2.3. Applications of Linear Systems

GPS, Network Analysis, Electric Circuits, Balancing Chemical equations, polynomial interpolations

Global Positioning (GPS)

- Say earth radius is $1: x^{2}+y^{2}+z^{2}=1$.
- A ship at (x, y, z) sends a signal to a satellite. $\mathrm{d}=0.469(\mathrm{t}-\mathrm{t} 0)$. Here d is the distance. 0.469 is the speed of light, t 0 the time sent by sat. and t the time received by ship.

$$
d=\left((x-x-0)^{2+}+(y-y-0)^{2}+(z-z-0)^{2}\right)^{1 / 2} .\left(x-0, y _0, z-0\right) \text { is the }
$$ position of the satellite.

- Taking squares, we obtain $\left(x-x _0\right)^{2}+\left(y-y _0\right)^{2}+(z-z-0)^{2}=0.22(t-t-0)^{2}$
- We replace 0.22 to 1 for simplicity

Example

- Ship at (x, y, z), time t: unknown
- Satellites 1,2,3,4
- Data:

Satellite	Satellite Position	Time
1	$(1,2,2)$	1
2	$(0,1,2)$	2
3	$(1,0,1)$	1
4	$(1,1,1)$	2

Network Analysis

- A network: nodes (junction), branches
- We assume

One directional flow at a branch

- Flow conservation at a node: the flow into the node equals the flow out.
- Flow conservation of the network: The flow into the network equals the flow out.
- See Example 2.
- Example 3 (Liberty park traffic light)

Electric network

- Battery: pumps electrons : flow from + pole
- Volts: electric pressure, electrical potential
- Rate of flow: amperes
, Resistence: ohm: drops voltage
- Ohm's law: E=IR. E drop in voltage
, Kirchhoff's current law: flow in = flow out of a node
, Kirchhoff's voltage law: Any closed loop voltage drop = voltage rise

Examples

- Example 4: 9 volt, 4 ohm. Single circuit. Determine I. Use Voltage law. $4 \mathrm{I}=9, \mathrm{I}=9 / 4 \mathrm{~A}$.
, Example 5: voltage 6V, 3V. Resistances: 1 ohm, 1 ohm, 1 ohm. Find currents I_1, I_2, I_3.
- I_1+!_2=I_3 at A, I_3 = I_1+!_2 at B.
- Left loop: 6 = I_1+I_3
- Right loop: 3+l_3 + I_2 = 0
- Outer loop: 3+6+l_2=l_1

Balancing chemical equations

- $\mathrm{HCl}+\mathrm{Na}_{3} \mathrm{PO}_{4}->\mathrm{H}_{3} \mathrm{PO}_{3}+\mathrm{NaCl}$
- The number of atoms must be preserved.
b x_1(HCl)+x_2($\left.\mathrm{Na}_{3} \mathrm{PO}_{4}\right)$-> x_3($\left.\mathrm{H}_{3} \mathrm{PO}_{4}\right)+$ x_4(NaCl)
H: 1x_1 = 3x_3
- Cl: 1x_1 = 1x_4
- Na: 3x_2=1x_4
- P: 1x_2=1x_3
- O: $4 \mathrm{x} _2=4 \mathrm{x}$ _ 4

Now solve this system.....

Polynomial Interpolation

- Given two points in a plane, find a $1^{\text {st }}$ degree polynomial whose graph passing through the two points:
- $y=a x+b .\left(x _1, y _1\right),\left(x _2, y _2\right)$
- $y _1=a x _1+b, y_{-} 2=a x _2+b$.

Consider a, b as variables

- So x_2y_1=x_2x_1a+x_2b, x_1y_2 = x_1x_2 a + x_1b. Subtract to get x_2y_1-x_1y_2 = (x_2-x_1)b. Thus b = (x_2y_1-x_1y_2)/(x_2-x_1). To get a, just subtract.

n points in xy-plane, degree $\mathbf{n - 1}$ polynomial passing through...
 - (x_1,y_1), (x_2, y_2),...,(x_n, y_n) distinct x

 coordinates- $y=a _0+a _1 x+a _2 x^{2}+\ldots+a _\{n-1\} x^{n-1}$.
- By substitutions:

$$
\begin{aligned}
& a_{-} 0+a _1 x _1+a _2 x-1^{2}+\ldots+a _\{n-1\} x-1^{n-1}=y _1 \\
& a_{-} 0+a _1 x _2+a _2 x _2^{2}+\ldots+a _\{n-1\} x 2^{n-1}=y _2
\end{aligned}
$$

$$
\text { a_0+a_1x_n +a_2x_n²+ ...+a_\{n-1\}x_n }{ }^{n-1}=y _n
$$

- Since a_is are unknowns, our augmented matrix is:

Now use the augmented matrix

Example

- Find a cubic polynomial passing through:
- $(-1,-1),(0,1),(1,3),(2,-1)$

$$
\left[\begin{array}{ccccc}
1 & -1 & 1 & -1 & -1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 3 \\
1 & 2 & 4 & 8 & -1
\end{array}\right]
$$

Ex. 2.3.

, 1-4 network problems

- 5-8 electric network
- 9-13 chemical balancing
- 14-16 interpolations
, T8: satellite
, T7: Integral approximation using interpolations

