2.3. Applications of Linear Systems

GPS, Network Analysis, Electric Circuits, Balancing Chemical equations, polynomial interpolations

Global Positioning (GPS)

Say earth radius is 1: $x^2+y^2+z^2=1$.

- A ship at (x,y,z) sends a signal to a satellite.
 - d = 0.469(t-t_0). Here d is the distance. 0.469 is the speed of light, t_0 the time sent by sat. and t the time received by ship.
 - $d=((x-x_0)^2+(y-y_0)^2+(z-z_0)^2)^{1/2}$. (x_0,y_0,z_0) is the position of the satellite.
 - Taking squares, we obtain (x-x_0)²+(y-y_0)²+(z-z_0)²=0.22(t-t_0)²
 - We replace 0.22 to 1 for simplicity

Example

- Ship at (x,y,z), time t: unknown
- Satellites 1,2,3,4
- Data:

Satellite	Satellite Position	Time
1	(1,2,2)	1
2	(0,1,2)	2
3	(1,0,1)	1
4	(1,1,1)	2

Network Analysis

- A network: nodes (junction), branches
- We assume
 - One directional flow at a branch
 - Flow conservation at a node: the flow into the node equals the flow out.
 - Flow conservation of the network: The flow into the network equals the flow out.
 - See Example 2.
 - Example 3 (Liberty park traffic light)

Electric network

- Battery: pumps electrons : flow from + pole
- Volts: electric pressure, electrical potential
- Rate of flow: amperes
- Resistence: ohm: drops voltage
- Ohm's law: E=IR. E drop in voltage
- Kirchhoff's current law: flow in = flow out of a node
- Kirchhoff's voltage law: Any closed loop voltage drop = voltage rise

Examples

- Example 4: 9 volt, 4 ohm. Single circuit. Determine
 I. Use Voltage law. 4I=9, I=9/4 A.
- Example 5: voltage 6V, 3V. Resistances: 1 ohm, 1 ohm, 1 ohm. Find currents I_1, I_2, I_3.
 - $I_1+I_2=I_3$ at A, $I_3=I_1+I_2$ at B.
 - Left loop: 6 = I_1+I_3
 - Right loop: 3+I_3 + I_2 = 0
 - Outer loop: 3+6+I_2=I_1

Balancing chemical equations

- $HCI+ Na_{3}PO_{4} \rightarrow H_{3}PO_{3} + NaCI$
- The number of atoms must be preserved.
- x_1(HCI)+ x_2(Na₃PO₄) -> x_3(H₃PO₄)+ x_4(NaCI)
 - H: 1x_1 = 3x_3
 - CI: 1x_1 = 1x_4
 - Na: 3x_2=1x_4
 - P: 1x_2=1x_3
 - O: 4x_2= 4x_4

Now solve this system.....

Polynomial Interpolation

- Given two points in a plane, find a 1st degree polynomial whose graph passing through the two points:
- y=ax+b. (x_1,y_1), (x_2, y_2)
 - y_1=ax_1+b, y_2 = ax_2+b.
 - Consider a, b as variables
 - So x_2y_1=x_2x_1a+ x_2b, x_1y_2 = x_1x_2 a + x_1b. Subtract to get x_2y_1-x_1y_2 = (x_2-x_1)b. Thus b = (x_2y_1-x_1y_2)/(x_2-x_1). To get a, just subtract.

n points in xy-plane, degree n-1 polynomial passing through...

- (x_1,y_1), (x_2, y_2),...,(x_n, y_n) distinct x coordinates
- $y=a_0+a_1x + a_2x^2 + ... + a_{n-1}x^{n-1}$.
- By substitutions:
 - $a_0+a_1x_1 + a_2x_1^2 + ... + a_{n-1}x_1^{n-1} = y_1$
 - a_0+a_1x_2 + a_2x_2²+ ...+a_{n-1}x_2ⁿ⁻¹=y_2

 - a_0+a_1x_n + a_2x_n²+ ...+a_{n-1}x_nⁿ⁻¹=y_n
- Since a_is are unknowns, our augmented matrix is:

Now use the augmented matrix

Example

Find a cubic polynomial passing through:

(-1,-1),(0,1),(1,3),(2,-1)

Ex. 2.3.

- 1-4 network problems
- 5-8 electric network
- 9-13 chemical balancing
- 14-16 interpolations
- T8: satellite
- T7: Integral approximation using interpolations

