8.5. Application of Quadratic forms to optimization

Basically Calculus topic.

Relative extrema of functions of two variables.

- Critical point (x,y): if $f_x(x,y)=0$, $f_y(x,y)=0$.
- If (x_0,y_0) is a critical point, then let $D(x,y)=f(x,y)-f(x_0,y_0)$.
- If D(x,y) >0 for all (x,y) suff close to (x_0, y_0), then (x 0,y 0) relative minimum.
- If D(x,y) < 0, -> relative maximum.
- If D(x,y) can have both signs -> saddle point at (x_0, y_0).

Theorem 8.5.1 (Second Derivative Test) Suppose that (x_0, y_0) is a critical point of f(x, y) and that f has continuous second-order partial derivatives in some circular region centered at (x_0, y_0) . Then:

(a) f has a relative minimum at (x_0, y_0) if

$$f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - f_{xy}^2(x_0, y_0) > 0$$
 and $f_{xx}(x_0, y_0) > 0$

(b) f has a relative maximum at (x_0, y_0) if

$$f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - f_{xy}^2(x_0, y_0) > 0$$
 and $f_{xx}(x_0, y_0) < 0$

(c) f has a saddle point at (x_0, y_0) if

$$f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - f_{xy}^2(x_0, y_0) < 0$$

(d) The test is inconclusive if

$$f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - f_{xy}^2(x_0, y_0) = 0$$

Hessian matrix

- H(x,y) =[[f_xx(x,y), f_xy(x,y)], [f_xy(x,y),f_yy(x,y)]].
- Det[H(x_0, y_0)] = $f_x(x_0,y_0)f_y(x_0,y_0)$ $f_x(x_0,y_0)$.

Theorem 8.5.2 (Hessian Form of the Second Derivative Test) Suppose that (x_0, y_0) is a critical point of f(x, y) and that f has continuous second-order partial derivatives in some circular region centered at (x_0, y_0) . If $H = H(x_0, y_0)$ is the Hessian of f at (x_0, y_0) , then:

- (a) f has a relative minimum at (x_0, y_0) if H is positive definite.
- (b) f has a relative maximum at (x_0, y_0) if H is negative definite.
- (c) f has a saddle point at (x_0, y_0) if H is indefinite.
- (d) The test is inconclusive otherwise.

Theorem 8.5.2 (Hessian Form of the Second Derivative Test) Suppose that (x_0, y_0) is a critical point of f(x, y) and that f has continuous second-order partial derivatives in some circular region centered at (x_0, y_0) . If $H = H(x_0, y_0)$ is the Hessian of f at (x_0, y_0) , then:

- (a) f has a relative minimum at (x_0, y_0) if H is positive definite.
- (b) f has a relative maximum at (x_0, y_0) if H is negative definite.
- (c) f has a saddle point at (x_0, y_0) if H is indefinite.
- (d) The test is inconclusive otherwise.

 Example 1. Find critical points -> Take derivatives -> Find Hessian matix at each critical point -> Do the Hessian test.

Constrained extremum problem

- We give a constraint ||x||=1.
- We try to find the maximum and the minimum of $q(x)=x^TAx$

Theorem 8.5.3 (Constrained Extremum Theorem) Let A be a symmetric $n \times n$ matrix whose eigenvalues in order of decreasing size are $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Then:

- (a) There is a maximum value and a minimum value for $\mathbf{x}^T A \mathbf{x}$ on the unit sphere $\|\mathbf{x}\| = 1$.
- (b) The maximum value is λ_1 (the largest eigenvalue), and this maximum occurs if \mathbf{x} is a unit eigenvector of A corresponding to λ_1 .
- (c) The minimum value is λ_n (the smallest eigenvalue), and this minimum occurs if \mathbf{x} is a unit eigenvector of A corresponding to λ_n .

- Example 2. $q(x)=-23/25x^2-2/25y^2+72/25xy$.
 - Eigenvectors $\pm(3/5,4/5)$ for 1, $\pm(-4/5,3/5)$ for -2 for A are on the unit sphere
 - Thus, q at $\pm(3/5,4/5)$ is 1 and q at $\pm(-4/5,3/5)$ is -2.
 - maximum =1.
 - Minimum = -2.

Constrained Extrema and level curves

- Level curves of $x^TAx = k$ meet the circle ||x|| = 1.
- If k is the maximum or the minimum, the level curve is tangent to the circle.
- Conversely, the level curve tangent to the circle gives us the maximum and the minimum points and values.

• Example 4. $q(x)=-23/25x^2-2/25y^2+72/25xy$.

