show that λ (K1) + λ (K2) ≤ λ(K1 ∪ K2). Suppose that an open set

G such that K1 ∪ K2 ⊂ G is given. Since K1 and K2 are disjoint open set, we may assume that

dist(K1,K2) = ǫ > 0. Let G1 := G ∩ N(K1, ǫ/2)
3 and G2 := G ∩ N(K2, ǫ/2). Then K1 ⊂ G1,

K2 ⊂ G2. Also, we can know that G1 and G2 are disjoint. So we have

λ (K1) + λ (K2) ≤ λ (G1) + λ (G2) = λ (G1 ∪G2) ≤ λ (G) .

Since G is an arbitrary open set containing K1 ∪K2, it follows that λ (K1) + λ (K2) ≤ λ(K1 ∪K2).

and hence λ (K1) + λ (K2) = λ(K1 ∪K2). �

Remark 2.2. Iterating the above proposition, we have λ
(⋃N

j=1 Kj

)
≤ ∑N

j=1 λ (Kj), if Kj’s are

compact sets. Eventually, we will have λ
(⋃∞

j=1 Kj

)
≤ ∑∞

j=1 λ (Kj). However, at this moment,
⋃∞

j=1 Kj do not have to be compact and so λ
(⋃∞

j=1 Kj

)
does not make sense.

Example 2.3 (Cantor ternary set). Let G1 = (1/3, 2/3), G2 = (1/32, 2/32) ∪ (7/32, 8/32), · · · and

define C1 = [0, 1]−G1, C2 = C1 −G2, C3 = C2 −G3, · · · . Then the Cantor ternary set is defined

to be

C :=

∞⋂

k=1

Ck = [0, 1]−
∞⋃

k=1

Gk.

b bbb

0 1/3 2/3 1

b bbb

0 1/3 2/3 1
b b b b

b bbb

0 1/3 2/3 1
b b b bb b b b b bb b

C1

C2

C3

3Here N(K1, ǫ/2) denotes an ǫ/2-neighborhood of K1, i.e., N(K1, ǫ/2) := {x ∈ Rn : |x−y| < ǫ/2 for all k ∈ K1}.
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Thus C is compact. For each n, Cn = [0, 1]−⋃n
k=1 Gk. So λ (C) ≤ λ (Cn) = (2/3)n for every n and

hence λ (C) = 0.

Now observe the relation between the Cantor set and its ternary expansion. Every x ∈ [0, 1]

can be written

x =

∞∑

j=1

αj

3j
,

where αj = 0, 1 or 2. We call this representation of x its ternary expansion. To simplify the

notation, we express this equation symbolically in the form

x = 0.α1α2α3 · · · .

The ternary expansion is unique except when a ternary expansion terminates, i.e., αj = 0 except

finitely many indices j. For example,

1

3
+

1

32
=

1

3
+

∞∑

j=3

2

3j
.

Theorem 2.7. Let x ∈ [0, 1]. Then x ∈ C if and only if x has a ternary expansion consisting only

of 0’s and 2’s.

Proof. Write x =
∑∞

j=1
αj

3j . Observe that, for each k, if x ∈ Ck, then αk 6= 1. Therefore, if x ∈ C,

then αj 6= 1 for every j.

Conversely, assume by the contradiction that x 6∈ C. Then x ∈ ⋃∞
k=1 Gk. In other words,

x ∈ Gk for some k. Now check the fact that

Gj =



x =

∞∑

j=1

αj

3j
∈ (0, 1) : αj = 1 and x 6= 0. · · ·αj000 · · · , 0. · · ·αj222 · · ·



 .

Then it follows the contradiction. �

Proposition 2.8 (Problem 23 in the page 42 of the textbook). C is uncountable.

Proof. One of the ways to prove this claim is using a diagonal method in the ternary expansion. �

Remark 2.4 (Hausdorff dimension of the Cantor set). The Cantor set stimulated a deeper study

on geometric properties on sets. Indeed, one can generalize the notion of dimension to real numbers.

It is called Hausdorff dimension and Hausdorff measure, which generalize α-dimensional Lebesgue

measure. See, for instance, [Fol], [StSh], [Tao] for detail. For any E ⊂ Rn, we define the α-

dimensional Hausdorff outermeasure of E by

m∗
α(E) := lim inf

δ→0

{∑

k

(diamFk)
α : E ⊂

∞⋃

k=1

Fk, diamFk ≤ δ for all k

}
,

which satisfies the countable additivity when one restricted to a measurable class.
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In particular, if E is a closed set, it is known that there exists a unique α such that

m∗
β(E) =

{
∞ if β < α

0 if α < β.
4

In this case, we say that E has Hausdorff dimension α. For instance, the Cantor set C has Hausdorff

dimension log3 2 < 1.

Exercise 2.2. Verify that the Cantor set C has Hausdorff dimension log3 2 < 1. Construct a set

E ⊂ R2 having Hausdorff dimension log3 5, log3 4. For any 0 < r < ∞, find a set having Haudorff

measure r.

We proceed to define the Lebesgue mesure,

Definition 2.1. Let A ∈ R be an arbitrary set. Define

λ∗(A) =the outer measure of A := inf{λ (G) : A ⊂ G, G is an open set}.
λ∗(A) =the inner measure of A := sup{λ (K) : K ⊂ A, K is a compact set}.

For any open set G and compact set K such that K ⊂ A ⊂ G, λ (K) ≤ λ (G). It implies that

λ∗(A) ≤ λ∗(A). Let G be an open set and K be a compact set. Then

λ∗(G) = sup{λ (K) : K ⊂ G, K is a compact set}
≥ sup{λ (P ) : P ⊂ G, P is a special polygon} = λ(G) = λ∗(G).

So we have λ∗(G) = λ (G) = λ∗(G). Also, we can obtain

λ∗(K) = inf{λ (G) : K ⊂ G, G is an open set} = λ(K) = λ∗(K).

Proposition 2.9. Let A, Ak, k = 1, · · · , and B be subsets in Rn. Then the followings hold:

(*2) If A ⊂ B, then λ∗(A) ≤ λ∗(B) and λ∗(A) ≤ λ∗(B).

(*3) λ∗

(
∞⋃

k=1

Ak

)
≤

∞∑

k=1

λ∗(Ak). (*4) If Ak’s are disjoint, then λ∗

(
∞⋃

k=1

Ak

)
≥

∞∑

k=1

λ∗(Ak).

Proof. For *3, fix ǫ > 0. Then there exists open set Gk such that Ak ⊂ Gk and λ (Gk) <

λ∗(Ak) + ǫ2−k. So we have

λ∗

(
∞⋃

k=1

Ak

)
≤ λ

(
∞⋃

k=1

Gk

)
≤

∞∑

k=1

λ (Gk) <
∞∑

k=1

(λ∗(Ak) + ǫ2−k) =
∞∑

k=1

λ∗(Ak) + ǫ.

Since ǫ can be chosen arbitrarily, we have λ∗ (
⋃∞

k=1 Ak) ≤
∑∞

k=1 λ
∗(Ak).

For *4, fix N . For j = 1, · · · , N , let Kj ⊂ Aj be the compact sets. Then

λ∗

(
∞⋃

k=1

Ak

)
≥ λ∗

(
N⋃

k=1

Ak

)
≥ λ

(
∞⋃

k=1

Kk

)
=

N∑

k=1

λ(Kk).

SinceKj can be chosen arbitrarily, we have λ∗ (
⋃∞

k=1 Ak) ≥
∑N

k=1 λ∗(Ak). Also, sinceN is arbitrary,

we can obtain λ∗ (
⋃∞

k=1 Ak) ≥
∑∞

k=1 λ∗(Ak). �

4In fact, there exists such unique α if E is a Borel set, i.e., E is contained in the smallest σ-algebra containing

all open set. We will see the definition of σ-algebra soon or later.
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Stage 5 : Sets having finite outer meausure.

Definition 2.2. Let A ∈ Rn with λ∗(A) < ∞. Define

L0 := {A ∈ Rn : λ∗(A) = λ∗(A) < ∞},

that is, L0 is the class of measurable sets with finite measure. For A ∈ L0, define λ(A) := λ∗(A) =

λ∗(A).

Any open sets and compact sets with finite measure are contained in L0.

Remark 2.5. Readers should understand why we have to confine to finite measure sets when we

check measurability. Measurability is a local property. If we have a non-measurable set, by putting

together countable translated copy of that, one can construct a set A with λ∗(A) = λ∗(A) = ∞.

If not finite, the measurability condition is essentially void. We will see non-measurable sets such

that λ∗(A) = λ∗(A) = ∞.

Lemma 2.10. If A, B ∈ L0 are disjoint, then A ∪B ∈ L0 and λ(A ∪B) = λ(A) + λ(B).

Proof. First, note that λ∗(A ∪B) ≥ λ∗(A ∪B). On the other hand,

λ∗(A ∪B) ≤ λ∗(A) + λ∗(B) = λ(A) + λ(B) = λ∗(A) + λ∗(B) ≤ λ∗(A ∪B).

So all the terms in the above must be equal. In particular, we have A ∪ B ∈ L0 and λ(A ∪ B) =

λ(A) + λ(B). �

Theorem 2.11 (Approximation lemma for L0). Suppose that A ∈ Rn with λ∗(A) < ∞. Then

A ∈ L0 if and only if there exist a compact set K and an open set G such that λ(G \ K) < ǫ for

each ǫ > 0.

Proof. First, assume that A ∈ L0. By definition of λ∗ and λ∗, for each ǫ > 0 there exist a

compact set K and an open set G such that λ(K) > λ∗(A) − ǫ/2 and λ(G) < λ∗(A) + ǫ/2. Then

λ(G \K) = λ(G)− λ(K) < ǫ.

Conversely, fix ǫ > 0. Let K and G be a compact set and an open set such that λ(G \K) < ǫ

for each ǫ > 0. Then we have

λ∗(A) ≤ λ(G) = λ(K) + λ(G \K) < λ(K) + ǫ ≤ λ∗(A) + ǫ.

Since ǫ is arbitrary, we have λ∗(A) ≤ λ∗(A). �

Corollary 2.12. If A, B ∈ L0, then A ∪B, A ∩B, A \B ∈ L0.

Proof. Fix ǫ > 0. Let K1 and G1 (resp. K2 and G2) be a compact set and an open set such that

K1 ⊂ A ⊂ G1 and λ(G1 \K1) < ǫ/2 (resp. K1 ⊂ A ⊂ G2 and λ(G2 \K2) < ǫ/2). Then K1 \G2 is

compact and G1 \K2 is open. Moreover, K1 \G2 ⊂ A \B ⊂ G1 \K2 and

(G1 \K2) \ (K1 \G2) ⊂ (G1 \K1) ∪ (G2 \K2).
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G1

G2

K1

K2

(G1 \K1) ∪ (G2 \K2)

(G1 \K2) \ (K1 \G2)

So we have

λ ((G1 \K2) \ (K1 \G2)) ≤ λ ((G1 \K1) ∪ (G2 \K2)) < ǫ.

Therefore A \B ∈ L0.

Also, by lemma 2.9, we can conclude that A∩B = A \ (A \B) ∈ L0 and (A \B)∪B ∈ L0. �

Theorem 2.13 (Countable subadditivity). Suppose that Ak ∈ L0 for k = 1, 2, · · · . Let A :=⋃∞
k=1 Ak, and assume λ∗(A) < ∞. Then A ∈ L0 and

λ(A) ≤
∞∑

k=1

λ(Ak).

In addition, if the Ak’s are disjoint, then

λ(A) =
∞∑

k=1

λ(Ak).

Proof. Assume that Ak’s are disjoint. Then we have

λ∗(A) ≤
∞∑

k=1

λ∗(Ak) ≤
∞∑

k=1

λ∗(Ak) ≤ λ∗(A) ≤ λ∗(A).

So all the terms in the above must be equal. In particular, we get λ(A) =
∑∞

k=1 λ(Ak).

For the general case, let B1 := A1, · · · , Bk := Ak − (A1 ∪ · · · ∪ Ak−1), · · · . Then Bk’s are

disjoint sets in L0 and moreover
⋃∞

k=1 Bk = A. So we have

λ(A) =

∞∑

k=1

λ(Bk) ≤
∞∑

k=1

λ(Ak),

since Bk ⊂ Ak for each k. �

Stage 6 : Arbitrary measurable sets.

Definition 2.3. Let A ∈ Rn. We call A measurable if for all M ∈ L0, A ∩M ∈ L0. In case A is

measurable, the Lebesgue measure of A is

λ(A) := sup{λ(A ∩M) : M ∈ L0}.

Moreover, we denote L by the class of all measurable sets A ∈ Rn.

Remark 2.6. One can later show by a property of L (M2) that A ∈ L if and only if A ∩BR ∈ L0

for any ball BR.

Of course, we have to check the consistency of this definition. In other words, we will show
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Proposition 2.14. Let A ∈ Rn with λ∗(A) < ∞. Then A ∈ L0 if and only if A ∈ L. Moreover,

the definition of λ(A) in Stage 5 and 6 produce the same number.

Proof. Suppose that A ∈ L0. For arbitrary M ∈ L0, A ∩ M ∈ L0. Thus A ∈ L. Conversely,

assume that A ∈ L. Let Bk := B(0, k) for k ∈ Z+. Then, by definition, Ak := A∩Bk ∈ L0 for each

k. By countable additivity, A =
⋃∞

k=1 Ak ∈ L0.

To show the consistency of the definition of the measure, assume A ∈ L and let λ(A) (resp.

λ̃(A)) stands for the measure of A which we have defined in Stage 5 (resp. Stage 6). Then we can

see that

λ̃(A) := sup{λ(A ∩M) : M ∈ L0} ≥ λ(A ∩ A) = λ(A).

Also, since A ∩M ⊂ A for each M ∈ L0, λ(A ∩M) ≤ λ(A) for each M ∈ L0 and we can conclude

that λ̃(A) ≤ λ(A). In conclusion, we have λ̃(A) = λ(A). �

2.2. Properties of Lebesgue measure

Proposition 2.15. Let A, B and Ak, k = 1, 2, · · · be measurable sets(∈ L) in Rn. Then the

followings hold:

(M1) Ac ∈ L.

(M2) A :=

∞⋃

k=1

Ak, B :=

∞⋂

k=1

Ak ∈ L.

(M3) A \B ∈ L.
(M4) λ (

⋃∞
k=1 Ak) ≤

∑∞
k=1 λ (Ak).

If Ak’s are disjoint, then λ (
⋃∞

k=1 Ak) =
∑∞

k=1 λ (Ak).

(M5) If A1 ⊂ A2 ⊂ A3 ⊂ · · · , then λ (
⋃∞

k=1 Ak) = limk→∞ λ (Ak).

(M6) If A1 ⊃ A2 ⊃ · · · and λ (A1) < ∞ ,then λ (
⋂∞

k=1 Ak) = limk→∞ λ (Ak).

Proof.

M1 Note that Ac ∩M = M \A = M \ (A ∩M) ∈ L0 for any M ∈ L0.

M2 Let M ∈ L0 be given. Note that A ∪ M =
⋃∞

k=1(Ak ∪ M). Since Ak ∩ M ∈ L0 for each k

and λ∗(A ∩ M) ≤ λ(M) < ∞, Countable additivity of L0 implies that A ∪ M ∈ L0. Since M is

arbitrary, we can conclude that A ∈ L. Proof for B is similar.

M3 Since A \B = A ∩Bc, the statement M3 directly follows form M1 and M2.

M4 For given M ∈ L0, we have λ (
⋃∞

k=1 Ak ∩M) ≤ ∑∞
k=1 λ (Ak ∩M) ≤ ∑∞

k=1 λ (Ak). Since

M ∈ L0 is arbitrary, λ (
⋃∞

k=1 Ak) ≤
∑∞

k=1 λ (Ak).

If Ak’s are disjoint, fix N ∈ Z+. Furthermore, fix M1, · · · ,MN ∈ L0. Denote M =
⋃N

k=1 Mk.

Then, we have λ (A) ≥ λ (A ∩M) =
∑N

k=1 λ (Ak ∩M) ≥ λ
(⋃N

k=1 Ak ∩Mk

)
from the countable

additivity of L0. Since M1, · · · ,MN are arbitrary, we have λ (A) ≥ ∑N
k=1 λ (Ak). Finally, as N is

arbitrary, we conclude that λ (A) =
∑∞

k=1 λ (Ak).
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M5 Express
⋃∞

k=1 Ak as a disjoint union A1

⋃· ⋃· ∞k=2(Ak \Ak−1). Then, apply M4:

λ

(
∞⋃

k=1

Ak

)
= λ (A1) +

∞∑

k=2

λ (Ak \Ak−1)

= lim
N→∞

λ

(
A1

⋃
·

N⋃
·

k=2

(Ak \Ak−1)

)

= lim
N→∞

λ (AN )

M6 Similar to the proof of textbgM5 Note that one has to use λ (A1) < ∞. �

Proposition 2.16 (M7). All open sets and closed sets are contained in L.

Proof. Any open set G is a countable union of G∩B(0, i) ∈ L0 for i = 1, 2, · · · . Then use M4. A

closed set is a complement of open set and so in L by M2.

�

Proposition 2.17 (M8). Let A ∈ Rn. If λ∗(A) = 0, then A ∈ L.

Proposition 2.18 (Approximation property, M9). Let A ∈ Rn. The followings are equivalent.

(1) A is measurable

(2) For every ǫ > 0 there exists an open set G such that

A ⊂ G and λ∗(G \A) < ǫ.

(3) For every ǫ > 0 there exists a closed set F such that

F ⊂ A and λ∗(A \ F ) < ǫ.

Proof. (1)⇒(2)

Decompose A into Ak = A ∩B(k, k − 1) where B(k, k − 1) = {x ∈ Rn : k − 1 ≤ |x| < k}. For each
k, find open sets Gk such that Gk ⊃ Ak with λ (Gk \Ak) ≤ ǫ/2k. Then G =

⋃∞
k=1 Gk is a desired

open set satisfying λ (G \A) ≤ epsilon.

(2)⇒ (1)

For each k ∈ Z+, find an open set Gk ⊃ A such that λ (Gk \A) ≤ 1/k. By M6, λ (
⋂∞

k=1 Gk \A) = 0

and so
⋂∞

k=1 Gk \A ∈ L. Hence, A ∈ L.
(1) ⇔ (3)

Use M2 and the previous steps.

�

Remark 2.7. Indeed, in some other textbooks ([StSh], [Tao]), it is used for the definition of

Lebesgue measurability. Note that For A ∈ L, we can express A =
⋂∞

k=1 Gk ∪ N =
⋃∞

k=1 Fk ∪ Ñ ,

where Gk’s are open, Fk are closed and N, Ñ are measure zero sets.
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Proposition 2.19 (M10). If A ∈ L, then λ(A) = λ∗(A) = λ∗(A).

Proof. We have already see that this statement is true when A ∈ L0. In case of λ∗(A) = ∞,

suppose that λ(A) = c < ∞. Then, by M9, there exist a closed set F and an open set G such that

F ⊂ A ⊂ G and λ(G − F ) < ǫ. We have λ(G) ≤ λ(G − F ) + λ(A) ≤ ǫ + C < ∞ which yields the

contradiction. So we may assume that λ(A) = ∞. Since A ∩B(0, k) ∈ L0, by M5,

∞ = lim
k→∞

λ(A ∩B(0, k)) = lim
k→∞

λ∗(A ∩B(0, k)) ≤ λ∗(A)

and therefore λ∗(A) = ∞. �

Proposition 2.20 (M11). If A ⊂ B and B ∈ L, then λ∗(A) + λ∗(B \A) = λ(B).

Proof. Fix an open set G ⊃ A. Then

λ(G) + λ∗(B \A) ≥ λ(B ∩G) + λ∗(B \A)
≥ λ(B ∩G) + λ∗(B \G)

= λ(B ∩G) + λ(B \G) = λ(B).

Since G is arbitrary, λ∗(A) + λ(B \G) ≥ λ(B).

Now fix a compact set K ⊂ B \A. Then A ⊂ B \K and

λ∗(A) + λ(K) ≤ λ∗(B \K) + λ(K)

= λ(B \K) + λ∗(K) = λ(B).

Since K can be arbitrarily chosen, λ∗(A) + λ∗(B \A) ≤ λ(B). �

Proposition 2.21 (Carathéodory condition, M12). Let A ∈ Rn. Then A ∈ L if and only if

λ∗(E) = λ∗(E ∩ A) + λ∗(E ∩Ac).

Proof. Suppose that A ∈ L. Fix an open set G ⊃ E. Then

λ(G) = λ(G ∩ A) + λ(G ∩ Ac) ≥ λ∗(E ∩ A) + λ∗(E ∩ Ac).

Since G is arbitrary, λ∗(E) ≥ λ∗(E ∩ A) + λ∗(E ∩ Ac). But we already have λ∗(E) ≤ λ∗(E ∩ A) +

λ∗(E ∩ Ac) from proposition 2.8, *3.

Conversely, let M ∈ L0. If we choose E = M , then from the hypothesis we have

λ(M) = λ∗(M ∩ A) + λ∗(M ∩ Ac).

Also, by M11, we get

λ(M) = λ∗(M ∩Ac) + λ∗(M \ (M ∩Ac)) = λ∗(M ∩Ac) + λ∗(M ∩ A).

Comparing these two identities and using the fact that M ∈ L0, we have

λ∗(M ∩ A) = λ∗(M ∩ A) < ∞

and thus M ∩ A ∈ L0. Since M is arbitrary, we can conclude that A ∈ L. �
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Remark 2.8. The above proposition gives another definition of measurable set. Several other texts

([Fol], [Roy]) use the Carathéodory condition as the definition of measurability.

2.3. Miscellany

2.3.1. Symmetries of Lebesgue measure.

The Lebesgue measure in Rn enjoys a number of symmetries. Firstly, it is translation-invariant.

For a measurable set E and v ∈ Rn, E+v = {x+v : x ∈ E} is also measurable and λ (E + v) = λ (E).

This invariance inherited from the special case when E is a cube and a special polygon. For general

sets, since the Lebesgue measure is defined as an approximation of measures of special polygons, it

hold true for all measurable set. By the same reason, (and more complicated and tedious proof), one

can check the Lebesgue measure is invariant under rotation, reflection, and furthermore, relatively

dialation-invariant. In general, we can summarize as follows:

Theorem 2.22. Let T be an n× n matrix and A ⊂ Rn. Then

λ∗(TA) = | detT |λ∗(A), and λ∗(TA) = | detT |λ∗(A).

In particular, if A ∈ L, then TA ∈ L and

λ(TA) = | detT |λ(A).

See [Jon] Chapter 3 for detail.

2.3.2. Non-measurable set.

We show the existence of non-measurable sets in Rn. The proof is highly nonconstructive, that

relies on the Axiom of Choice.

Theorem 2.23. There exists a set E ⊂ Rn such that E is not measurable. (i.e. L ( P(Rn) )

Proof. We will use the translation invariance. For given x ∈ Rn, consider the translate x+Qn =

{x+ r : r ∈ Qn}. Crucially, we observe that either

x+Qn = y +Qn or (x+Qn) ∩ (y +Qn) = ∅.

This means that Rn is covered disjointly by the translates if Qn. Now, we invoke the Axiom of Choice

to collect exactly one element from each translate of Qn. Let denote E is the set of collection. Then

we have a representation

Rn =
⋃
·

x∈E

(x+Qn).

For another representation, we denote Qn = {r1, r2, · · · }. Then

Rn =

∞⋃
·

i=1

(ri + E).

Since λ (ri + E) = λ (E), we conclude that λ∗(E) > 0. Decomposing Rn into non-overlapping cubes

Ij with sides of length 1, i.e., Rn =
⋃∞

j=1 Ij , we see at least one of E ∩ Ij ’s has positive measure.
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We call it Ẽ. Then, ⋃

r∈Qn∩B(0,1)

r + Ẽ ⊂ Ij +B(0, 1).

If Ẽ were measurable, due to the countable additivity and the translation invariance of measure, the

left-hand side is equal to
∑

countable λ
(
Ẽ
)
, while λ (Ij +B(0, 1)) < 3n, which leads contradiction.

�

Corollary 2.24. If A ∈ Rn is measurable and λ (A) > 0, then there exists B ⊂ A such that B is

not measurable.

Proof. Proceed similarly to the previous one with

A =
∞⋃

i=1

(ri + E) ∩A. �

Using the corollary, one can easily construct a non-measurable set with λ∗(A) = λ∗(A) = ∞.

2.3.3. The Lebesgue function.

Recall the construction of Cantor set. At each step, we remove a third intermediate open

interval from each closed intervals. Here, Gk, a removing open set at k-th step, is the union of

disjoint open intervals of length 3−k and the number of intervals is 2k−1. Then the leftover Ck is

the finite disjoint union of closed intervals of length 3−k. Ck = [0, 1]−⋃k
j=1 Gj and then the Cantor

set C =
⋂

k≥1 Ck. Now we will denote Gk =
⋃

r Jr, where Jr is the m-th interval in Gk from the

left with r = 2m+1
2k

,m = 0, 1, · · · , 2k−1 − 1. Then,

∞⋃

j=1

Gj =
⋃

r

Jr

with r = 2m+1
2k for 0 < r < 1. The union is disjoint. We define a function

f :

∞⋃

j=1

Gj → [0, 1]

so that for each x ∈ Jr, f(x) = r. f is constant on each Jr. One can check that f is nondecreasing.

Claim: f is uniformly continuous on its domain.

For a proof, pick x, y ∈ G =
⋃∞

j=1 Gj with |x − y| < 3−k. We look at the decomposition of

[0, 1] = Ck ∪ G1 ∪ · · · ∪ Gk. Since Ck and Gj , j ≤ k are the union of disjoint intervals of length

≥ 3−k, x, y are contained in the same interval or adjacent intervals. Either case,

|f(x)− f(y)| ≤ f(J m

2k
)− f(Jm+1

2k
) =

1

2k
.

In general, one can extend a function f to the closure of domain G. If f is uniformly continuous

function, the extended function f̃ : G → [0, 1] is also uniformly continuous. Since f̃ is constant on G,

it is differentiable with f ′ = 0 except a measure zero set(=Cantor set). However, the Fundamental

Theorem of Calculus fails:

1 = f̃(1)− f̃(0) 6=
∫ 1

0

f̃ ′(s)ds = 0.
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In Chapter 4, we will revisit to this example when we investigate the condition on f to hold the

Fundamental Theorem of Calculus.



CHAPTER 3

Integration

3.1. algebras and σ-algebra

So far we have constructed (Rn,L, λ), where λ is the Lebesgue measure

λ : L → [0,∞].

Recall that L has properties :

(i) ∅ ∈ L,
(ii) If A ∈ L, then Ac ∈ L,
(iii) If Ak ∈ L for k = 1, 2, · · · , then ⋃∞

k=1 Ak ∈ L.

And from these properties, we can deduce also that
⋂∞

k=1 Ak ∈ L and Rn ∈ L.

Definition 3.1 (Algebra and σ-algebra). Denote the power set of X as 2X or P(X). Then

M ⊂ P(X) is called algebra if M satisfies

(i) ∅ ∈ M,

(ii) If A ∈ M, then Ac ∈ M,

(iii) If A, B ∈ M, then A ∪B ∈ M.

If an algebra M satisfies the property :

(iii’) If Ak ∈ L for k = 1, 2, · · · , then ⋃∞
k=1 Ak ∈ M,

then we call M a σ-algebra.

Example 3.1. L is a σ-algebra. The power set P(X) itself is a σ-algebra. Also, {∅, X} forms a

σ-algebra.

Proposition 3.1. Suppose that Mi is a σ-algebra for all i ∈ I. Then M =
⋂

i∈I Mi is also a

σ-algebra.

Proof. First of all, since ∅ ∈ Mi for all i ∈ I, ∅ ∈ M. Moreover, if A ∈ M, then A ∈ Mi for all

i ∈ I. So Ac ∈ Mi for all i ∈ I and hence Ac ∈ M. Finally, if Ak ∈ M for k = 1, 2, · · · , then, for
each k, Ak ∈ Mi for all i ∈ I. So

⋃∞
k=1 Ak ∈ Mi for all i ∈ I and therefore we can conclude that⋃∞

k=1 Ak ∈ M. �

Now let N ∈ P(X), i.e., N is a collection of subsets of X . Then we can define

σ(N ) :=
⋂

M∈Σ

M,

28
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where Σ is the collection of all σ-algebras which contain N . Then from the above proposition, σ(N )

is a σ-algebra. We say σ(N ) the σ-algebra generated by N . Indeed, σ(N ) is the smallest σ-algebra

containing N .

Definition 3.2 (Borel σ-algebra). Define by Bn(or simply we denote B) the smallest σ-algebra

containing all open sets in Rn. B is called the Borel σ-algebra. Each element of B is called a Borel

set.

Since L contains all open sets in Rn, we have B ⊂ L. Indeed, we will see that B ( L ( P(X).

In particular, closed sets are Borel sets, and so are all countable unions of closed sets and all

countable intersection of open sets. These last two are called Fσ’s and Gδ’s respectively, and plays

a considerable role.1 With this notation, we can also define Fσδ , Gδσδσδ ∈ B and so on.2

Definition 3.3. A set A ∈ L with λ(A) = 0 is called a null set.

Theorem 3.2. Let A ∈ L. Then A = E ∪N , where N is a null set, E is a Fσ set, and N and E

are disjoint.

Proof. See Remark 2.7. For any k ∈ N, there exists a closed set Fk such that Fk ⊂ A and

λ (A \ Fk) <
1
k . Let E =

⋃∞
k=1 Fk. Then E is a Fσ set and λ(A \ E) = 0. �

Theorem 3.3. Let E be a Borel set in Rn. Suppose that a function f : E → Rm is continuous. If

A is a Borel set in Rm, then f−1(A) is a Borel set.

Proof. Define

M := {A : A ∈ Rm and f−1(A) ∈ Bn}.
We want to show M is a σ-algebra containing all open sets.

• f−1(∅) = ∅. Hence ∅ ∈ M.

• Suppose Ak ∈ M, k = 1, 2, · · · . Then f−1(Ak) ∈ Bn for k = 1, 2, · · · . Now

f−1

(
∞⋃

k=1

Ak

)
=

∞⋃

k=1

f−1(Ak) ∈ Bn.

Therefore,
⋃∞

k=1 Ak ∈ M.

• Suppose A ∈ M. Then f−1(A) ∈ Bn. Now

f−1(Ac) = f−1(Rm) \ f−1(A) = E − f−1(A) ∈ Bn.

Thus Ac ∈ M.

To show that M contains open sets, we use the continuity of f . By definition, if G is open, then,

f−1(G) is open in E, i.e., f−1(G) = E ∪H for some open set H in Rn. So, f−1(G) ∈ Bn. It implies

that G ∈ M. So all the open sets are contained in M. Finally, we have Bm ⊂ M, which completes

the proof. �

1The notation is due to Hausdorff. The letters F and G were used for closed and open sets (Fermé and Gebeit),

respectively, and σ refers to union (Summe), δ to intersection (Durchschnitt).
2For example, Fσδ is the countable intersection of Fσ’s.
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Theorem 3.4. B ( L

Proof. Let C be a Cantor set on [0, 1]. Let f be a Lebesgue function on C. We define g(x) :=

f(x) + x for 0 < x < 1. Then g is strictly increasing, continuous, and g(0) = 0, g(1) = 1. Thus

g : [0, 1] → [0, 2] becomes a homeomorphism. For x ∈ Jr, g(x) = x + r. Hence g(Jr) is an open

interval of length λ(Jr), i.e., λ(g(Jr)) = λ(Jr). Now we have

λ(g(C)) = λ

(
[0, 2] \

⋃

r

g(Jr)

)
= 1 > 0.

Since g(C) has positive measure, there exists a nonmeasurable set B ⊂ g(C). Let A := g−1(B).

Then A ⊂ C, and hence λ∗(A) ≤ λ(C) = 0. Therefore, A ∈ L. If A ∈ B, g(A) = B ∈ B. However,
B is not even measurable. Finally, we can conclude that A ∈ L but A 6∈ B. �

Now, we can generalize the Lebesgue measure on Rn to a general measure on a set X .

Definition 3.4. A measure space is a triple of (X,M, µ) as the following:

• X is a nonempty set.

• M ⊂ P(X) is a σ-algebra on X

• µ : M → [0,∞] is a function satisfying µ(∅) = 0 and

if A1, A2, · · · ,∈ M are disjoint, then µ(

∞⋃

k=1

Ak) =

∞∑

k=1

µ(Ak).

A measure space (X,M, µ)(or simply denoted by X or (X,m)) is said to be finite if µ(X) < ∞. If

X =
⋃∞

i=1 Xi with µ(Xi) < ∞, then we say X is σ-finite.

Remark 3.2. One check that fundamental properties of measures such as the monotonicity, M4,

M5, M6.

Example 3.3.

(1) Lebesgue measure space (Rn,L, λ).
(2) Borel measure space (Rn,B, λ).
(3) (Zn,P(Zn), c) where c is the counting measure.

(4) Dirac delta measure (X,M, δp) where p is a point of X . For A ∈ M,

δ(A) =




1, p ∈ A

0, p /∈ A.

We will revisit the general measure theory later in this chapter.

3.2. Measurable Functions

We turn our attention to integrand functions. In order to define a integral, we restrict a natural

class of functions on which the integral is well-defined and satisfies fine properties.

We consider the extended real line [−∞,∞] and a function defined on X :

f : X → [−∞,∞].
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Let M be a σ-algebra on X . We say f is M-measurable if f−1([−∞, t]) ∈ M, i.e., {x ∈ X :

f(x) ≤ t} ∈ M, for all t ∈ [−∞,∞]. If X = Rn, we naturally consider L-measurable functions or

B-measurable functions. In short, we say it is a measurable function if f is L-measurable and f is

a Borel function if it is B-measurable.

Proposition 3.5. Let M be a σ-algebra of a space X. Let f be an extended real-valued function

on X. Then the followings are equivalent.

(i) f is M-measurable.

(ii) f−1([−∞, t)) ∈ M for all t ∈ [−∞,∞].

(iii) f−1([t,∞]) ∈ M for all t ∈ [−∞,∞].

(iv) f−1((t,∞]) ∈ M for all t ∈ [−∞,∞].

(v) f−1({−∞}), f−1({∞}) ∈ M and f−1(E) ∈ M for E ∈ B.

Proof. Observe that

f−1([−∞, t)) =
⋃

r>t
r:rational

f−1([−∞, r]).

So (i) implies (ii). And similar observations leads us to the conclusion that statements (i) to (iv)

imply each other.

(v) implies (i) trivially. It remains to show that (i) implies (v). First, (i) implies that f−1({−∞}) ∈
M. And (iii), which is equivalent to (i), implies f−1({∞}) ∈ M. Now, define

S = {E ∈ R : f−1(E) ∈ M}.

You can easily check that S is a σ-algebra. If G is a open set in R, then we can write G =
⋃· ∞j=1 Ij ,

where Ij = (a, b) = [−∞, b) ∪ (a,∞]. Note that f−1(Ij) ⊂ M for each j. So, Ij ∈ S for all j and

thus G ∈ S. Hence, B ⊂ S and for any E ∈ B, f−1(E) ∈ M. �

Proposition 3.6. Let f , g : X → R be M-measurable functions.

(MF 1) If φ : R → R is Borel measurable, then φ ◦ f is M-measurable.

(MF 2) If f 6= 0, 1
f is M-measurable.

(MF 3) For 0 < p < ∞, |f |p is M-measurable.

(MF 4) f + g is M-measurable.

(MF 5) fg is M-measurable.

(MF 6) Suppose that fk : X → [−∞,∞] is measurable for all k ∈ N. Then the following

functions are M-measurable.

sup
k

fk, inf
k
fk, lim sup

k→∞
fk, lim inf

k→∞
fk, lim

k→∞
fk (if it exists).

Proof. MF 4 Fix t ∈ R. f(x) + g(x) < t if and only if there is a rational number r such that

f(x) < r < t− g(x) . Therefore,

{x : f(x) + g(x) < t} =
⋃

r∈Q

f−1((−∞, r)) ∩ g−1((−∞, t− r)).
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For MF 5, write fg = 1
2 ((f + g)2 − f2 − g2) and use MF 3.

Others are left as exercise. �

Definition 3.5. Define

χA = 1A :=

{
1, x ∈ A,

0, x 6∈ A.

We call χA a characteristic function (or indicator function). Note that A ∈ M if and only if χA is

M-measurable.

A M-measurable simple function s : X → [−∞,∞] is any function which can be expressed in

s =

m∑

k=1

αkχAk

for some m ∈ N and αk ∈ R, where Ak’s are disjoint M-measurable functions.

Remark 3.4. The notion of simple function is more general than step function, which is written by

s =
m∑

k=1

ckχRk
,

where Rk’s are nonoverlapping rectangles.

Example 3.5. Let A = Q∩ [0, 1] and B = [0, 1]\A. Then both fDir = χA and χB are characteristic

function.

For an extended real valued function f from X , there is a way to write f as the difference of two

nonnegative functions. First, define

f+(x) =

{
f(x), f(x) ≥ 0,

0, f(x) ≤ 0
and f−(x) =

{
0, −f(x) ≥ 0,

−f(x), f(x) ≤ 0

Then f = f+ − f− and f+, f− ≥ 0.

Theorem 3.7. Let f : X → [−∞,∞] be a nonnegative [M-measurable] function. Then f can be

approximated pointwisely by an increasing sequence of [M-measurable] simple functions.

Proof. Define

sk(x) =





i− 1

2k
, i−1

2k
≤ f(x) < i

2k
, i = 1, 2, · · · , k2k,

k, f(x) ≥ k.

Then {sk} is an increasing sequence of (M-measurable) simple functions such that sk converges to

f pointwise. �

We can further approximate by step functions.

Corollary 3.8. Let f : X → [−∞,∞] be a nonnegative [M-measurable] function. Then f can be

approximated almost everywhere by a sequence of step functions.
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Proof. It suffices to approximate a characteristic function 1A for a measurable set A. From

Theorem 3.2 except for a null set A is Gδ-set,
⋂∞

k=1 Gk where Gk’s are open. Each Am =
⋂m

k=1 Gk

is a countable union of non overlapping rectangles, Am =
⋃∞

j=1 R
j
m. Then {1Sm

: Sm =
⋃m

j=1 R
j
m}

converges to 1A a.e. �

In view of f = f+ − f−, the nonnegative condition is not necessary.

Theorem 3.9. Suppose that f : Rn → [−∞,∞] is Lebesgue measurable. Then there exists a Borel

measurable function g such that the set {x ∈ Rn : f(x) 6= g(x)} is a null set.

Proof. In view of f = f+ − f−, we may assume f ≥ 0. Find a nondecreasing sequence of simple

functions {sk} converging to f . For each sk =
∑mk

j=1 cjχAk
j
, we replace measurable sets Ak

j by Borel

sets Bk
j with λ

(
Ak

j∆Bk
j

)
= 0. Then σk =

∑mk

j=1 cjχBk
j
is a Borel function which agrees its values

with sk except for a null set Nk. Thus, {σk} converges to f pointwise except for N =
⋃∞

k=1 Nk, a

null set. The limit limk→∞ σk = g is the Borel function. �

Definition 3.6. If some property is valid except on a null set, we say that the property hold almost

everywhere, abbreviated a.e.3 For instance, Theorem 3.9 tells that f = g almost everywhere.

Finally, we introduce two useful theorems.

Theorem 3.10. (Egorov) Suppose {fk}∞k=1 is a sequence of measurable functions defined on E ⊂
Rn, λ(E) < ∞ and assume that fk → f a.e. on E. For given ǫ > 0, there exists a closed set A ⊂ E

such that λ(E \A) ≤ ǫ and fk → f uniformly on A.

Proof. Fix ǫ > 0. We may assume fk(x) → f(x) for every x ∈ E. Let n, k ∈ Z+ and

En
k = {x ∈ E : |fj(x) − f(x)| < 1/n, for all j > k}.

For a fixed n, {En
k }∞k=1 is increasing to E. By M5, we can find kn so that λ(X \ En

k ) <
1
2n . Then,

we have |fj(x) − f(x)| < 1/n whenever j > kn and x ∈ En
kn
.

We choose N so that
∑∞

n=N 2−n < ǫ/2, and let B =
⋂

n≥N En
kn
. Then λ (E \B) ≤ ǫ/2. On the

other hand, fj → f uniformly on B. Indeed, for given δ > 0 we choose n > max(N, 1/δ). For

x ∈ B ⊂ En
kn
, |fj(x)− f(x)| < δ whenever j > kn. Lastly, using approximation lemma, we can find

a closed set A ⊂ B with λ (B \A) < ǫ/2. �

Theorem 3.11. (Lusin) Suppose f : E → (−∞,∞) is measurable with λ (E) < ∞. Then for given

ǫ > 0, there exists a closed set A ⊂ E satisfying λ (E \A) < ǫ and f |A is continuous.

Proof. We use Egorov’s theorem. Let {fk} be a sequence of step functions converging to f .

Then we can find sets Ek so that λ (Ek) < 2−k and fk is continuous outside Ek. By Egorov’s

theorem, we can find a set B on which fk → f uniformly and λ (E \B) < ǫ/3. Choose N such that∑∞
k=N 2−k < ǫ/3. Define A′ = B \ ⋃k≥N Ek. As fk is continuous on A’ for k > N and fk → f

uniformly on A′, f is continuous on A′. Lastly, we approximate A′ by a closed set A. �

3Probabilists often say this almost surely.
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Remark 3.6. Egorov’s theorem and Lusin’s theorem hold true in general setting. In general case,

A in the conclusions may not be closed. (In fact, a general measure space may not be a topological

space.)

3.3. Integration and convergence theorems

To define the Lebesgue integral, we start with a nonnegative, L-measurable, simple function

s =
∑m

k=1 ckχAk
where 0 ≤ ck < ∞. In this case, we define

∫
s dλ :=

m∑

k=1

αkλ(Ak),

where {Ak}k=1,··· ,m is a finite collection of disjoint M-measurable sets.

We first need to check the well-defineness of the definition. Suppose that s has two different

representations. Suppose that s =
∑a

k=1 ckχAk
=
∑b

j=1 djχBj
where {Ak} and {Bj} are disjoint

collections. Decompose sets into Ckj := Ak ∩Bj , if Ckj = ∅, then s = ck = dj . We have

∫
s dλ =

a∑

k=1

ckλ (Ak) =
∑

k,j

ckλ (Ckj) =
∑

k,j

djλ (Ckj) =

b∑

j=1

djmBj
.

Proposition 3.12. Let s, t be simple measurable nonnegative functions.

• 0 ≤
∫
s dλ ≤ ∞

• For c ≥ 0,
∫
cs dλ = c

∫
s dλ

•
∫
(s+ t) dλ =

∫
s dλ+

∫
t dλ

• If s ≤ t, then
∫
s dλ ≤

∫
t dλ.

Proof. Exercise. �

For a general nonnegative function f : Rn → [0,∞], we define

∫
f dλ := sup

{∫
s dλ : s ≤ f, s : simple, nonnegative, L-measurable

}
.

Remark 3.7. It is instructive to compare this definition with Riemann integral. In the Riemann

integral, the integral is approximated by that of step functions.

For a general measurable function f : Rn → [−∞,∞], we write f = f+ − f− and define its integral

by ∫
f dλ =

∫
f+ dλ−

∫
f− dλ,

when both
∫
f+ λ and

∫
f− dλ are finite. In this case, we say f is integrable (or in L1).

For a measurable set E ⊂ Rn, we define the integral on E by
∫

E

f dλ :=

∫
f χE dλ.
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Proposition 3.13. Let f, g be integrable functions.

(1)
∫
cf dλ = c

∫
f dλ

(2)
∫
(f + g) dλ =

∫
f dλ+

∫
g dλ

(3) For disjoint measurable sets E,F ,
∫
E∪F f dλ =

∫
E f dλ+

∫
F f dλ.

(4) If f ≤ g, then
∫
f dλ ≤

∫
g dλ.

(5)
∣∣∣
∫
f dλ

∣∣∣ ≤
∫
|f | dλ

Proof. We leave (1),(4), and (5) as exercise. The proof of (2) will be given after next theorem.

(3) follows from (2). �

We begin to discuss convergence theorems. For monotone sequence of measurable sets {Ak : k =

1, 2 · · · } with Ak ⊂ Ak+1. we have limk→∞ λ (Ak) = λ (A) where A =
⋃∞

k=1 Ak. That is,

lim
k→∞

∫
χAk

dλ =

∫
χA dλ.

This is true for a monotone sequence of measurable functions.

Theorem 3.14. (Monotone Convergence Theorem)4 Assume that {fk : k = 1, 2, · · · } is increasing

sequence of nonnegative measurable functions on Rn. Then

lim
k→∞

∫
fk dλ =

∫ (
lim
k→∞

fk

)
dλ.

Proof. Denote f = limk→∞ fk and I = limk→∞

∫
fk dλ. As we have I ≤

∫
f dλ, we show the

other inequality. Fix c <
∫
f dλ. It suffice to show I ≥ c. By definition of the integral of f , there

exist a simple function s such that
∫
s dλ > c and 0 ≤ s ≤ f . Let s be of the form s =

∑m
i=1 ciχAi

where Ai’s are disjoint and measurable. We replace s by a new simple function, still denote by s

by changing ci to ci − ǫ, where ǫ > 0 is small, so that c <
∫
s dλ.(Verify!) Then if f(x) > 0 then

s(x) < f(x). Define Ek := {x : fk(x) ≥ s(x)}. Then we have
⋃∞

k=1 Ek = Rn.(Verify!) For a fixed k

we have

fk ≥ fkχEk
≥ sχEk

=

m∑

i=1

ciχAi∩Ek
.

Therefore,
∫
fk dλ ≥ ∑m

i=1 ciλ (Ai ∩ Ek). Taking limit of k, limk→∞ λ (Ai ∩ Ek) = λ (Ai), we

conclude

I = lim
k→∞

∫
fk dλ ≥

m∑

i=1

ciλ (Ai) =

∫
s dλ > c.

�

Corollary 3.15. Let {fk : k = 1, 2, · · · } be a decreasing sequence of nonnegative measurable

functions on Rn. Assuem
∫
f1 dλ < ∞. Then

lim
k→∞

∫
fk dλ =

∫ (
lim
k→∞

fk

)
dλ.
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Proof. Use Theorem 3.14 for {f1 − fk}∞k=1. �

Proof of Proposition 3.13 (2)

First, we prove this for nonnegative functions.

Let {sk} and {tk} be an increasing sequence of simple function converging to f, g, respectively.

Then sk + tk is increasing to f + g. We use additivity property of simple function’s integral and

MCT to obtain
∫
(f + g) dλ = lim

k→∞

∫
(sk + tk) dλ

= lim
k→∞

[ ∫
sk dλ+

∫
tk dλ

]

=

∫
f dλ+

∫
g dλ

For general case, denoting h = f + g = h+ − h− = f+ − f− + g+ − g−,

h+ + f− + g− = h− + f+ + g+,

which implies ∫
h+ dλ+

∫
f− dλ+

∫
g− dλ =

∫
h− dλ+

∫
f+ dλ

∫
g+ dλ.

Hence, we conclude
∫
h± dλ <

∫
f± dλ+

∫
g± dλ < ∞ and

∫
h dλ =

∫
f dλ+

∫
g dλ. �

Corollary 3.16. (Fatou’s Lemma) Assume that {fk : k = 1, 2, · · · } are nonnegative measurable

functions. Then ∫ (
lim inf
k→∞

fk

)
dλ ≤ lim inf

k→∞

∫
fk dλ.

Proof. Define gk = inf{fk, fk+1, · · · }. Then gk ≥ 0, gk ≤ fk, and {gk} is increasing sequence of

measurable functions. Using MCT, we obtain
∫ (

lim inf
k→∞

)
fk dλ =

∫
(lim gk) dλ

= lim
k→∞

∫
gk dλ

≤ lim inf
k→∞

∫
fk dλ.

�

Corollary 3.17. (Lebesgue’s Dominated Convergence Theorem)5 Assume {fk : k = 1, 2, · · · } is a

sequence of measurable functions on Rn that converge to f a.e. Assume that there exist g ∈ L1 such

that |fk(x)| ≤ g(x) a.e.

Then f ∈ L1 and ∫ (
lim
k→∞

fk

)
dλ = lim

k→∞

∫
fk dλ.
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Proof. We apply Fatou’s Lemma to nonnegative functions g + fk, and g − fk. Indeed, we have
∫

g ± f dλ ≤ lim inf
k

∫
(g ± fk) dλ

That is, ∫
±f dλ ≤ lim inf

k

∫
±fk dλ.

Hence,

lim sup
k

∫
fk dλ ≤

∫
f dλ ≤ lim inf

k

∫
fk dλ.

�

Corollary 3.18. Let {fk : k = 1, 2 · · · } be a sequence of measurable functions on Rn. Assume

either fk ≥ 0 or
∫ (∑∞

k=1 |fk|
)
dλ < ∞. Then
∫ ( ∞∑

k=1

fk

)
dλ =

∞∑

k=1

∫
fk dλ.

Corollary 3.19. (Bounded Convergence Theorem) Let {fk : E → [−M,M ]} be a sequence of

bounded measurable functions. Assume λ (E) < ∞ and fk → f a.e. Then

lim
k→∞

∫

E

fk dλ =

∫

E

lim
k→∞

fk dλ.

Remark 3.8. MCT, Fatou’lemma, and LCT are almost equivalent. More precisely, one can show

Fatou’s lemma first and use it to show MCT. If f ∈ L1 in MCT, it can be proved by LCT.

3.4. Examples

Example 3.9.

lim
n→∞

∫ n

0

(
1− x

n

)n
xs dx =

∫ ∞

0

e−xxs dx, (s > −1)

Set fn(x) =
(
1 − x

n

)n · 1[0,n]. One can observe {fn} is nonnegative increasing sequence converging

to e−x. Then use monotone convergence theorem.

Example 3.10. ∫ ∞

0

sinx

ex − 1
dx =

∞∑

n=1

∫ ∞

0

e−nx sinx dx =

∞∑

n=1

1

n2 + 1

Expanding 1
ex−1 , use LCT for the first identity.

Example 3.11. Consider a double sequence {amn}∞m,n=1. Assume either (i) amn ≥ 0 or (ii)∑
n

∑
m |amn| < ∞. Then

∞∑

m=1

∞∑

n=1

amn =

∞∑

n=1

∞∑

m=1

amn (3.1)
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For proof, we understand that the summation over m as an integral over N with counting measure.

Setting fn : N → R with fn(m) = amn. Then
∫
N
fndc =

∑∞
m=1 amn and we rewrite (3.1) as

∫

N

∞∑

n=1

fn dc =

∞∑

n=1

∫

N

fn dc.

One can use either MCT or LCT (or its corollary) to verify the (3.1).

As a corollary of (3.1), we can show Riemann’s rearrangement theorem as follows. Let α : N → N

be a one-to-one correspondence. Assume either (i) an ≥ 0 or (ii)
∑∞

n=1 |an| < ∞. Then

∞∑

n=1

an =

∞∑

n=1

aα(n).

For a proof, set amn = δ
α(m)
n an.

As an exercise, find an example of {amn} so that (3.1) fails.

Later, we will understand the double summation as a double integral and use Fubini or Toneli

theorem to show (3.1) In fact, under an analogous condition, we can switch the order of integral in

double integrals.

Example 3.12. Consider a function with two variable f : R× R → R. Integrating over a variable

we define

F (y) =

∫
f(x, y) dx.

Main question here is under what condition we can switch the integral and differentiation. i.e.

d

dy
F (y) =

∫
∂

∂y
f(x, y) dx.

Since differentiation is defined as a limit, this problem is reduced to see when one can switch the

order of limits and integral sign. Thus, we can use convergence theorem obtained in the previous

section.

Let f(x, y) be integrable in x-variable. Assume that there exist a dominating function g(x) ∈ L1

such that |f(x, y)| ≤ g(x). Then LCT says that

lim
y→y0

∫
f(x, y) dx =

∫
lim
y→y0

f(x, y) dx.

In other words, if f(x, y) is continuous with respect to y-variable and satisfies above condition, then

F (y) is also continuous.

Next, consider a derivative. Denote Dh
2f(x, y) := f(x,y+h)−f(x,y)

h . Then limh→0 D
h
2f(x, y) =

∂
∂yf(x, y). If |Dh

2f(x, y)| ≤ g(x) ∈ L1, then

d

dy
F (y) = lim

h

∫
Dh

2 f(x, y) dx =

∫
lim
h

Dh
2f(x, y) dx =

∫
∂

∂y
f(x, y) dx.

In view of mean value theorem, if |∂f∂y (x, y)| ≤ g(x) ∈ L1, then we have the same conclusion.

In fact, the assumption of Lebesgue convergence theorem replaces uniform convergence in compact

setting. Recall that if fn : [a, b] → R uniformly converges to f , then limn

∫ b

a
fn(x) dx =

∫
f(x) dx.

Example 3.13. Show ∫ ∞

0

sin t

t
dt =

π

2
.
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We understand the integral as an improper integral on [0, n] as n → ∞.

Note that limt→0
sin t
t = 1. One can show this by a contour integral in complex variable (exercise).

In this example we use Lebesgue convergence theorem for an alternative proof.

Define gn(x) :=
∫ n

0
e−tx sin t

t dt. Then by direct computation,

g′n(x) = −
∫ n

0

e−tx sin t dt = −e−nx(−x sinn− cosn) + 1

1 + x2
,

and |g′n(x)| ≤ e−x(x+1)+1
1+x2 ∈ L1. Using LCT,

∫
lim
n

g′n(x) dx = lim
n

∫
g′n(x) dx = lim

n
[gn(n)− gn(0)].

By computation, we obtain
∫
limn g

′
n(x) dx = −

∫∞

0
1

1+x2 dx = −π
2 , limn gn(0) =

∫∞

0
sin t
t dt, and

sin t
t ≤ 1, gn(n) ≤

∫ n

0 e−nt dt ≤ 1
n → 0 as n → ∞. This completes the proof.

3.5. A relation to Riemann integrals

In the introduction, we discussed Riemann integrals on [a, b] and its limitation. In many ways

we can understand Lebesgue integral is an extension of Riemann integral. Now we discuss Riemann

integrability in the context of Lebesgue measure theory. The discussion below works for higher

dimension, too. For simplicity, we restrict ourselves to one dimension. Let f : [a, b] → R be a

bounded function. (Recall that we defined Riemann integral for such a function).

Theorem 3.20. If f is Riemann integrable, then f is measurable and
∫ R

[a,b]

f(x) dx =

∫ L

[a,b]

f(x) dλ. (3.2)

f is Riemann integrable if and only if f is continuous almost everywhere (= except a null set).

Proof. By definition of Riemann integrability, we can find a sequence of partitions {Pk} so that

limk URS(Pk, f) = limk LRS(Pk, f) =
∫R

[a,b] f(x) dx. For each k, denote Pk = {x0, · · · , xN} and step

functions

sk(x) =
N∑

i=1

max
xi−1≤x≤xi

f(x)χ[xi−1,xi], sk(x) =
N∑

i=1

min
xi−1≤x≤xi

f(x)χ[xi−1,xi].

Then sk, sk are measurable function and by definition of Lebesgue integral of simple functions,

URS(Pk, f) =
∫ L

[a,b]
sk and LRS(Pk, f) =

∫ L

[a,b]
sk. Furthermore, sk(x) ≤ f(x) ≤ sk(x). Define

U(x) = limk s
k(x) and L(x) = lim sk(x). Then using Lebesgue convergence theorem (check the

assumption!) and Riemann integrability,

∫ R

[a,b]

f(x) dx =

∫ L

[a,b]

U(x) dλ =

∫ L

[a,b]

L(x) dλ,

and so U = L almost everywhere. Since L(x) ≤ f(x) ≤ U(x), f(x) is measurable, f = U = L

almost everywhere and ∫ L

[a,b]

f dλ =

∫ R

[a,b]

f(x) dx.
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For the second statement, we show that f is continuous at x if and only if L(x) = U(x). Then

It follows that f is continuous a.e. ⇔ L(x) = U(x) a.e. ⇔ f is Riemann integrable, as the second

equivalence is verified at the first step.

For ’only if’ part, suppose that f is continuous at x. For a fixed ǫ > 0 there exists δ > 0 such

that |f(y) − f(z)| < ǫ for z, y ∈ [x − δ, x + δ]. Choose a partition P , the interval containing

x of which belongs to [x − δ, x + δ]. Then |U(x) − L(x)| ≤ |sP (x) − sP (x)| ≤ ǫ. Since ǫ is

arbitrary, U(x) − L(x) = 0. Conversely, from U(x) = L(x) there exist a partition P such that

|sP (x)− sP (x)| ≤ ǫ. Let δ = min{|x− z| : z ∈ P}. Then if |x− y| < δ, x, y are in the same interval

of partition and hence |f(x) − f(y) ≤ |sP (x) − sP (x)| ≤ ǫ.

�

3.6. Fubini’s theorem for Rn

When an integrand has more than one variable, a repeated integral is often an efficient tool to

evaluate the higher dimensional integral. In this calculation, we implicitly use the Fubini’s theorem.

In this section, we discuss Fubini and Tonelli’s theorem for a special case, Lebesgue measure on

Rn. Without much difficulty this theorem is extended to general measure spaces. We just refer the

general case.

Let l,m, and n be dimensions with l + m = n. Consider a measurable function f : Rm × Rl →
[−∞,∞] with respect to the Lebesgue measure Ln. We denote f = f(x, y) = f(z) where x ∈
Rm, y ∈ Rl, and z = (x, y) ∈ Rn. For a fixed y, fy(x) = f(x, y) is a function on Rm.

Theorem 3.21. (Fubini-Tonelli) Let f : Rn → [−∞,∞] be a measurable function. Assume either

f is nonnegative or f is integrable. Then, we have

• The function fy(x) : Rm → [−∞,∞] is measurable y a.e.

The function fx(y) : Rl → [−∞,∞] is measurable x a.e.

• F (y) =
∫
fy(x) dx is measurable on Rl

G(x) =
∫
fx(y) dy is measurable on Rm

• ∫

Rl

∫

Rm

f(x, y) dxdy =

∫

Rn

f(x, y) dλ(x, y) =

∫

Rm

∫

Rl

f(x, y) dydx

Proof. By symmetry of x, y variables, we only prove the theorem for fy(x), F (y). We prove the

theorem when f is nonnegative and integrable. If f is integrable, we obtain the same result by

writing f = f+ − f−. If f is just nonnegative, we use MCT to obtain it. We first consider a special

case, the characteristic functions. We rephrase it as follows:

Claim: Let A ⊂ Rn be a bounded measurable set. Then,

• Ay := {x ∈ Rm|(x, y) ∈ A} is measurable a.e. in y.

• λ (Ay) is a measurable function of y.

•
∫
Rl λ (Ay) dy = λ (A) .
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Proof of Claim

Step 1 J ⊂ Rn is a special rectangle.

Clearly, J = J1 × J2 where Ji are special rectangles in Rm and Rl, respectively. Then,

Jy =




J1, y ∈ J2

∅, y /∈ J2.

Hence, Jy is measurable, λ (Jy) = λ (J1)1J2(y) is a measurable function, and
∫
λ (Jy) dy = λ (J1)λ (J2).

Step 2 G ⊂ Rn is an bounded open set.

G is expressed by a countable union of special rectangles, G =
⋃· ∞k=1 Jk. Thus, Gy =

⋃· ∞k=1 Jk,y is

measurable as each Jk,y is measurable. Moreover, λ (Gy) =
∑∞

k=1 λ (Jk,y) and

∫
λ (Gy) dy =

∞∑

k=1

∫
λ (Jk,y) dy =

∞∑

k=1

λ (Jk) = λ (G) ,

where we used Step 2 in the second equality.

Step 3 K ⊂ Rn is a compact set.

We choose a bounded open set G ⊃ K. Then G \K is open. Since Gy = (Gy \ Ky) ∪· Ky, Ky is

measurable and λ (Ky) = λ (Gy)− λ (Gy \Ky) is a measurable function by Step 2. Moreover,

∫
λ (Ky) dy =

∫
λ (Gy) dy −

∫
λ (Gy \Ky) dy = λ (G)− λ (G \K)

= λ (G)− λ (G) + λ (K) = λ (K) .

Step 4 B =
⋃∞

j=1 Kj where {Kj} is an increasing sequence of compact sets. C =
⋂∞

j=1 Gj where

{Gj} is an decreasing sequence of bounded open sets.

Since By =
⋃∞

j=1 Kj,y, By is measurable, and λ (By) = limj→∞ λ (Kj,y). By MCT,

∫
λ (By) dy = lim

j→∞

∫
λ (Kj,y) dy

= lim
j→∞

λ (Kj) = λ (B)

The case for C is proved similarly to Step 3.

Step 5 General case. A ⊂ Rn is a bounded measurable set.

From approximation by open sets and compact sets, we can find a decreasing sequence of open sets,

and an increasing sequence of compact sets:

K1 ⊂ K2 ⊂ · · · ⊂ A ⊂ · · ·G2 ⊂ G1,

and limj→∞ λ (Kj) = λ (A) = limj→∞ λ (Gj). Define B =
⋃∞

j=1 Kj and C =
⋂∞

j=1 Gj . Then

λ (B) = λ (A) = λ (C) and B ⊂ A ⊂ C.

∫
λ (Cy)− λ (By) dy = λ (C)− λ (B) = 0.
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Since λ (Cy)− λ (By) ≥ 0, λ (Cy)−λ (By) = 0 a.e. y. Thus, Cy \By is a null set, and so is Cy \Ay.

Hence, Ay is measurable and λ (Ay) (= λ (Cy) a.e.) is a measurable function a.e. Moreover,
∫

λ (Ay) dy =

∫
λ (Cy) dy = λ (C) = λ (A) .

�

The theorem is valid for simple functions with bounded support as the conclusion is valid for a

finite linear combination.

Claim : If the theorem is valid for a increasing sequence of functions {fk ≥ 0}∞k=1, then it is

valid for its limit function.

Proof of Claim We use MCT. Denote limk→∞ fk = f . As {fj,y} is also increasing sequence of

measurable functions, fy is also measurable. Similarly,

F (y) =

∫
fy(x) dx = lim

k→∞

∫
fk,y(x) dx = lim

k→∞
Fk(y),

which implies F (y) is a measurable function. Again by MCT and assumption,
∫

F (y) dy = lim
k→∞

∫
Fk(y) dy = lim

k→∞
fk(x, y) dλ(x, y) =

∫
f(x, y) dλ(x, y).

�

When f is nonnegative, from Claim above, considering a sequence of increasing simple functions,

we obtain the same conclusion. For general integrable function f , writing f = f+ − f− where f±

are nonnegative integrable, we have the conclusion. �

This theorem is extended to general measure space without much difficulty. Here we just sketch

and state theorem. For more detail we refer Chapter 11 of [Jon] or Section 2.5 of [Fol].

Let (X,M, µ), (Y,N , ν) be measure spaces. We define a product measure space on X × Y .

Definition 3.7. A subset of X × Y of form A × B where A ∈ M and B ∈ N are measurable is

called a measurable rectangle. We denote M×N := σ({A×B : A ∈ M, B ∈ N}). That is, M×N
is the smallest σ-algebra containing all measurable rectangles.

To construct a product measure space, we need to construct a measure π : M×N → [0,∞] on a

measurable space (X × Y,M×N ). Intuitively, for each measurable rectangle, we expect

π(A×B) = µ(A) ν(B).

Definition 3.8. We say (X,M, µ) is σ- finite if X =
⋃∞

j=1 Aj with µ(Aj) < ∞.

There exists a unique product measure under σ-finite assumption.

Theorem 3.22. Let (X,M, µ), (Y,N , ν) be σ-finite measure spaces. Then, for any E ∈ M×N ,

we have

(1) Ey ∈ M for all y ∈ Y and Ex ∈ N for all x ∈ X.
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(2) x 7→ ν(Ex) is a M-measurable function.

y 7→ µ(Ey) is a N -measurable function.

(3) ∫

Y

µ(Ey) dν =

∫

X

ν(Ex) dµ =: π(E)

This defines a measure π : M×N → [0,∞] satisfying

π(A×B) = µ(A) ν(B),

and such a measure is unique.

Once we have Theorem 3.22, the general Fubini-Tonelli’s theorem follows.

Theorem 3.23. Let (X,M, µ), (Y,N , ν) be σ-finite measure spaces and (X × Y,M×N , π) is the

product measure space. Assume f : X×Y → [−∞,∞] is M×N -measurable. Furthermore, assume

either f is nonnegative or integrable. Then we have

• fy(x) is M-measurable, and fx(y) is N -measurable.

• The function y 7→
∫
X fy(x) dµ is N -measurable.

The function x 7→
∫
Y
fx(y) dν is M-measurable.

• ∫

Y

∫

X

fy(x) dµ dν

∫

X×Y

f(x, y) dπ =

∫

X

∫

Y

fx(y) dν dµ.



CHAPTER 4

L
p spaces

4.1. Basics of Lp spaces

Let (X,M, µ) be a measure space and let 1 ≤ p < ∞. Let f : X → [−∞,∞] be a measurable

function. Then |f |p is also measurable. We define

1 ≤ p < ∞, f ∈ Lp(X,µ) ⇔
∫

X

|f |pdµ < ∞

p = ∞, f ∈ L∞(X,µ) ⇔ sup{M : |f(x)| ≤ M a.e.} < ∞

Note that we regard f as the equivalence class of all functions which are equal to f almost every-

where. Thus, Lp(µ) is the set of the equivalence class of functions rather than functions. With usual

addition and scalar multiplication of functions, we see that Lp(µ) is a vector space. In fact, Lp(µ)

is a normed space with

‖f‖p =

(∫

X

|f |p dµ
)1/p

‖f‖∞ = sup{M : |f(x)| ≤ Ma.e.} = inf{t : µ(|f(x)| > t)}

We need to check the conditions for a norm ‖ · ‖p
(1) If f ∈ Lp, then ‖f‖p < ∞.

(2) f = 0 a.e. ⇔ ‖f‖p = 0.(This is the main reason that we understand an element of Lp is

an equivalence class.)

(3) ‖cf‖p = |c|‖f‖p
(4) (Triangle inequality) ‖f + g‖p ≤ ‖f‖p + ‖g‖p

Readers can easily check (1) ∼ (3). Triangle inequality which is often referred as Minkowski’s

inequality will be proven later. For simplicity of notation, denote simply Lp for Lebesgue measure.

When the measure space is (Zn,P , c), we denote Lp(c) = lp.

Remark 4.1. (Complex valued functions)

We can extend our integration theory to complex valued functions without any difficulty. For given

f : X → C, writing f(x) = Re f(x) + Im f(x), we say f is measurable if and only if Re f and Im f

are measurable. Define Lp-norm as usual

‖f‖p =

(∫

X

|f |p dµ
)1/p

.

Then, it is easy to check f ∈ Lp if and only if Re f, Im f ∈ Lp.

In view of Fourier transform, it is natural to work on complex valued functions. Fortunately, the

integration theory extends without further difficulty. One thing you should aware of is that in

complex plane, functions cannot take ∞ as a value. In other words, in the extended real line,

44
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supn |fn| exists always in [−∞,∞] but supn fn(x) may not exist in complex plane. This may cause

a little inconvenience, but when one work with Lp functions, there is no problem since |f(x)| < ∞
almost everywhere.

Remark 4.2. For any measurable function f , one can find a Borel function g such that f = g

a.e. Hence, for Lp-functions, we do not see that difference between measurable functions and Borel

functions. We can simply assume they are Borel functions.

Example 4.3. Consider the Lebesgue measure space (Rn,L, λ) with p < q. There are several notion

of convergence with respect to each norm.

(1) A sequence which converges in Lp but does not converge in a.e.

Write n = 2j + r with 0 ≤ r < 2j . Define fn = χ[r2−j ,(r+1)2−j]. Then ‖fn‖p = 2−j/p but

the sequence does not converge to zero at every points in [0, 1].

(2) A sequence which converges in a.e. but does not converge in a.e.

fn = n1/pχ[0, 1
n
], ‖fn‖p = 1

(3) A sequence which converges in Lp but does not converges in Lq.

fn = n1/qχ[0, 1
n
], ‖fn‖q = 1, ‖fn‖p = n

p
q
−1

This counter example employs a set with arbitrarily small positive measure.

(4) A sequence which converges in Lq but does not converges in Lp.

fn = n−1/pχ[0,n], ‖fn‖p = 1, ‖fn‖q = n− q

p
+1

This counter example employs a set with arbitrarily large measure.

Example 4.4. In the measure space which does not have arbitrarily large set or arbitrarily small

set in measure, we have an inclusion between Lp.

(1) Lp(Z, c) = lp

This measure space with counting measure does not have sets of arbitrarily small positive

measure. For p < q, we have lp ⊂ lq. Let {an} ∈ lp. Then
∑

n

|an|q =
∑

|an|≤1

|an|q +
∑

|an|>1

|an|q

≤
∑

|an|≤1

|an|p +
∑

|an|>1

|an|q

≤ ‖{an}‖p + C < ∞

where we used {n : |an| > 1} is finite because of {an} ∈ lq.

(2) Lp(X,µ) with µ(X) < ∞, on which there is no arbitrarily large set. For p < q, we have

Lq ⊂ Lp.

Let f ∈ Lq. Then
∫

X

|f |p dµ =

∫

|f |≤1

|f |p dµ+

∫

|f |>1

|f |p dµ

≤ µ(X) · 1 +
∫

|f |>1

|f |q dµ < ∞.
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4.2. Completeness of Lp spaces

One of the most important gain of the Lebesgue theory is the completeness of Lp function spaces.(You

may recall that a limit of Riemann integrable functions may not even Riemann integrable.)

Theorem 4.1. (Rietz-Fischer) Let 1 ≤ p ≤ ∞. Lp is a complete normed space.

In general, a complete normed vector space is called a Banach space. For a proof, we need to verify

triangle inequality and the completeness. To proceed for the proof, we begin with the Hölder’s

inequality. This can be viewed as a generalization of the Cauchy-Schwartz inequality.

Proposition 4.2. (Hölder’s inequality)

Let 1 ≤ p, q, r ≤ ∞ with 1
r = 1

p + 1
q . Suppose f ∈ Lp and g ∈ Lq. Then fg ∈ Lr and

‖fg‖r ≤ ‖f‖p‖g‖q

Proof. Hölder inequality is a consequence of the convexity of exponentials, which formulated as

Young’s inequality: Let a, b > 0 and 1
p + 1

q = 1. Then,

ab ≤ 1

p
ap +

1

q
bq.

To verify this, set A = ap, B = bq and t = 1
p , 1− t = 1

q . Then we reduce to show

(
A

B
)t ≤ t

A

B
+ (1− t),

which is followed by the convexity of f(t) = αt.

Back to the Hölder inequality, we may assume that r = 1(considering |f |θ, |g|θ) and f, g ≥ 0 but f, g

are nonzero functions. (Check!) If p = ∞ or q = ∞, then the inequality is easy to verify. Assume

1 < p, q < ∞, r = 1.

By Young’s inequality, we have
∫

f(x)g(x) dµ ≤ 1

p

∫
|f(x)|p dµ+

1

q

∫
|g(x)|q dµ.

For any λ > 0 we can apply the above inequality to λf(x) and g(x)/λ to obtain
∫

f(x)g(x) dµ ≤ λp

p

∫
|f(x)|p dµ+

1

qλq

∫
|g(x)|q dµ.

Optimizing the right hand side by λ, we reach to the Hölder’s inequality.1

One can observe that the equality holds if and only if α|f(x)|p = β|g(x)|q a.e. for some α, β.

Alternatively, before applying Young’s inequality, one can normalize ‖f‖p = ‖g‖q = 1 (by replacing

by f, g by f/‖f‖p, g/‖g‖q if needed). Then, Young’s inequality gives
∫

f(x)g(x) dµ ≤ 1

p

∫
|f(x)|p dµ+

1

q

∫
|g(x)|q dµ. = 1

p
+

1

q
= 1.

�

1This trick is sometimes called arbitrage. One can make use of the symmetry of inequality to reduce an inequality

into a weaker inequality.
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Remark 4.5. The scaling condition 1
r = 1

p + 1
q is a necessary condition when the measure µ has a

scaling invariance. (eg. Lebesgue measure on Rd) As an exercise, readers can check 1
r ≥ 1

p + 1
q for

lp, but 1
r ≤ 1

p + 1
q for Lp([0, 1]).

In fact, L2 has a richer structure, an inner product,

〈f, g〉 =
∫

X

f g dµ

from which ‖ · ‖2 is generated. Using Hölder’s inequality, one shows 〈f, g〉 is finite for f, g ∈ L2. So,

L2 is a complete inner product vector space that is usually called a Hilbert space.

Proposition 4.3. (Minkowski’s inequality)

For 1 ≤ p ≤ ∞, we have

‖f + g‖p ≤ ‖f‖p + ‖g‖p

Proof. For p = ∞, it is easy to deduce from |f(x) + g(x) ≤ |f(x) + |g(x)|. Assume 1 ≤ p < ∞.

One can observe that |f(x) + g(x)|p ≤ (|f(x)|+ |g(x)|)|f(x) + g(x)|p−1.
∫

|f + g|p dµ ≤
∫
(|f |+ |g|)|f + g|p−1 dµ

≤ ‖f‖p‖|f + g|p−1‖q + ‖g‖p‖|f + g|p−1‖q

= (‖f‖p + ‖g‖p)
( ∫

|f + g|(p−1)q
)1/q

Using 1
p + 1

q = 1, we have

‖f + g‖p ≤ ‖f‖p + ‖g‖q.
�

Proof of Rietz-Fischer’s theorem

We are left to show the completeness. For given a Cauchy sequence {fn} in Lp, we can extract a

subsequence such that

‖fnk+1
− fnk

‖p ≤ 2−k.

We denote fnk
=: fk for simplicity of notation.

Lemma 4.4.

‖
∞∑

k=1

fk‖p ≤
∞∑

k=1

‖fk‖p

Proof. Exercise. Use Minkowski’s inequality and MCT. �

Define F (x) = |f1(x)|+
∑∞

k=1 |fk+1(x)− fk(x)|. Then by the lemma, F ∈ Lp and so F (x) < ∞
a.e. (i.e. F (x) < ∞ for x ∈ N c with µ(N) = 0. )

Define the limit function

f(x) =




f1(x) +

∑∞
k=1 fk+1(x) − fk(x), x ∈ N c

0, x ∈ N
.
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Then, we have

f(x)− fk(x) =
∞∑

j=k

fj+1(x) − fj(x), a.e.

‖f − fk‖p ≤
∞∑

j=k

‖fj+1 − fj‖p ≤ 2−k+1

Hence, fk → f in Lp. �

As a byproduct of the proof, we obtain a useful corollary.

Corollary 4.5. If a sequences fn → f in Lp, the there exists a subsequence {fnk
} converging to f

almost everywhere.

4.3. Approximation of Lp functions

Next, we discuss approximation of Lp-functions by smooth functions in Lp-norm. This is an

analogue of Stone-Weierstrauss theorem in a compact setting, i.e., a continuous function is approx-

imated by polynomial in the uniform norm.

Theorem 4.6 (Density theorem). Let 1 ≤ p < ∞. C∞
c (Rd) = {f : Rd → R : f ∈

C∞ and supp f is compact.} is dense in Lp(Rd), i.e., for any ǫ > 0 and f ∈ Lp, there exists

g ∈ C∞
c (Rd) such that ‖f − g‖p < ǫ.

Proof.

1. We take two steps. First, we approximate f by a continuous function with compact support and

then approximate the continuous function by a smooth function.

For a fixed ǫ > 0, let ǫ1 = ǫ/10. We use MCT to choose R > 0 so that ‖f‖Lp(Bc
R
) ≤ ǫ1 since

‖f‖Lp(Rd) < ∞. Moreover, we choose M > 0 such that ‖f1{|f |>M}‖p ≤ ǫ1 also by MCT. We can

approximate f by f1BR∩{|f |≤M} in Lp. From this observation, we may assume supp f ∈ BR and

|f | ≤ M .

Now, we approximate f by a simple function s such that |f(x) − s(x)| ≤ ǫ1
λ(BR) a.e in BR and

s is supported in BR. Then, ‖f − s‖Lp(BR) ≤ ǫ1. Say s =
∑N

k=1 αk1Ak
. By approximation

theorem of measurable sets, we find open sets Gk and closed sets Fk such that Fk ⊂ Ak ⊂ Gk with

λ (Gk \ Fk) ≤ ǫp1
M whereM = N max{αk}Nk=1. Now, we can use Uryson’s lemma, to find a continuous

function hk(x) so that 0 ≤ hk(x) ≤ 1, supphk ⊂ Gk and hk(x) = 1 on Fk. Set s̃ =
∑N

k=1 αkhk.

Then s̃ is a continuous function supported on BR+1 satisfying

‖s− s̃‖p ≤
N∑

k=1

|αk|‖1Ak
− hk‖p

≤
N∑

k=1

|αk|λ (Gk \ Fk)
1/p ≤ ǫ1

Hence, combining all together, we obtain ‖f − s̃‖p < ǫ/2.

2. For simplicity of notation, assume f ∈ Lp is continuous and supported in BR.
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Before getting into the proof we prepare two things, which are independently useful for many ap-

plications.

Convolution

The convolution of two sequences naturally appears in the product of two power series expansion.

Let {an}∞n=0 and {bn}∞n=0 be sequences. We define the convolution a ∗ b by

(a ∗ b)n = a0bn + a1bn−1 + · · ·+ anb0 =

n∑

j=0

ajbn−j.

Then when f(x) =
∑∞

n=0 anx
n and g(x) =

∑∞
n=0 bnx

n, the power series expansion of fg is

f(x)g(x) =
∑∞

n=0(a ∗ b)nxn. In particular, if f, g are periodic functions with period 2π, then one

has Fourier series expansion, f(x) =
∑

n∈Z f̂(n)e
inx, and g(x) =

∑
n∈Z ĝ(n)e

inx. Then formally, we

obtain

f̂ g(n) = (f̂ ∗ ĝ)(n), f̂(n)ĝ(n) = f̂ ∗ g(n),
where (f ∗ g)(x) =

∫ 2π

0 f(y)g(x− y) dy.

We extend the convolution to functions on Rn. For f, g measurable functions, we define a con-

volution by

(f ∗ g)(x) :=
∫

f(x− y)g(y) dy

whenever the integral is well-defined. (i.e
∫
|f(x−y)g(y)| dy < ∞ a.e. in x) (eg. f ∈ Lp and g ∈ Lq)

One can easily check the commutativity and associativity for good functions (i.e. f, g, h ∈ C∞
c ).

f ∗ g = g ∗ f and (f ∗ g) ∗ h = f ∗ (g ∗ h)2.

The convolution is useful to modify a rough function to a regular function. If f ∈ L1, g ∈ C1 with

|∂xi
g| ≤ M , then using Lebesgue convergence theorem we have f ∗ g ∈ C1 and

∂xi
(f ∗ g)(x) = (f ∗ ∂xi

g)(x)

Approximation of identity

Consider a smooth function φ(x) satisfying

• φ(x) ≥ 0,

• φ ∈ C∞
c with supp φ ⊂ B1,

•
∫
φ(x) dx = 1.

Define a rescaled function φt(x) =
1
td
φ(xt ). Then suppφt ∈ Bt and

∫
φt = 1. As t → 0, the support

of φt gets smaller but its integral is preserved. However, limt→0 φt does not exist as a measurable

function.3 We call φt an approximation of identity in view that for a measurable function f , we

have

lim
t→0

φt ∗ f(x) = f(x)

2Proof for associativity requires Fubini theorem
3The limit is in fact the Dirac delta measure. So, there is no limit as a function. One you show φt converge to

δ0 in a weaker sense of limit
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in several senses. For a full account of property of this, see, for instance, [Fol] pp.242.

To finish the proof, we want to show ‖f − φt ∗ f‖p ≤ ǫ/2 for small t. Since f is a compactly

supported continuous function, f is uniformly continuous, i.e. there is δ > 0 so that

|f(x)− f(x− y)| ≤ ǫ2 whenever |y| ≤ δ

|f(x)− φt ∗ f(x)| = |f(x)−
∫

φt(y)f(x− y) dy|

≤
∫

|y|<t

φt(y)|f(x) − f(x− y)| dy

≤ ǫ2 choosing t < δ

‖f − φt ∗ f‖pp ≤
∫

BR

∣∣f(x)− φt ∗ f(x)
∣∣p dx

≤ λ (BR) ǫ
p
2.

Choosing ǫ2 = ǫ/2λ (BR), show φt ∗ f =: g ∈ C∞
c is an approximation of f in Lp norm. �

Exercise 4.1. Combining Theorem 4.6 and Stone-Weierstrauss theorem, show that Lp is separable

for 1 ≤ p < ∞. To the contrary, show that L∞([0, 1]) is not separable.

4.4. Duality of Lp

In the linear algebra course, we have learned a dual space V ∗ of a vector space V of finite

dimension. V ∗ is a vector space of linear functionals, i.e. V ∗ = {L : V → R|L is linear}. Due

to a basis of V , we can characterise V ∗ and verify V ≡ V ∗. In infinite dimensional spaces, not

every linear functional is bounded and so cannot give a norm of V ∗. A natural analogue of linear

functionals are bounded linear functionals.

Let B be a Banach space. A linear functional L : B → C is bounded if supx 6=0
|L(x)|
‖x‖ =: ‖L‖ < ∞.

Then, B∗ = {L : B → C |L is a bounded linear functional } is a normed space with ‖L‖.(Check!)
Exercise 4.2. Show B∗ is a Banach space for any normed space B. (One has to use the complete-

ness of C.)

Exercise 4.3. Let L : B → C be a linear functional for a normed space B. The followings are

equivalent:

(1) L is continuos.

(2) L is continuous at 0.

(3) L is bounded.

Now we discuss the duality of Lp(µ) spaces for 1 ≤ p ≤ ∞.

Let (p, q) be a conjugate pair, i.e. 1
p + 1

q = 1. For each g ∈ Lq, one define a linear functional on Lp

by

Lg(f) =

∫
fgdµ.

Due to the Hölder’s inequality, Lg is bounded linear functional with ‖Lg‖ ≤ ‖g‖q. In fact, when

1 ≤ q < ∞, ‖Lg‖ = ‖g‖q by choosing f ∈ Lp such that fg = |g|q a.e. To be more precise, choose

f = 0 where g = 0 and if g 6= 0, then f = |g|q−1sgn g. Then we obtain
∫
fg dµ = ‖g‖qq and

‖f‖p = ‖g‖q−1
q , which gives equality of Hölder’s inequality. This provides an isometry Lq → (Lp)∗.
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When q = ∞, we assume µ is the Lebesgue measure.4 For given ǫ > 0, let A = {x : |g(x)| ≥
‖g‖∞ − ǫ}. Then λ(A) > 0. Pick a measurable set B ⊂ A with λ (B) < ∞. Define f = χBsgn g.

Then ‖f‖1 = λ (B) and

‖Lg‖ ≥
∫

fg dλ‖f‖−1
1 = λ (B)

−1
∫

B

|g| ≥ ‖g‖∞ − ǫ.

Since ǫ > 0 is arbitrary, ‖Lg‖ = ‖g‖∞. Therefore, we have Lq is isometrically embedded into (Lp)∗.

Theorem 4.7. Let (p, q) be a conjugate pair with 1 ≤ p < ∞. Assume µ is σ-finite. Then, Lq is

isometrically isomorphic to (Lp)∗.

Proof. From the above discussion, we are left to show that for a given L ∈ (Lp)∗, there exists a

g ∈ Lq such that L = Lg.

Step 1

We may reduce to the case µ is finite. Indeed, write X = ∪·Xi where µ(Xi) < ∞. Assume that

we have Theorem for Xi. Then there is gi ∈ Lq(Xi) such that for fi ∈ Lp(Xi), L(fi) =
∫
figi dµ.

Define g =
∑∞

i=1 gi. Since supp gi are disjoint, we have L(f) =
∑∞

i=1

∫
f1Xi

gi dµ =
∫
fg dµ. In

order to show that g ∈ Lq, we use the boundedness of L. When 1 < p < ∞, choose f = |g|q−1sgn g.

Then ‖f‖pp = ‖g‖qq = L(f). Setting Yn =
⋃n

i=1 Xi, we have
|L(f1Yn)|
‖f1Yn‖p

= ‖f1Yn
‖p−1
p ≤ ‖L‖. Thus,

‖f‖p < ∞ and so g ∈ Lq.

When p = 1, q = ∞, Consider a set E = {x ∈ X : |g(x)| > ‖L‖ + 1} and a subset F with 0 <

µ(F ) < ∞. Chooing f = 1F sgn g, we estimate L(f) ≥
∫
|g| dµ ≥ (‖L‖+ 1)µ(F ) = (‖L‖+ 1)‖f‖1,

which makes a contradiction.

Step 2

We may reduce to the case L is positive. (i.e. L(f) ≥ 0 for any nonnegative f ∈ Lp). Indeed, we have

Claim For any L ∈ (Lp)∗, we have a unique decomposition L = L+ − L−, where L± are posi-

tive definite.

Proof. We say a measurable set E is totally positive if L(1F ) ≥ 0 for any F ⊂ E. Set M :=

supE L(1E) ≥ 0 where the supremum is taken over all totally positive sets. Then there exists a

sequence of totally positive sets {Ek ⊂ X : k = 1, 2, · · · } such that L(1Ek
) → M . Then X+ =⋃∞

k=1 Ek is a maxima, i.e. L(1X+) = M . (Check!) Then it is easy to check L+ is positive

definite.(first, do it for nonnegative simple functions) Letting L− = L+ − L = −L(·1X\X+
), we

have to show that L− is positive definite. Suppose not. Then, there exist a set E1 in X− such

that L(1E) > 0. If E1 is totally positive, then replacing X+ by X+ ∪ E1 makes a contradiction.

Thus, E1 must contain a subset F1 such that L(1E1\F1
) > L(1E1). We choose F1 such that

L(1E1\F1
) > L(1E1) + 1/n1, and E2 := E1 \ F1, where n1 is the smallest integer for which such

E2 exists. E2 cannot be totally positive due to the same argument. Then we repeat to pick

E3 ⊂ E2 such that L(1E3) > L1E2 + 1/n2, where n2 is the smallest for which such E3 exists.

Continuing this procedure we construct a decreasing sequence E1 ⊃ E2 ⊃ · · · ⊃ X− such that

4In general, we need the ”semi-finiteness” assumption on measures. See [Fol] for general discussion.
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L(1Ek+1
> L(1Ek

+ 1/nk. Then E :=
⋂∞

k=1 is totally positive since E cannot contain any subset F

such that L(1F ) > L(1E. As L(1E) > 0, it contradicts to the choice of X+. �

Now, we assume that L is positive definite and µ is finite. We consider the collection of mea-

surable functions

S = {0 ≤ g ∈ Lq :

∫
f1E dµ ≤ L(1E) for all E ∈ M}, K = sup

g∈S

∫
g dµ

Then, the maximum is attained for some measurable function g ∈ S by MCT and the fact that if

g1, g2 ∈ S, then max{g1, g2} ∈ S. (Check!)
For a fixed ǫ > 0, we define Lǫ(f) = L(f)− inf gf dµ−ǫ

∫
f dµ. We claim that Lǫ is negative definite

for all ǫ > 0. Assume not. Then, by Claim (decomposition) for some ǫ, Lǫ+ 6= 0, and so there exist

a non measure zero set E such that Lǫ+(1F ) ≥ 0. That is, L(1F ) ≥
∫
g1F dµ + ǫ

∫
1F dµ for any

F ⊂ E. Then we can replace g by g′ = g1X\E + (g + ǫ)1E and obtain g′ ∈ S but
∫
g′ dµ > M ,

which makes a contradiction. Next, we can verify that L(f) =
∫
fg dµ for f ∈ Lp. (first, show this

for nonnegative simple functions and use the continuity of L and MCT to show it for nonnegative

functions, and then write g = g+ − g−.)

Finally, we show that g ∈ Lq. The argument is similar to Step 1, except that we do cut off function

value instead of its support. Indeed, for 1 < p < ∞ define gN = min(g,N) and fN = |gN |q−1sgn g.

Then, L(fN) ≥
∫
|gN |q dµ = ‖fN‖p−1

p ‖fN‖p. Since ‖L‖ is bounded, ‖fN‖p−1
p is bounded in N ,

and so is ‖gN‖q. Hence, by MCT, g ∈ Lq. When p = 1, q = ∞, one can also argue as Step

1.(Exercise!). �

When p = ∞, it is known that (L∞)∗ ) L1. For more discussion, see [Fol] p.191.

Exercise 4.4. Show the uniqueness of the decomposition in Claim and uniqueness of f ∈ Lq.

Corollary 4.8. For 1 < p < ∞, Lp(µ) is a reflexive Banach space. i.e. (Lp)∗∗ = Lp.

The proof of Theorem 4.7 is similar to the discussion of signed measure and the proof of the Radon-

Nikodym theorem.

Definition 4.1. Let (X,M) be a measurable space. A signed measure is a map µ : M → [−∞,∞]

such that

• µ(∅) = 0

• µ can take either the value ∞ or −∞ but not both,

• If E1, E2, · · · ⊂ X are disjoint, then
∑∞

k=1 µ(Ek) converges to µ(
⋃∞

k=1 Ek), with the former

sum being absolute convergent if the latter expression is finite.

Exercise 4.5. Let (X,M, µ) be a signed measure space. Then, there exists a decomposition of

X = X+ ∪· X− such that µ|X+ ≥ 0 and µ|X−
≤ 0. That is, for any E ⊂ X+[X−], µ(E) ≥ [≤]0.

Argue that this decomposition is unique up to null sets. This decomposition deduce a decomposition

of signed measure into unsigned measures. Indeed, there is unique decomposition µ = µ+−µ− where

µ± are unsigned measure.
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Exercise 4.6 (Radon-Nikodym). Let µ be an absolute continuous signed measure to the Lebesgue

measure λ. (i.e. If λ (E) = 0, then µ(E) = 0) Then, there exists f ∈ L1(Rn, λ) such that

µ(E) =

∫

E

f dλ.

4.5. More useful inequalities

We discuss some more useful inequalities.

Proposition 4.9. (log-convexity inequality) Let f : Rn → R. and 1 ≤ p ≤ r ≤ q ≤ ∞ and
1
r = θ 1

p + (1 − θ)1q . Then,

‖f‖r ≤ ‖f‖θp‖f‖1−θ
q

Proof.

1. Use Hölder’s inequality for f = |f |θ and g = |f |1−θ.

2. Directly show the convexity of s → log ‖f‖s by taking the second derivatives.

3. (Tensor power trick) By scaling we may assume that ‖f‖p = ‖f‖q = 1. First, it is easy to verify

‖f‖r ≤ 2‖f‖θp‖f‖1−θ
q (4.1)

by dividing into two cases |f | ≥ 1 or |f | < 1. Observe that the coefficient 2 is independent of

dimension n. We use this symmetry of the inequality to the dimension. Set f ⊗ · · · ⊗ f︸ ︷︷ ︸
k

= f⊗k :

Rnk → R by f⊗k(x1, · · · , xk) = f(x1)f(x2) · · · f(xk) where xj ∈ Rn. Then, we have (4.1) for f⊗n:

‖f⊗k‖Lr(Rnk) ≤ 2‖f⊗k‖θLp(Rnk)‖f⊗k‖1−θ
Lq(Rnk)

.

A computation shows that ‖f⊗k‖Lp(Rnk) = ‖f‖kLp(Rn), hence, we obtain

‖f‖Lr(Rn) ≤ k
√
2‖f‖θLp(Rn)‖f‖1−θ

Lq(Rn).

Since k is arbitrary, we conclude the result. �

Exercise 4.7. Prove the Hölder’s inequality by the tensor power trick.

Theorem 4.10. (Minkowski’s inequality(integral form))

Let f(x, y) be a measurable function on Rm+l. Then, for 1 ≤ p ≤ ∞,
( ∫ (∫

f(x, y) dx
)p

dy
)1/p

≤
∫ ( ∫

|f(x, y)|p dy
)1/p

dx. (4.2)

Proof. If p = 1 it is merely Fubini’s theorem and if p = ∞, then it is a simple consequence of

integral. Assume 1 < p < ∞. We use the dual formulation. Let q is the conjugate exponent and

g ∈ Lq(y).
∫ ∣∣

∫
f(x, y) dx

∣∣|g(y)|dy ≤
∫ ∫

|f(x, y)||g(y)| dy dx

≤
∫

‖g‖q‖f(x, ·)‖p dx
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Using

sup
‖g‖q=1

∫
fg = ‖f‖p,

we conclude (4.2). �

Theorem 4.11. (Young’s inequality)

For 1 ≤ p ≤ ∞, we have

‖f ∗ g‖p ≤ ‖f‖p‖g‖1. (4.3)

More generally, suppose that 1 ≤ p, q, r ≤ ∞ with 1
p + 1

q = 1
r + 1.

If f ∈ Lp(Rn) and g ∈ Lq(Rn), then f ∗ g ∈ Lr(Rn) and

‖f ∗ g‖r ≤ ‖f‖p‖g‖q. (4.4)

Proof. To prove (4.3), we use (4.2)
(∫ ∣∣∣

∫
f(x− y)g(y) dy

∣∣∣
p

dx
)1/p

≤
∫ (∫

|f(x− y)g(y)|p dx
)1/p

dy

≤ ‖f‖p‖g‖1.

For the general case (4.4), we may assume f, g ≥ 0 and normalize f, g so that ‖f‖p = ‖g‖q = 1.

Using the Hölder’s inequality, and observing exponents numerology.

f ∗ g(x) =
∫

f(x− y)p/rg(y)q/rf(x− y)1−p/rg(y)1−q/r dy

≤
( ∫

f(x− y)pg(y)q dy
)1/r(∫

f(x− y)(1−p/r)q′
)1/p′

×
( ∫

g(y)(1−q/r)p′

)1/q′

=
( ∫

f(x− y)pg(y)q dy
)1/r

· 1 · 1.

Hence, (f ∗ g(x))r ≤ fp ∗ gq(x)

Using (4.3) for p = 1,
∫
(f ∗ g)r dx ≤

∫
fp ∗ gq dx ≤ ‖fp‖1‖gq‖1 = ‖f‖pp‖g‖qq = 1.

Note that we have used the translation invariance of measure in the proof. Generally, Young’s

inequality holds true for translation invariant measure, so called a Haar measure. �



CHAPTER 5

Differentiation

The differentiation and integration are inverse operations. Indeed, the fact is formulated as the

Fundamental Theorem of Calculus. More precisely, if f : [a, b] → R is a continuous function, then

its primitive function:

F (x) :=

∫ x

a

f(y) dy,

is continuously differentiable with F ′ = f . On the other hands, if F is differentiable, then

F (b)− F (a) =

∫ b

a

F ′(x) dx.

The goal of this chapter is to extend this relation of integral and differentiation to more general

functions, Lebesgue measurable functions. We will also extend the analogous statement to higher

dimension.

We formulate two questions.

Question 1. Let f be an integrable function and define F (x) =
∫ x

a
f(y)dy. Is f

differentiable? If so, under what condition on f do we guarantee F ′ = f?

It is easy to see that F is continuous (actually a bit stronger than continuous). We already know the

answer is yes if f is continuous or piecewise continuous. The questions turns to a limiting question

of averaging operator:

1

2h
(F (x+ h)− F (x− h)) =

1

2h

∫ x+h

x−h

f(y) dy → f(x) as h → 0?

We will study this question in general dimension as follows:

1

λ (Br(x))

∫

Br(x)

f(y) dλy → f(x) as r → 0?

Next question is to find a mild sufficient condition for the Fundamental Theorem of Calculus.

Question 2. What condition on F guarantee that F ′ exist a.e., that F ′ is

integrable, and that

F (b)− F (a) =

∫ b

a

F ′(x) dx?

In Chapter 2, we have seen an example, the Lebesgue-Cantor function (See Subsection 2.3.3), for

which F ′ exists and is equal to zero a.e. but Question 2 fails. Hence, we need a stronger condition,

so called absolute continuity, than just continuity.

55
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5.1. Differentiation of the Integral

5.1.1. Hardy-Littlewood maximal function.

We begin with a geometric lemma.

Theorem 5.1 (Vitali’s Covering Lemma). Let E ⊂ Rn be a bounded set. Let F denote a collection

of open balls which are centered at points of E such that every point of E is the center of some ball in

F , i.e., F = {Br(x)(x) : x ∈ E}. Then there exists a countable (at most) subcollection {B1, B2, · · · }
in F such that Bj’s are disjoint and E ⊂ ⋃∞

j=1 3Bj.

Proof. Without loss of generality, we may assume radii of balls are bounded. Inductively, assume

that B1, · · · , Bn−1 are selected. Let

dn = sup{radB : B ∈ F and B ∩
n−1⋃

j=1

Bj = ∅}.

If there are no B ∈ F such that
⋃n−1

j=1 Bj = ∅, then we stop the procedure. Otherwise, we choose

Bn ∈ F such that Bn is disjoint with
⋃n−1

j=1 Bj and 1
2dn ≤ radBn. The selection gives a countable

subcollection {B1, B2, · · · } in F such that Bj ’s are disjoint.

Pick x in E and let B = Br(x)(x).

Claim : B has a nonempty intersetion with at least one of the balls B1, B2, · · · .

If not, this process never terminates. In deed, r(x) < dn for any n = 1, 2, · · · . However, dn → 0,

since E is a bounded set (of finite measure). Let α ≥ 1 be the smallest number such that Bα

intersects with B. Hence

B ∩
α−1⋃

j=1

Bj = ∅

and we can conclude that

r(x) ≤ dα < 2radBα.

Let y ∈ B ∩Bα. Then if z is the center of Bα, we have

|x− z| ≤ |x− y|+ |y − z|
< r(x) + radBα < 3radBα.

b b

BBα

xz
y

r(x)

b

b bb

b b b

<

< <

b bb
3 radBα

|x− y||y − z|

Therefore, x must lie in 3Bα. �
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Corollary 5.2. Let E ⊂ Rn be a bounded set. Let F denote a collection of open balls which

are centered at points of E such that every point of E is the center of some ball in F , i.e., F =

{Br(x)(x) : x ∈ E}. Then, for any ǫ > 0, there exists {B1, · · · , BN} in F such that Bj’s are disjoint

and

λ


E −

N⋃

j=1

Bj


 < ǫ.

Definition 5.1. Let f be a function in L1
loc(R

n), i.e.,
∫
K
|f | < ∞ for any compact set K ∈ Rn.

Then we define the Hardy-Littlewood maximal function

Mf(x) = sup
0<r<∞

1

B(x, r)

∫

B(x,r)

|f(y)|dy.

The followings are basic properties of the Hardy-Littlewood maximal function:

• Mf is measurable.

• M is sublinear, that is, M(f + g) ≤ Mf +Mg.

• If f is continuous, Mf(x) ≥ f(x). Later, we will see that Mf(x) ≥ f(x) a.e. for f ∈
L1
loc(R

n).

• In general, Mf 6∈ L1(Rn) even though f ∈ L1(Rn). In fact, if Mf ∈ L1(Rn), then f = 0.

Let a > 0. For |x| > a, we have

Mf(x) ≥ 1

λ(x, 2|x|)

∫

B(x,2|x|)

|f(y)| dy

≥ 1

λ(0, 2|x|)

∫

B(0,a)

|f(y)| dy

=
1

Vn |x|n
∫

B(0,a)

|f(y)| dy. (Vd : the volume of the n-dimensional unit ball)

Fix a. Then
∫

|x|>a

Mf(x) dx =

∫

B(0,a)

|f(y)| dy
∫

|x|>a

1

|x|d dx = ∞,

unless
∫
B(0,a) |f(y)| dy = 0. Therefore, if Mf ∈ L1(Rn), then f ≡ 0 a.e. on B(0, a). Since

a can be chosen arbitrarily, f ≡ 0 a.e. on Rn.

Example 5.1 (A function f ∈ L1 such that Mf 6∈ L1
loc). Let

f(x) =

{
1

x log2 x
0 < x < 1

2

0 otherwise.

Then f ∈ L1(R), since
∫ 1

2

0

1

x log2 x
dx

log x=t
=

∫ log 1
2

−∞

1

t2
dt < ∞.

However,

Mf(x) ≥ 1

2x

∫ 2x

0

f(y)dy >
1

2x

∫ x

0

1

y log2 y
dy = − 1

2x logx
6∈ L2

loc(R).
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Theorem 5.3. If f ∈ L1(Rn), then

t λ({x : Mf(x) > t}) ≤ 3n‖f‖L1

for 0 < t < ∞.

Proof. Let E = {x : Mf(x) > t}. For k ∈ N, denote Ek = E ∩B(0, k), which is bounded. Then

for each x ∈ E, there exists an open ball Bx around x such that t < 1
λ(Bx)

∫
Bx

|f(y)|dy. Denote

F = {Bx : x ∈ Ek}. Using Vitali’s covering lemma, we can extract disjoint sets B1, B2, · · · from F
so that Ek ⊂ ⋃∞

j=1 3Bj . Then

λ(Ek) ≤
∞∑

i=1

λ(3Bj) =
∑

3n(Bj)

<

∞∑

j=1

3nt−1

∫

Bj

|f(y)| dy = 3nt−1

∫
⋃

∞

j=1 Bj

|f(x)| dx

≤ 3nt−1

∫

Rn

|f(x)|dx.

Letting k → ∞, we obtain t λ({x : Mf(x) > t}) ≤ 3n‖f‖L1. �

Remark 5.2. Theorem 1.1 is a weaker version of the statement (4) in the following sense: We

denote

‖f‖L1,∞ = sup
0<t<∞

t λ({x : |f(x)| > t}). (≤ ‖f‖L1)

Then ‖ ·‖L1,∞ defines a norm and we call this norm the weak L1-norm. So M is a bounded operator

from L1 to weak L1. Moreover, it is easy to check that M : L∞ → L∞.

Remark 5.3. (optional) As we have the boundedness of M from L1 → L1,∞, and L∞ → L∞, one

can use real interpolation theorem to conclude

‖Mf‖Lp ≤ Cp‖f‖Lp

for some constant Cp depending on p. Therefore, we can conclude that M is a bounded sublinear

operator from Lp to Lp, 1 < p ≤ ∞. See [Fol], [Tao] for detail.

5.1.2. Lebesgue’s Differentiation Theorem. Now we are ready to answer to Question 1.

Theorem 5.4 (Lebesgue’s differentiation theorem). Suppose f ∈ L1
loc

(Rn). Then

(1) for a.e. x ∈ Rn,

lim
r→0

1

λ(B(x, r))

∫

B(x,r)

|f(y)− f(x)| dy = 0.

(2) In particular, for a.e. x ∈ Rn,

lim
r→0

1

λ(B(x, r))

∫

B(x,r)

f(y) dy = f(x).
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Proof. We first show (2). By replacing f by f · 1R+1 and considering |x| < R, we may assume

that f ∈ L1(Rn). (2) is true if f is a continuous function. Let g be a continuous function such that

‖f − g‖L1 < ǫ. Denote Arf = limr→0
1

λ(B(x,r))

∫
B(x,r)

f(y) dy. Then

lim sup
r→0

|Arf(x)− f(x)| = lim sup
r→0

|Ar(f − g)(x) + (Arg − g)(x) + (g − f)(x)|

≤ M(f − g)(x) + |f − g|(x)

Let

Et = {x : lim sup
r→0

|Arf(x)− f(x)| > t} and Ft = {x : |f − g|(x) > t}.

Then Et ⊂ Ft/2 ∪ {x : M(f − g)(x) > t/2} and

λ(Et) ≤ λ(Ft/2) + λ({x : M(f − g)(x) > t/2})

≤ ǫ

t/2
+

3nǫ

t/2
.

Since ǫ is arbitrary, λ(Et) = 0 for all t > 0. Therefore, limr→0 Arf(x) = f(x) for every x 6∈⋃∞
n=1 E1/n, i.e., x ∈ Rn a.e.

Now we continue to prove (1). For x ∈ C, let gc(x) = |f(x)− c|. From (2),

lim
r→0

λ(B(x, r))

∫

B(x,r)

|f(y)− c| dy = |f(x)− c|

for x 6∈ Gc with λ(Gc) = 0. Let D be a countable dense subset of C. (for example, complex numbers

with rational coordinates) Then E =
⋃

c∈D Gc is a null set. If x 6∈ E, there exists c ∈ C such that

|f(x)− c| < ǫ and so |f(x)− f(y)| < |f(y)− c|+ ǫ. Hence

lim
r→0

λ(B(x, r))

∫

B(x,r)

|f(x)− f(y)| dy < lim
r→0

λ(B(x, r))

∫

B(x,r)

|f(y)− c| dy + ǫ

= |f(x)− c|+ ǫ ≤ 2ǫ.

Since ǫ is arbitrary,

lim
r→0

λ(B(x, r))

∫

B(x,r)

|f(x)− f(y)| dy = 0. �

Corollary 5.5. Let E ⊂ Rn be a measurable set. Then

lim
r→0

λ(E ∩B(x, r))

λ(B(x, r))
= 1E(x) a.e. (5.1)

Remark 5.4. The left hand side of (5.1) is often referred as the density of E at x.

Definition 5.2. Suppose f ∈ L1
loc(R

n). Then the set

{x ∈ Rn : there exists A such that lim
r→0

λ(B(x, r))

∫

B(x,r)

|f(y)−A| dy = 0}

is called the Lebesgue set of f .



60 5. DIFFERENTIATION

Remark 5.5. In the Lebesgue’s differentiation theorem, using a ball is not crucial. We can generalize

that result to the case when a sequence {Ek} of measurable sets ‘shrinking nicely’. More precisely,

we say that {Un}∞n=1 shrink nicely to x if x ∈ Un, λ (Un) → 0, and there exists a constant c > 0

such that for each n there exist a ball B with

x ∈ B, Un ⊂ B, and Un ≥ cλ (B) .

Thus, Un is contained in B but its measure is comparable.

We can generalize the averaging operator to weighted averaging operator.

Exercise 5.1. Let f ∈ Lp(Rn). Let φt be an approximation of identity. That is, φ is radial,

nonnegative, φ(x) = φ(|x|) ≥ c > 0 for |x| ≤ 1 and supp φ ∈ B2. Set φt(x) = t−nφ(x/t). Then, we

have

lim
t→0

f ∗ φt(x) = f(x), a.e.

5.2. Differentiability of Functions

Now, we turn to the second question, that is , finding a sufficient condition on F to guarantee

F (b)− F (a) =

∫ b

a

F ′(x) dx.

5.2.1. Functions of bounded variation.

Definition 5.3. Let F (x) be a real valued function defined on [a, b]. For a partition x0 = a < x1 <

· · · < xN = b, we say
∑N

k=1 |F (xk) − F (xk−1)| is a variation. We say F is of bounded variation

(f ∈ BV ) if the variations for any partition is bounded by a constant M . Furthermore, we denote

the supreme over all partitions is the total variation.

TF (x) = sup
N∑

k=1

|F (xk)− F (xk−1)|.

Example 5.6.

(1) If f : [a, b] → R is monotone, then f ∈ BV and Tf (x) = f(x)− f(a).

(2) If f ∈ C1, then f ∈ BV . However, there is a continuous function f : [a, b] → R which is

not BV.

f(x) =




x sin 1

x , 0 < x ≤ 1

0, x = 0.

(3) Let F (X) =
∫ x

z
f(y) dy where f is integrable. Then F is continuous and of bounded

variation. Furthermore,

TF (x) =

∫ x

a

|f(y)| dy.

Indeed, for any partition {x0, x1, · · · , xN},
N∑

k=1

|F (xk)− F (xk−1)| =
N∑

k=1

∫ xk

xk−1

f(y) dx ≤
N∑

k=1

∫ xk

xk−1

|f(y)| dx ≤
∫ b

a

|f(y)| dy.
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Hence, we have TF (x) ≤
∫ x

a
|f(y)| dy and F ∈ BV . For the other side of inequality, we

approximate f by a step function s such that ‖f − s‖1 ≤ ǫ. One can check the equality

holds true for step functions. Then,

TF (x) ≥ TS(x)− TF−S(x) ≤
∫ x

a

|s(y)| dy − ǫ ≥
∫ x

a

|f(y)| dy − 2ǫ.

(4) Any BV function is bounded and Riemann integrable. But, as seen above, not every

Riemann integrable function is BV.

Theorem 5.6. A real-valued function F on [a, b] is of bounded variation if and only if F is the

difference of two increasing bounded functions.

Proof. ’if’ part is obvious. We prove the ’only if’ part. Assume that F ∈ BV . Define g(x) =

TF (x) − f(x). It suffices to show that g(x) is increasing. For x < y,

g(y)− g(x) = TF (y)− F (y)− TF (x) + F (x)

= [TF (y)− TF (x)]− [F (y)− F (x)]

≥ F (y)− F (x)− [F (y)− F (x)] = 0

�

This theorem tells that it suffices to consider monotone functions when studying bounded vari-

ation functions.

Now, we show a deep theorem due to Lebesgue.

Theorem 5.7 (Lebesgue). Functions of bounded variation are differentiable a.e.

For a proof, we need to use a form of Vitali’s covering lemma.

Lemma 5.8 (Vitali’s covering lemma, infinitesimal version). Let E ⊂ Rn. Let F be a collection of

closed balls with positive radii such that for x ∈ E and ǫ > 0, there exists a ball B ∈ F containing x

with radB < ǫ. Then there exists a countable subcollection {B1, B2, · · · } such that Bj’s are disjoint

and E ⊂ ⋃∞
α=1 Bα except for a null set.

Proof. We may assume that E is bounded. We may further assume that all the balls in F have less

than some positive constant. Moreover, we discard balls in F which are disjoint with E. Suppose

B1, · · · , Bα have been selected. If E ⊂ ⋃β<α Bβ , then we stop our procedure. Otherwise, let

dα = sup{radB : B ∩ ∪α
k=1 = ∅}

�

Proof (Proof of Theorem). It suffices to show theorem for increasing function f on a bounded

interval [a, b]. Let

Df(x) = lim sup
δ→0

{ |f(y)− f(z)|
y − z

: a ≤ y ≤ x ≤ z ≤ b, 0 < z − y < δ

}
,
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df(x) = lim inf
δ→0

{ |f(y)− f(z)|
y − z

: a ≤ y ≤ x ≤ z ≤ b, 0 < z − y < δ

}
.

Then 0 ≤ df(x) ≤ Df(x) ≤ ∞. We want to show that

{x : Df(x) = ∞} ∪ {x : df(x) < Df(x)} =
⋂

k≥1

{x : Df(x) > k} ∪
⋃

s<t
s,t∈Q

{x : df(x) < s < t < Df(x)}

is a null set. Let E = {x : Df(x) > k} and F = {x : df(x) < s < t < Df(x)}.

Claim 1. λ∗(E) = c
k for some c.

If x ∈ E, then there exists arbitrarily small interval x ∈ [y, z] ⊂ [a, b] containing x such that
f(z)−f(y)

z−y > k. Let I = [y, z] and Ĩ = (f(y), f(z)). Then λ(Ĩ) > kλ(I). We collect all such

closed intervals. Then it satisfies the condition for Vitali’s covering lemma, so we can find an at

most countable subcollection of disjoint intervals {Iα}∞α=1 such that E ⊂ ⋃
α≥1 Iα a.e. Since f is

increasing, {Ĩα} are also disjoint. We estimate

λ (E) ≤ λ


⋃

α≥1

Iα


 =

∞∑

α=1

λ (Iα) ≤
1

k

∞∑

α=1

λ
(
Ĩα

)
≤ f(b)− f(a)

k

Claim 2. λ∗(F ) = 0.

We will show λ (F ) ≤ s
tλ (F ) and so conclude λ (F ) = 0. For given ǫ we choose an open set G ⊃ F

such that λ (G \ F ) ≤ ǫ. For the first inequality, for each x ∈ F we can find arbitrarily small

intervals x ∈ [y, z] such that [y, z] ⊂ G ∩ [a, b] and f(y)−f(z)
y−z < s. By Vitali’s covering lemma, we

can find a collection of disjoint intervals {Iα} such that F ⊂ ⋃α≥1 Iα a.e. Thus, we estimate

λ


⋃

α≥1

Ĩα


 =

∑

α≥1

λ
(
Ĩα

)
< s

∑

α≥1

λ (Iα) = λ


⋃

α≥1

Iα


 ≤ sλ (G) ≤ s(λ (F ) + ǫ)

For the other side of inequality, we begin with F ∩⋃α≥1 I
◦
α. Note that since Iα’s are disjoint

closed intervals , λ
(⋃

α≥1 I
◦
α

)
= λ

(⋃
α≥1 Iα

)
. For each x ∈ F ∩⋃α≥1 I

◦
α, we can find arbitrarily

small intervals [y, z] ⊂ ⋃α≥1 I
◦
α such that f(y)−f(z)

y−z ≥ t. We use Vitali’s covering lemma to obtain

a countable collection of disjoint intervals {Jβ}β≥1 such that
⋃

α≥1

I◦α ⊂
⋃

β≥1

Jβ

a.e. We also know F ⊂ ⋃β≥1 Jβ a.e. Thus, we estimate

λ (F ) ≤
∑

β≥1

λ (Jβ) ≤
1

t

∑

β≥1

λ
(
J̃β

)
≤ 1

t
λ


⋃

α≥1

Ĩα


 ≤ s

t
(λ (F ) + ǫ)

Since ǫ > 0 is arbitrary, we conclude that λ (F ) ≤ s
tλ (F ). This complete the proof. �

Theorem 5.9. If F is of bounded variation on [a, b], then F ′ is integrable and
∫ b

a

F ′(x) dx ≤ F (b)− F (a)
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Proof. May assume that F is increasing. By Lebesgue’s theorem, F ′ exists a.e. We set F (x) = F (b)

for x > b. Thus,

F ′(x) = lim
k→∞

k[F (x+ 1/k)− F (x)] for a.e. x.

∫ b

a

k[F (x+ 1/k)− F (x)] dx = k

∫ b+1/k

a+1/k

F (x) dx− k

∫ b

a

F (x) dx

= k

∫ b+1/k

b

F (x) dx− k

∫ a+1/k

a

F (x) dx

= F (b)− k

∫ a+1/k

a

F (x) dx ≤ F (b)− F (a).

Using Fatou’s lemma, we have

∫ b

a

F ′(x) dx ≤ lim inf
k→∞

∫ b

a

k[F (x+ 1/k)− F (x)] dx ≤ F (b)− F (a).

�

Example 5.7. If an increasing function F has a discontinuity at x, then there is a jump i.e.

F (x−) < F (x+). In this case, we have the strict inequality F (b) − F (a) <
∫ b

a F ′(y) dy, since F ′

do not count its jump. Hence, the continuity is a necessary condition to have FTC. Even if F is

continuous and of bounded variation, it may not satisfy the Fundamental Theorem of Calculus.

Recall the Cantor-Lebesgue function that is increasing, uniformly continuous, F ′(x) = 0 a.e., but

F (1) = 1, F (0) = 0.

Theorem 5.10. If f is increasing on [a, b], then f is continuous except for countably many points.

Proof. Exercise.

�

Example 5.8. There is a monotone function which is discontinous at countably many points. Let

f(x) = 0 when x < 0, and f(x) = 1 when x ≥ 0. Choose a countable dense sequence {rn} in [0, 1].

Then,

F (x) =

∞∑

n=1

1

n2
f(x− rn)

is discontinuous at all points of the sequence {rn}.

Definition 5.4. An elementary jump function is a function σ : R → R which has the form:

σ(x)





a, x < x0

b, x = x0

c, x > x0

for a ≤ b ≤ c. A function which can be written as a countable sum of elementary jump functions is

called a jump function. i.e. j(x) =
∑∞

k=1 σk(x). jump function
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Theorem 5.11. (First decomposition) Let F : [a, b] → R be a function of bounded variation. Then,

F is decomposed into a jump function and a continuous function:

F (x) = j(x) + g(x).

5.2.2. Absolute Continuity.

Definition 5.5. We say F : [a, b] → R is absolutely continuous if for any ǫ > 0, there exists δ > 0

such that for any finite union of disjoint intervals
⋃n

k=1(xk, yk),

n∑

k=1

|yk − xk| ≤ δ ⇒
n∑

k=1

|F (yk)− F (xk)| ≤ ǫ.

Remark 5.9.

(1) By dfinition, absolute continuity is stronger that uniform continuity, but weaker than

Lipschitz continuity( i.e. |F (x) − F (y)| ≤ C|x − y| for some C.) In summary, C1 ⇒
Lipschitz continuity ⇒ absolute continuity ⇒ uniform continuity ⇒ continuity.

(2) Absolutely continuous functions are of bounded variation. Decompose interval [a, b] into

small intervals of length δ. Then on each small interval [xk, xk+1], we have TF (xk, xk+1) ≤
ǫ. As the number of intervals is (b− a)/δ, TF (a, b) ≤ ǫ(b−a)

δ .

Example 5.10. There are functions which is uniformly continuous but not absolutely continuous.

f(x) =




x sin 1

x , 0 < x ≤ 1

0, x = 0.

Theorem 5.12. Let F : [a, b] → R be measurable. Then F is absolutely continuous if and only if

there is an integrable function f such that

F (x) = F (a) +

∫ x

a

f(y) dy.

In this case, from Lebesgue differentiation theorem, F ′ = f a.e.

Lemma 5.13. Let f : Rn → R be a integrable function. Then, for any ǫ > 0, there exists δ > 0

such that for any E ⊂ Rn satisfying λ (E) < δ,
∫

E

|f | < ǫ.

Proof. We may assume f ≥ 0 without loss of generality. If f ∈ L∞, then the conclusion is

obvious by choosing δ = ǫ/N . Now, we approximate f by fN where fN (x) = min(f(x), N) such

that ‖f − fN‖1 < ǫ/2. (This is justified by MCT.) Then, we choose δ = ǫ/(2N)
∫

E

|f | ≤
∫

E

|f − fN |+
∫

E

|fN | ≤ ǫ/2 + ǫ/2N ·N = ǫ.

�
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Lemma 5.14. If F : [a, b] → R is absolutely continuous and F ′ = 0 a.e., then F is constant.

Proof. Fix c ∈ [a, b]. We also fix small numbers ǫ1, ǫ2 > 0. It suffices to show

|F (c)− F (a)| ≤ ǫ1 + ǫ2(c− a).

For x ∈ E = {y ∈ [a, c] : F ′(y) = 0}, we can find arbitrarily small intervals x ∈ [y, z] such that
F (z)−F (y)

y−z ≤ ǫ2. Collecting all such intervals for each x ∈ E, we can use Vitali covering’s lemma to

obtain a finite disjoint sub collection I1 = [y1, z1], · · · , IN = [yN , zN ] such that λ
(
[a, c] \⋃N

k=1 Ik

)
≤

δ, where δ satisfies the absolute continuity condition with respect to ǫ1. We estimate

|F (c)− F (a)| ≤ |F (a)− F (y1)|+ |F (y1)− F (z1) + |F (z1)− F (y2)|+ · · · |F (zN)− F (c)|

≤
N∑

k=1

|F (yk)− F (zk)|+
N−1∑

k=1

|F (zk)− F (yk+1)|+ |F (a)− F (y1)|+ |F (zN)− F (c)|

ǫ2

N∑

k=1

|yk − zk|+ ǫ1 ≤ ǫ2(c− a) + ǫ1

�

Proof. of Theorem 5.12

Lemma 5.13 shows ’if’ part. We are left to show ’only if’ part. Since F is absolutely continuous, it

is of bounded variation and F ′ is integrable. We can define G(x) = F (x) +
∫ x

a F ′(y) dy. Then, we

have G′(x) = F ′(x) a.e. by Lebesgue differentiation theorem. Hence, G− F is absolute continuous

and (G− F )′ = 0 a.e. By Lemma 5.14, and from F (a) = G(a), we conclude G(x) = F (x). �

Finally, we summarize what we have done in this section in the following Theorem.

Theorem 5.15. Lebesgue decomposition theorem Let F : [a, b] → R be an increasing function. We

have the following decomposition.

F = j(x) + g(x) +

∫ x

a

f(y) dy,

where j is an increasing jump function, g is an increasing function with g′ = 0 a.e., and f is a

nonnegative integrable function.



APPENDIX A

Proof of Theorem 3.22

We do some preparation before giving a proof of Theorem 3.22

Lemma A.1. Let S be the collection of those subsets of X × Y which are finite disjoint unions of

measurable rectangles. Then S is an algebra.

Proof. It is evident that the intersection of two measurable rectangles is a measurable rectangle.

So, if E,F ∈ S then E
⋂
F ∈ S. We are left to check the complement. Any measurable rectangle

A×B is written as a union of two disjoint measurable rectangles,

(A×B)c = Ac × Y
⋃

A×Bc

. Thus, (A × B)c ∈ S. If E ∈ S, then E =
⋃N

j=1 Ej , where Ej are measurable rectangles. Then,

Ec =
⋂N

j+1 E
c
j . Since Ec

j ∈ S and S is closed under finite intersection, Ec ∈ S. Therefore, S is

closed under finite union. �

Definition A.1. Let X be a set and S ⊂ P(X). Then S is a monotone class if S is closed

under countable increasing unions and countable decreasing intersections. That is, if Aj ∈ S for

j = 1, 2, · · · , then

A1 ⊂ A2 ⊂ A3 ⊂ · · · , ⇒
∞⋃

j=1

Aj ∈ S

A1 ⊃ A2 ⊃ A3 ⊃ · · · , ⇒
∞⋂

j=1

Aj ∈ S

Any σ-algebra is a monotone class. Any intersection of monotone classes is a monotone class.

For a collection S of subsets ofX , we denote by Sm the intersection of all monotone classes containing

S, which is referred as the smallest monotone class containing S or a monotone class generated by

S.

Lemma A.2. Let X be a set and S ⊂ P(X) be an algebra. Then

Sm = σ(S) =: the smallest σ-algebra generated by S

Proof. Clearly, Sm ⊂ σ(S). In view of Lemma A.1, we are left to show Sm is an algebra. Let

A,B ∈ S.

• Claim: Ac ∈ Sm

Define T = {A ⊂ X : Ac ∈ Sm}. Then S ⊂ T . Moreover, T is a monotone class since

66
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Sm is a monotone class. Indeed, for a increasing sequence {Aj} ⊂ T , Ac
j ∈ Sm and so⋂

Ac
j ∈ Sm,

⋃
Aj ∈ T . It is similar for a decreasing sequence. Therefore, Sm ⊂ T and so

for any A ∈ Sm, we have Ac ∈ Sm.

• Claim: A ∪B ∈ Sm

Fix A ∈ S. Define U = {B ⊂ X : A ∪ B ∈ Sm}. Then S ⊂ U and U is a monotone class.

It follows that Sm ⊂ U , that is, for any B ∈ Sm and A ∈ S, we have A ∪B ∈ Sm.

Fix B ∈ Sm and define V = {A ⊂ X : A∪B ∈ Sm}. Then by the same reasoning, we have

Sm ⊂ V and for any A,B ∈ Sm, A ∪B ∈ Sm.

�

Proof (Proof of Theorem 3.22).

Let W be the collection of all sets E ∈ M×N satisfying the theorem. We will show W = M×N .

For that purpose, we want to show W is a σ-algebra. First of all, one can check that

W ⊃ S := the algebra generated by {A×B ⊂ X × Y : A ∈ M, B ∈ N}.

(Exercise)

In view of Lemma A.2, we are going to show W is a monotone class.

Claim: W is closed under countable disjoint unions.

Proof (Proof of Claim).

Let {Ej}∞j=1 ⊂ W be disjoint and E = ∪∞
j=1. Fix y ∈ Y . Then Ey = ∪∞

j=1Ek,y , which is a disjoint

union. Thus, Ey ∈ M. From the countable additivity of µ, µ(Ey) =
∑∞

j=1 µ(Ek,y). Since µ(Ej,y)

are ν-measurable, µ(Ey) is also ν-measurable. Similarly, Ex ∈ N and ν(Ex) is µ-measurable.

∫

Y

µ(Ey) dν(y) =

∫

Y

∞∑

j=1

µ(Ej,y) dν =

∞∑

j=1

∫

Y

µ(Ej,y) dν (∵ MCT)

=
∞∑

j=1

∫

X

ν(Ej,x) dµ (∵ Ej ∈ W)

=

∫

X

ν(Ex) dµ

Therefore, E ∈ W . �

Since (X,M, µ), (Y,N , ν) are σ-finite, we can write X =
⋃∞

j=1 Aj , Y =
⋃∞

k=1 Bk where Aj , Bk

are disjoint and µ(Aj), ν(Bk) < ∞. In order to show that W is a monotone class, bring a decreasing

sequence {En} ⊂ W . Then Ej,k
n = En

⋂
(Aj × Bk) ∈ W for each j, k, n and {Ej,k

n } is a decreasing

sequence in n. We will show Ej,k =
⋂
Ej,k

n ∈ W . Then E =
⋂
En =

⋃
j,k E

j,k ∈ W , thanks to

Claim.

Fix j, k and we consider a decreasing sequence {Ej,k
n }. We omit the superscript for simplicity. For

a fixed y ∈ Y , Ey =
⋂
En,y ans so Ey is µ-measurable. Since µ(Ey) ≤ µ(Aj) < ∞, we have

µ(Ey) = limn→∞ µ(En,y) < ∞. Thus, y 7→ µ(Ey) is a ν-measurable function. Similarly, we have
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Ex is ν-measurable and x 7→ ν(Ex) is a µ-measurable function.
∫

Y

µ(Ey) dν(y) = lim
n→∞

∫

Y

µ(En,y dν(y) (∵ MCT)

= lim
n→∞

∫

X

ν(En,x) dµ(x)

=

∫

X

ν(Ex) dµ(x)

The proof for the increasing sequence is similar, in fact, even easier since one do not use the

finiteness of measure. Therefore, we conclude that W is a monotone class and then by Lemma A.2

W = M×N .

We define a product measure π(E) by the common value of (3). We remain to show the countable

additivity. Let E =
⋃∞

j=1 Ej be a countable disjoint union. Then {Ej,y} are disjoint and,

π(E) =

∫

Y

µ(Ey) dν(y) =

∫

Y

µ(
⋃

Ej,y) dν(y)

=

∫

Y

∞∑

j=1

µ(Ej,y) dν(y) =

∞∑

j=1

∫

Y

µ(Ej,y) dν(y)

=

∞∑

j=1

π(Ej).

Finally, we show the uniqueness of such measures. We show for finite measure space, first.

Assume that there two measures π1, π2 on M×N , which agree on S= the collection of finite unions

of disjoint measurable rectangles. Define

T = {E ∈ M×N : π1(E) = π2(E)}.

Then, clearly, S ⊂ T . One can show T is a monotone class. (When you argue with a decreasing

sequence, you need the finiteness of measure) Hence, T = M×N .

For σ-finite case, setting as before and fixing Aj × Bk, we define a new measure p̃ii(E) = πi(E ∩
(Aj × Bk)) for i = 1, 2. Then for any measurable rectangle A × B, one can check p̃i1(A × B) =

p̃i2(A × B). Thus, by the finite measure case, π̃1 = π̃2 on M×N . That is, for any E ∈ M×N ,

π1(E ∩ (Aj ×Bk)) = π2(E ∩ (Aj ×Bk)). Then by countable additivity, we conclude that

π1(E)
∑

j,k

π1(E ∩ (Aj ×Bk)) =
∑

j,k

π2(E ∩ (Aj ×Bk)) = π2(E).

�
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