Topology: Final Exam (Spring 2007)

Justify your answers fully.

- 1. Answer the following without proofs:
 - (a) (10pts.) Find an example of a Hausdorff but not regular space.
 - (b) (10pts.) Find an example of a regular but not normal space.
- 2. Prove:
 - (a) (20pts) A regular Lindelöf space is normal.
 - (b) (20pts) A locally compact Hausdorff space is completely regular.
 - (c) (20pts) The product space \mathbf{R}^J is normal if J is a countable set.
 - (d) (20pts) A one-point compactification of \mathbf{R}^2 with standard topology is homeomorphic to the unit sphere S^2 in \mathbf{R}^3 .
 - (e) (20pts) An open subspace of a Baire space is Baire.

3. Describe the one-point compactification of each of the following topological spaces as a subspace of \mathbf{R}^n for some n = 1, 2, 3.

- (a) (15pts) \mathbf{Z} with discrete topology.
- (b) (15pts) $\mathbf{R}^2 \{0\}$ with the standard subspace topology from \mathbf{R}^2 .