Topology: Midterm Exam (Spring 2006)

Justify your answers fully.

1. (30 pts.) Let I be the interval [0, 1] in \mathbb{R} with the standard subspace topology. Compare the following three topologies on $I \times I$. That is, list all pairs where one is finer than the other, and list all pairs which are not comparable among the all six pairs.

- (a) The product topology.
- (b) The dictionary order topology.
- (c) The subspace topology as a subspace of $\mathbf{R} \times \mathbf{R}$ given the dictionary order topology.

2. Let the set \mathbf{Z}^+ of positive integers be given a discrete topology. Let $\mathbf{Z}^+ \times I$ be given a product topology. Define X as the quotient space of $\mathbf{Z}^+ \times I$ by the equivalence relation

$$(x,t) \sim (y,s)$$
 iff (i) $t = 0$ and $s = 0$; or (ii) $x = y$ and $t = s$

- (a) (10 pts.) Let \mathbf{R}^2 be given the standard metric and the standard topology. Let Y be the union of length 1 segments with vertices at (0,0), in the positive quadrant of \mathbf{R}^2 , and of slope 1/i for $i = 1, 2, \ldots$ Let Y be given a subspace topology from \mathbf{R}^2 . Prove or disprove that X is homeomorphic to Y.
- (b) (10 pts.) Let f be a function $X \to \mathbf{R}$ induced from the map $F : \mathbf{Z}^+ \times [0, 1] \to \mathbf{R}$ defined by setting F(x, t) = xt for $x \in \mathbf{Z}^+, t \in [0, 1]$. Prove or disprove that f is a continuous function on X.
- (c) (10 pts.) Let g be a function defined on Y defined as follows: g restricted to a segment of slope 1/i is defined to be i times the distance function on R² restricted to the segment. Prove or dispove that g is a continuous function on Y.

3. Let $\mathbf{R}^3 - \{(0,0,0)\}$ be given the subspace topology from the standard topology of \mathbf{R}^3 . Let $\mathbf{R}P^2$ be the quotient space of $\mathbf{R}^3 - \{(0,0,0)\}$ with the equivalence relation $v \sim sw$ iff v, w are non-zero vectors and s is a nonzero real number.

- (a) (10 pts). Prove or disprove that $\mathbf{R}P^2$ is a Hausdorff space.
- (b) (10 pts.) Let S^3 be the unit sphere with the subspace topology. Define an equivalence relation ~ where $v \sim w$ iff $v = \pm w$ for two unit vectors v, w. Let S^3 / \sim be given a quotient topology. Prove or disprove that it is a compact space.
- (c) (10pts.) Define a homeomorphism from S^3/\sim to $\mathbf{R}P^2$. Prove that it is a homeomorphism.

Problems 4 and 5 in the next page.

4. (30 pts.) Let $\bar{d}(x, y) = \min\{|x - y|, 1\}$ be the standard bounded metric on **R**. Define a metric on \mathbf{R}^{ω} by

$$D(x,y) = \sup\{\overline{d}(x_i,y_i)/i\}$$
 for $x = (x_i), y = (y_i) \in \mathbf{R}^{\omega}$.

Prove that the metric topology induced by D is the product topology on \mathbf{R}^{ω} .

- 5. Let $I \times I$ be given the dictionary order and the dictionary order topolgy.
 - (a) (10 pts.) Does $I \times I$ have the least upper bound property?
 - (b) (10 pts.) Prove or disprove that $I \times I$ is compact.
 - (c) (10 pts.) Prove or disprove that $I \times I$ is connected.