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THE CONVEX AND CONCAVE DECOMPOSITION OF

MANIFOLDS WITH REAL PROJECTIVE STRUCTURES

Suhyoung Choi

Abstract� � We try to understand the geometric properties of n�manifolds �n �
�� with geometric structures modeled on �RPn�PGL�n���R��� i�e�� n�manifolds with
projectively �at torsion free a�ne connections� We de�ne the notion of i�convexity of
such manifolds due to Carri�ere for integers i� � � i � n� �� which are generalization
of convexity� Given a real projective n�manifold M � we show that the failure of an
�n� ���convexity of M implies an existence of a certain geometric object� n�crescent�

in the completion �M of the universal cover �M of M � We show that this further
implies the existence of a particular type of a�ne submanifold in M and give a
natural decomposition of M into simpler real projective manifolds� some of which are
�n � ���convex and others are a�ne� more speci�cally concave a�ne� We feel that
it is useful to have such decomposition particularly in dimension three� Our result
will later aid us to study the geometric and topological properties of radiant a�ne
��manifolds leading to their classi�cation� We get a consequence for a�ne Lie groups�

R�esum�e �La D�ecomposition conves et concaves de vari�et�es avec les
structures projective r�eelle�� � Nous essayons de comprendre les propri�et�es
g�eom�etriques de n�vari�et�es �n � �� avec les structures g�eome�etriques model�ees sur
�RPn�PGL�n���R��� i�e�� les var�et�es de dimension n avec les connexions a�nes dont
la courbure et la torsion sont nulles� Nous d�e�nissons la notion de i�convexit�e de telles
vari�et�es due �a Carri�ere pour les entiers i� � � i � n� �� qui sont la g�en�eralisation de
convexit�e� Etant donn�e une n�vari�et�es projective r�eelle M � nous essayons de montrer le
fait que l�echec d�une �n����convexit�e de M implique une existence d�un certain objet

g�eom�etrique� n�croissant� dans le compl�etement �M du rev�etement universel �M de
M � Nous prouvons aussi que cela implique encore l�existence d�un type particulier de
subvar�et�e dans M et donne une d�ecomposition naturaelle de M en vari�et�es projectives
r�eelles plus simples� quelques�unes d�entre elles sont �n����convexes et les autres sont
a�nes� plus pr�ecis�ement a�nes concaves� Nous jugeons qu��l est utile d�avoir une telle
d�ecomposition� en particulier �a trois dimensions� Notre r�esultat aidersa plus tard
�a �etudier les propri�et�es g�eometriques et topologiques de ��vari�et�es a�nes radiales
qui m�ene �a leur classi�cation� Nous obtenons une cons�equence pour les groupes Lie
a�nes�
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PREFACE

The purpose of this monograph is to give a self�contained exposition on recent
results in �at real projective structures on manifolds� The main result is that mani�
folds with such structures have canonical geometric decomposition to manifolds with
more structures� i�e�� ones with better convexity properties and ones which have a�ne
structures of special types�

We hope that this book exposes some of the newly found materials in real projective
structures so that more people might become interested in this topic� For that pur�
pose� we include many details missing from previous papers and try to show that the
techniques of this paper are at an elementary level requiring only some visualization
in spherical and real projective geometry�

Presently� the global study of real projective structures on manifolds is a �eld
which needs to mature with various relevant tools to be discovered� The fact that
such geometric structures do not have metrics and such manifolds are often incomplete
creates much confusion� Also� as these structures are often assembled in extremely
complicated manner as can be seen from their complicated global charts� or developing
maps� the manifolds with such structures cannot be seen as having covers in subsets of
model geometric spaces� This means that the arguments must be somewhat delicate�

Let us state some reasons why we are interested in real projective structures�
Firstly� our decomposition will be helpful for the study of ��manifolds with �at real
projective structures� Already� the theory helps us in classi�cation of radiant a�ne
��manifolds �see ��	 ��

All eight of homogeneous ��dimensional Riemannian geometries can be seen as
manifestations of projective geometries� as observed by Thurston� More precisely�
Euclidean� spherical� and hyperbolic geometries have projective models� The same

can be said of Sol�� Nil�� and fSL���R��geometries� H��S�� and S��S��geometries
are modeled on RP ��RP �� Hence� every ��manifold with homogeneous Riemannian
structure has a natural real projective structure or a product real projective structure�
One could conjecture that many ��manifolds admit real projective structures although
we do not even have a clue how to go about studying such a question�



� PREFACE

Classical a�ne and projective geometries have plethora of beautiful results giving
much insight into Euclidean� spherical� and hyperbolic geometries� We expect that
such classical theorems will have important roles to play in the global study of pro�
jective structures on manifolds although in the present paper only very small portion
of classical geometry is ever used�

As we collect more results on various geometric structures on manifolds� we may
gain more perspectives on topology of manifolds which are not available from study�
ing relatively better understood Riemannian homogenous geometric structures� By
examining more �exible geometric structures such as foliation� symplectic� contact�
conformal� a�ne� or real projective structures� we may gain more informations about
the nature of geometric structures and manifolds in general� �We note here that the
comparative study of the geometric structures still have not been delved into much��

The author thanks Bill Thurston who initiated me into this subject which has much
beauty� Bill Goldman who had pioneered some early successful results in this �eld�
Yves Carri�ere who posed many interesting questions with respect to a�ne structures�
and Hyuk Kim for many sharp observations which helped me to think more clearly�
The author bene�ted greatly from conversations with Thierry Barbot� who suggested
the words !convex and concave decomposition"� Yves Benoist� Richard Bishop� Craig
Hodgson� Michael Kapovich� Steven Kerckho#� Sadayshi Kojima� Fran$cois Labourie�
Kyung Bai Lee� John Millson� and Frank Raymond� The author thanks the Global
Analysis Research Center for generous support and allowing me to enjoy doing math�
ematics at my slow and ine�cient pace�

The author thanks the referee for suggesting a number of improvements on his
writing and am grateful to Mrs� Kyunghee Kim and the editors for translating the
abstract in French�

Suhyoung Choi
December �

�
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CHAPTER �

INTRODUCTION

From Ehresmann�s de�nition of geometric structures on manifolds� a real projective

structure on a manifold is given by a maximal atlas of charts to RPn with transi�
tion functions extending to projective transformations� �For convenience� we will
assume that the dimension n of manifolds is greater that or equal to � throughout
this paper unless stated otherwise�� This device lifts the real projective geometry
locally and consistently on a manifold� In di#erential geometry� a real projective
structure is de�ned as a projectively �at torsion�free connection� Another equivalent
way to de�ne a real projective structure on a manifold M is to give an immersion
dev � �M � RPn� a so�called a developing map� equivariant with respect to a so�
called holonomy homomorphism h � ���M� � PGL�n � ��R� where ���M� is the

group of deck transformations of the universal cover �M of M and PGL�n � ��R� is
the group of projective transformations of RPn� �The pair �dev� h� is said to be the
development pair�� Each of these descriptions of a real projective structure gives rise
to a description of the other two kinds unique up to some natural equivalences�

The global geometric and topological properties of real projective manifolds are
completely unknown� and are thought to be very complicated� The study of real
projective structure is a fairly obscure area with only handful of global results� as
it is a very young �eld with many open questions� however seemingly unsolvable by
traditional methods� The complication comes from the fact that many compact real
projective manifolds are not geodesically complete� and often the holonomy groups
are far from being discrete lattices and thought to be far from being small such as
solvable� There are some early indication that this �eld however o#ers many challenges
for applying linear representations of discrete groups �which are not lattices�� group
cohomology� classical convex and projective geometry� a�ne and projective di#erential
geometry� real algebraic geometry� and analysis� �Since we cannot hope to mention
them here appropriately� we o#er as a reference the Proceedings of Geometry and
Topology Conference at Seoul National University in �

� ��
 �� This area is also
an area closely related to the study of a�ne structures� which are more extensively
studied with regard to a�ne Lie groups�
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Every Riemannian hyperbolic manifold admits a canonical real projective struc�
ture� via the Klein model of hyperbolic geometry with the hyperbolic space embedded
as the interior of a standard ball in RPn and the isometry group PSO��� n� as a sub�
group of the group PGL�n� ��R� of projective automorphisms of RPn �see ��� and
��� ��

They belong to the class of particularly understandable real projective manifolds
which are convex ones� A typical convex real projective manifold is often a quotient
of a convex domain in an a�ne patch of RPn� i�e�� the complement of a codimension
one subspace with the natural a�ne structure of a complete a�ne space Rn� by a
properly discontinuous and free action of a group of real projective transformations
�see Theorem ����� It admits a Finsler metric� called Hilbert metric� which has many
nice geometric properties of a negatively curved Riemannian manifold though the
curvature may not be bounded in the sense of Alexandrov �see ��	 ��

An a�ne structure on a manifold is given by a maximal atlas of charts to an a�ne
space with transition functions a�ne transformations� A�ne manifolds naturally ad�
mit a canonical real projective structure since an a�ne space is canonically identi�ed
with the complement of codimension one subspace in the real projective space RPn

and a�ne automorphisms are projective� In particular� Euclidean manifolds are pro�
jective� Of course there are many a�ne manifolds which do not come from Euclidean
manifolds and most a�ne structures on manifolds are expected to be not convex �see
the classi�cation of a�ne structures on tori by Nagano�Yagi ��� ��

Not all real projective manifolds are convex �see ��� and ��� �� However� in di�
mension two� we showed that closed real projective manifolds are built from convex
surfaces� That is� a compact real projective surface of negative Euler characteristic
with geodesic boundary or empty boundary decomposes along simple closed geodesics
into convex surfaces �see ��� � ��� � and ��� �� With Goldman�s classi�cation of con�
vex real projective structures on surfaces ��� � we obtain a classi�cation of all real
projective structures on surfaces ��� �

Also� recently� Benoist �
 classi�ed all real projective structures� left�invariant or
not� on nilmanifolds some of which are not convex� Again� the decomposition into
parts admitting homogeneous structures was the central results� His student Dupont
��� classi�es real projective structures on ��manifolds equal to Sol�% for where Sol
is a ��dimensional solvable Lie group and % is a cocompact discrete subgroup�

The real projective structures on ��manifolds are unexplored area� which may give
us some insights into the topology of ��manifolds along with hyperbolic and contact
structures on ��manifolds�

Three�dimensional manifolds with one of eight Riemannian homogeneous geometric
structures admit canonical real projective structures or product real projective struc�
tures� as observed by Thurston� Manifolds with hyperbolic� spherical� or Euclidean
structures admit canonical real projective structures since hyperbolic� spherical� and
Euclidean geometries can be realized as pairs of open subspaces of the real projec�
tive space and subgroups of projective automorphisms of the respective subspaces�

Similarly� manifolds with Sol�� Nil�� and fSL���R��structures admit real projective
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structures� manifolds with H� �R� and S� �R�structures have product real projec�
tive structures modeled on RP � �RP �� �See Theorem A�� using results of Moln�ar
��� ��

Also� given a hyperbolic Dehn surgery space of a hyperbolic knot complement in the
��sphere� the boundary point is often realized by manifolds with degenerate geometric
structures� An interesting question by Hodgson is how to understand the degeneration
process by real projective structures perhaps by renormalizing the degeneration by
projective maps �see the thesis by Suarez ��� ��

We might ask whether �i� real projective ��manifolds decompose into pieces which
admit one of the above geometries or �ii� conversely pieces with such geometric struc�
tures can be glued into real projective ��manifolds by perturbations� �These are
questions by Thurston raised around �
����

Goldman �see ��� p� ��� � asked which irreducible �Haken� ��manifolds admit
real projective structure& A very exciting development will come from discovering
ways to put real projective structures on ��manifolds other than from homogeneous
Riemannian structures perhaps starting from triangulations of ��manifolds�

A related question asked by John Nash after his showing that all smooth manifolds
admit real algebraic structure is when does a manifold admit a rational structure� i�e��
an atlas of charts with transition functions which are real rational functions� Real
projective manifolds are rational manifolds with more conditions on the transition
functions�

These questions are at the moment very mysterious and there is no evidence that
they can be answered at all� This paper initiates some methods to study the question
�i�� We will decompose real projective n�manifolds into concave a�ne real projective
n�manifolds and �n� ���convex real projective n�manifolds�

In three�dimensional case� our resulting decomposition into ��convex ��manifolds
and concave a�ne ��manifolds often seem to be along totally geodesic surfaces� which
hopefully will be essential in ��manifold topology terminology� Thus� our remaining
task is to see if ��convex real projective ��manifolds admit nice decomposition or at
least nice descriptions�

Our result will be used in the decomposition of radiant a�ne ��manifolds� which
are ��manifolds with �at a�ne structure whose a�ne holonomy groups �x common
points of the a�ne space �see ��	 �� This is the decomposition in Thurston�s sense as
these manifolds are shown to be Seifert spaces with Euler number zero� In particular�
we will be proving there the Carri�ere conjecture �see �� � that every radiant a�ne
��manifold admits a total section to its radial �ow� with the help from Barbot�s work
�� � �	 �also see his survey article �� �� This will result in the classi�cation of radiant
a�ne ��manifolds�

Let us state our theorems more precisely� Let T be an �i � ���simplex in an a�ne
space Rn� i� � � n� with sides F�� F�� � � � � Fi��� A real projective manifold is said to
be i�convex if every real projective immersion

T o � F� � � � � � Fi�� �M

extends to one from T itself�
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Theorem ��� �Main�� � Suppose that M is a compact real projective n�manifold
with empty or totally geodesic boundary� If M is not �n����convex� then M includes

a compact concave a�ne n�submanifold N of type I or II or Mo includes the canonical

two�faced �n� ���submanifold of type I or II�

We will de�ne the term !two�faced �n����submanifolds of type I and II" in De�ni�
tions ��� and ��� which arise in separate constructions� But they are totally geodesic
and are quotients of open domains in the a�ne space by groups of projective trans�
formations and are canonically de�ned� A two�dimensional example with a nontrivial
splitting is given in Example ��
� We de�ne the term concave a�ne n�submanifold
in De�nition 
��� A concave a�ne n�manifold M is a real projective manifold with
concave boundary such that its cover is a union of overlapping n�crescents� The
manifold�interior Mo of a concave a�ne manifold admits a projectively equivalent
a�ne structure of very special nature� We expect them to be very limited� A so�called
n�crescent is a convex n�ball whose bounding sides except one is in the !in�nity" of
the completion of the universal or holonomy cover �see De�nition ����� Their in�
teriors are projectively di#eomorphic to either a half�space or an open hemisphere�
They are really generalization of a�ne half�spaces as one of the side is at !in�nity"
or !missing"�

Let A be a properly imbedded �n� ���manifold in Mo� which may or may not be
two�sided and not necessarily connected or totally geodesic� The so�called splitting S
of M along A is obtained by completing M �N by adding boundary which consists
of either the union of two disjoint copies of components of A or double covers of
components of A �see the beginning of Chapter �	��

A manifold N decomposes into manifolds N�� N�� � � � if there exists a properly
imbedded �n� ���submanifold ' so that Ni are components of the manifold obtained
from splitting M along '
 N�� N�� � � � are said to be the resulting manifolds of the
decomposition�

Corollary ���� � Let M be a compact real projective n�manifold with empty or

totally geodesic boundary� Suppose that M is not �n� ���convex� Then

�� after splitting M along the two�faced �n � ���manifold A� arising from hemi�

spheric n�crescents� the resulting manifold M s decomposes into compact concave

a�ne manifolds of type I and real projective n�manifolds with totally geodesic

boundary which does not include any compact concave a�ne manifolds of type

I�

�� We let N be the disjoint union of the resulting manifolds of the above decom�

position other than concave a�ne ones� After cutting N along the two�faced

�n � ���manifold A� arising from bihedral n�crescents� the resulting manifold

N s decomposes into maximal compact concave a�ne manifolds of type II and

real projective n�manifolds with convex boundary which is �n � ���convex and

includes no compact concave a�ne manifold of type II�

Furthermore� A� and A� are canonically de�ned and the decomposition is also canon�

ical in the following sense� If M s equals N �K for K the union of compact concave

a�ne manifolds of type I in M s and N the closure of the complement of K includes
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no compact concave a�ne manifolds of type I� then the above decomposition agree

with the decomposition into components of submanifolds in ���� If N s equals S � T
for T the �nite disjoint union of maximal compact concave a�ne manifolds of type II

in N s and S the closure of the complement of T that is �n � ���convex and includes

no compact concave a�ne manifold of type II� then the decomposition agrees with the

decomposition into components of submanifolds in ����

By a maximal compact concave a�ne manifold of type II� we mean one which is
not a proper subset of another compact concave a�ne manifold of type II� If A� ( ��
then we de�ne M s ( M and if A� ( �� then de�ne N s ( N �

We note that M � M s� N � and N s have totally geodesic or empty boundary� as we
will see in the proof� The �nal decomposed pieces of N s are not so� Concave a�ne
manifolds of type II have in general boundary concave seen from their inside and the
�n� ���convex real projective manifolds have convex boundary seen from inside �see
Chapter ���

Compare this corollary with what we have proved in ��� and ��� in the language
of this paper� as the term !decomposition" is used somewhat di#erently there by not
allowing one�sided closed geodesics to be used for decomposition�

Theorem ���� � Let ' be a compact real projective surface with totally geodesic or

empty boundary� Suppose ��'� � 	� Then ' decomposes along the union of disjoint

simple closed curves into convex real projective surfaces�

Our Corollary ��� is strong enough to imply Theorem ���� but we need to work out
the classi�cation of concave a�ne ��manifolds to do so�

This monograph will be written as self�contained as possible on projective geometry
and will use no highly developed machinery but will use perhaps many aspects of
discrete group actions and geometric convergence in the Hausdor# sense joined in a
rather complicated manner� Objects in this papers are all very concrete ones� To grasp
these ideas� one only needs to have some graduate student in geometry understanding
and visualization of higher�dimensional projective and spherical geometry� The main
methods are extended from those already used in dimension two�

We work on n � � case although n ( � case was more completely answered in
the earlier papers ��� and ��� �see Theorem ����� The point where this monograph
improves the papers ��� and ��� even in n ( � case is that we will be introducing the
notion of two�faced submanifolds which makes decomposition easier to understand�

A holonomy cover of M is given as the cover of M corresponding to the kernel of
the holonomy homomorphism� We often need not look at the universal cover but the
holonomy cover as it carries all information and we can de�ne the developing map
and holonomy homomorphism from it� The so�called Kuiper completion or projec�
tive completion of the universal or holonomy cover is the completion with respect
to a metric pulled from Sn by a developing map� as was introduced by Kuiper for
conformally �at manifolds �see Kuiper ��
 ��

In Part I� we give an introduction to projective geometry on spheres and the Kuiper
completions of real projective manifolds� In Chapter �� we will give preliminary def�
initions and de�ne and classify convex sets in Sn� We also discuss the geometric
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limit of a sequence of convex balls� In Chapter �� we discuss the Kuiper or projective
completions �M or �Mh of the universal cover �M or the holonomy cover Mh respec�
tively and convex subsets of them� and discuss how two convex subsets may intersect�
showing that in the generic case they can be read from their images in Sn� We also
introduce !dipping intersection"� This is when we can realize the intersection of two
convex balls as the closure of a component of a ball removed with a side of the other
ball� We �nally discuss the convergence of sequences of convex balls in the Kuiper
completions�

In Part II� we will prove main results of this paper� The main focus in this paper
is to get good geometric objects in the universal cover of M � Loosely speaking� we
illustrate our plan as follows�

�i� For a compact manifold M which is not �n� ���convex� obtain an n�crescent in
�Mh�

�ii� Divide into two cases where �Mh includes hemispheric n�crescents and where
n�crescents are always bihedral�

�iii� We derive a certain equivariance properties of hemispheric n�crescents or the
unions of a collection of bihedral n�crescents equivalent to each other under
the equivalence relation generated by the overlapping relation� That is� we
show that any two of such sets either agree� are disjoint� or meet only in the
boundary�

�iv� We show that the boundary where the two collections meet covers a closed
codimension�one submanifold called the two�faced submanifolds� If we split M
along these� then the collection is now truly equivariant� From the equivariance�
we obtain submanifolds covered by them called the concave a�ne manifolds�
This completes the proof of the Main Theorem�

�v� Apply the Main Theorem in sequence to prove Corollary ���
 that is� we split
along the two�faced manifolds and obtain concave a�ne manifolds for hemi�
spheric n�crescent case and then bihedral n�crescent case�

In Chapter �� we prove a central theorem that given a real projective manifold
which is not �n � ���convex� we can �nd an n�crescent in the projective completion�
The argument is the blowing up or pulling back argument as we saw in ��� �

In Chapter �� we generalize the transversal intersection of crescents to that of n�
crescents �see ��� �� This shows that they intersect in a manageable manner so that
their sides in the ideal set extend each other and the remaining sides intersecting
transversally�

In Chapter �� when �Mh includes a hemispheric n�crescent� we show how to obtain a
two�faced �n����submanifold� This is accomplished by the fact that two hemispheric
crescents are either disjoint� equal� or meet only at the boundary� i�e�� at a totally
geodesic �n� ���manifold which covers a closed totally geodesic �n� ���submanifold
in M � a so�called two�faced submanifold� In Chapter �� we assume that �Mh includes
no hemispheric n�crescent but includes bihedral n�crescents� We de�ne equivalence
classes of bihedral n�crescents� Two bihedral n�crescents are equivalent if there exists
a chain of bihedral n�crescents overlapping with the next ones in the chain� This
enables us to de�ne )�R� the union of n�crescents equivalent to a given n�crescent



CHAPTER �� INTRODUCTION ��

R� Given )�R� and )�S� for two n�crescents R and S� they are either disjoint� equal�
or meet at a totally geodesic �n � ���submanifold� We obtain a two�faced �n � ���
submanifold from the totally geodesic �n� ���submanifolds�

In Chapter �� we show what happens to n�crescents if we take submanifolds or
splits manifolds in the corresponding completions of the holonomy cover� They are
all preserved�

In Chapter 
� we prove the Main Theorem� If there is no two�faced submanifold
of type I� then two hemispheric n�crescents are either disjoint or equal� The union
of all hemispheric n�crescents left�invariant by deck transformations and hence covers
a submanifold in M � a �nite disjoint union of compact concave a�ne manifolds of
type I� If there is no two�faced submanifold of type II� then )�R� and )�S� for two
n�crescents R and S are either disjoint or equal� Again since the deck transformation
group acts on the union of )�R� for all n�crescents R� the union covers a manifold in
M � a �nite disjoint union of compact concave a�ne manifolds of type II�

In Chapter �	� we prove Corollary ���
 we decompose real projective manifolds�
We show that when we have a two�faced submanifold� we can cut M along these�
The result does not have a two�faced submanifold and hence can be decomposed into
�n� ���convex ones and properly concave a�ne manifolds as in Chapter 
�

In Chapter ��� we will show some consequence or modi�cation of our result for Lie
groups with left�invariant real projective or a�ne structures�

A real projective structure on a Lie group is left�invariant if left�multiplications
preserve the real projective structure� The methods of the following theorem is also
applicable to real projective structures on homogeneous manifolds invariant with re�
spect to proper group actions �see Theorem ������

Theorem ���� � Let G be a Lie group with left�invariant real projective structure�

Then either G is �n� ���convex or its universal cover �G is projectively di�eomorphic

to the universal cover of the complement of a closed convex set in Rn with induced

real projective structure�

The �n � ���convexity of a�ne structures are de�ned similarly� and this theorem
easily translates to one on a�ne Lie groups�

Corollary ���� � Suppose that G has a left�invariant a�ne structure� Then ei�

ther G is �n � ���convex or �G is a�nely di�eomorphic to the universal cover of the

complement of a closed convex set in Rn with induced a�ne structure�

Part III consists of two appendices� In Appendix A� we show that ��manifolds
with homogeneous Riemannian geometric structures admit canonical real projective
structures or product real projective structures using results of Moln�ar ��� � We show
that a real projective manifold is convex if and only if it is a quotient of a convex
domain in Sn� In Appendix B� we study some questions on shrinking sequences of
convex balls in Sn that are needed in Chapter ��





CHAPTER �

CONVEX SUBSETS OF THE REAL PROJECTIVE

SPHERE

In this chapter� we will discuss somewhat slowly the real projective geometry of
RPn and the sphere Sn� and discuss convex subsets of Sn� We will give classi�cation
of convex subsets and give topological properties of them� We end with the geometric
convergence of convex subsets� �We assume that the reader is familiar with convex
sets in a�ne spaces� which are explained in Berger �� and Eggleston ��� in detailed
and complete manner��

The real projective space RPn is the quotient space of Rn�� � fOg by the equiv�
alence relation � given by x � y i# x ( sy for two nonzero vectors x and y and
a nonzero real number s� The group GL�n � ��R� acts on Rn�� � fOg linearly
and hence on RPn� but not e#ectively� However� the group PGL�n � ��R� acts on
RPn e#ectively� The action is analytic� and hence any element acting trivially in
an open set has to be the identity transformation� �We will assume that n � � for
convenience��

Real projective geometry is a study of the invariant properties of the real projective
space RPn under the action of PGL�n � ��R�� Given an element of PGL�n � ��R�
we identify it with the corresponding projective automorphism of RPn�

By a real projective manifold� we mean an n�manifold with a maximal atlas of
charts to RPn where the transition functions are projective� This lifts all local
properties of real projective geometry to the manifold� A real projective map is an
immersion from a real projective n�manifold to another one which is projective under
local charts� More precisely� a function f � M � N for two real projective n�manifolds
M and N is real projective if it is continuous and for each pair of charts � � U � RPn

for M and � � V � RPn for N such that U and f���V � overlap� the function

� 	 f 	 ��� � ��U 
 f���V �� � ��f�U� 
 V �

is a restriction of an element of PGL�n � ��R� �see Ratcli# ��
 ��
It will be very convenient to work on the simply connected sphere Sn the double

cover of RPn as Sn is orientable and it is easier to study convex sets� We may identify
the standard unit sphere Sn in Rn�� with the quotient space of Rn�� � fOg by the
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equivalence relation � given by x � y if x ( sy for nonzero vectors x and y and s � 	�

As above GL�n � ��R� acts on Sn� The subgroup SL��n � ��R� of linear maps
of determinant �� acts on Sn e#ectively� We see easily that SL��n � ��R� is a
double cover of PGL�n � ��R�� We denote by Aut�Sn� the isomorphic group of
automorphisms of Sn induced by elements of SL��n � ��R��

Since RPn has an obvious chart to itself� namely the identity map� it has a maximal
atlas containing this chart� Hence� RPn has a real projective structure� Since Sn is a
double cover of RPn� and the covering map p is a local di#eomorphism� it follows that
Sn has a real projective structure� Sn with this canonical real projective structure is
said to be a real projective sphere� We see easily that each element of Aut�Sn�
are real projective maps� Conversely� each real projective automorphism of Sn is
an element of Aut�Sn� as the actions are locally identical with those of elements of
Aut�Sn�� There is a following convenient commutative diagram�

Sn
g
�� Sn

� p � p

RPn g�

�� RPn

�����

where given a real projective automorphism g� a real projective map g� always exists
and given g�� we may obtain g unique up to the antipodal map ASn which sends x to
its antipodal point x� for each unit vector x in Sn�

The standard sphere has a standard Riemannian metric 	 of curvature �� We
denote by d the path�metric on Sn induced from 	� The geodesics of this metric are
paths on a great circles parameterized by d�length� This metric is projectively �at�
and hence geodesics of the metric agree with projective geodesics up to choices of
parameterization�

A convex line is an embedded geodesic in Sn of d�length less than or equal to ��
A convex subset of Sn is a subset such that any two points of A are connected by a
convex segment in A� A simply convex subset of Sn is a convex subset such that every
pair of points are connected by a convex segment of d�length � � � 
 for a positive
number 
� �Note that all these are projectively invariant properties�� A singleton�
i�e�� the set consisting of a point� is convex and simply convex�

A great 	�dimensional sphere is the set of points antipodal to each other� This is
not convex� A great i�dimensional sphere in Sn for i � � is convex but not simply
convex� An i�dimensional hemisphere� i � �� is the closure of a component of a great
i�sphere Si removed with a great �i � ���sphere Si�� in Si� It is a convex but not
simply convex� A 	�dimensional hemisphere is simply a singleton�

Given a codimension one subspace RPn�� of RPn� the complement of RPn can be
identi�ed with an a�ne space Rn so that geodesic structures agree� i�e�� the projective
geodesics are a�ne ones and vice versa up to parameterization� Given an a�ne space
Rn� we can compactify it to a real projective space RPn by adding points �see
Berger �� �� Hence the complement RPn � RPn�� is called an a�ne patch� An
open n�hemisphere in Sn maps homeomorphic onto RPn � RPn�� for a subspace
RPn��� Hence� the open n�hemisphere has a natural a�ne structure of Rn whose
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geodesic structure is same as that of the projective structure� An open n�hemisphere
is sometimes called an a�ne patch�

A subset of Rn convex in the a�ne sense is convex in Sn by our de�nition when
Rn is identi�ed with the open n�hemisphere in this manner�

We give a de�nition given in ��
 � A pair of points x and y is proper if they are
not antipodal� A minor geodesic connecting a proper pair x and y is the shorter path
in the great circle passing through x and y with boundary x and y�

The following proposition shows the equivalence of our de�nition to one given in
��
 except for pairs of antipodal points�

Proposition ���� � A set A is a convex set or a pair of antipodal points if and

only if for each proper pair of points x� y in A� A includes a minor geodesic xy in A
connecting x and y�

Proof� � If A is convex� then given two proper pair of points the convex segment
in A connecting them is clearly a minor geodesic� A pair of antipodal points has no
proper pair�

Conversely� let x and y be two points of A� If x and y are proper then since a
minor geodesic is convex� we are done� If x and y are antipodal� and A equals fx� yg�
then we are done� If x and y are antipodal� and there exists a point z in A distinct
from x and y� then A includes the minor segment xz and yz and hence xz � yz is a
convex segment connecting x and y
 A is convex�

By the above proposition� we see that our convex sets satisfy the properties in
Section ��� of ��
 � Let A be a nonempty convex subset of Sn� The dimension of A
is de�ned to be the least integer m such that A is included in a great m�sphere in
Sn� If dim�A� ( m� then A is included in a unique great m�sphere which we denote
by hAi� The interior of A� denoted by Ao� is the topological interior of A in hAi� and
the boundary of A� denoted by �A� is the topological boundary of A in hAi� The
closure of A is denoted by Cl�A� and is a subset of hAi� Cl�A� is convex and so is Ao�
Moreover� the intersection of two convex sets is either convex or is a pair of antipodal
points by the above proposition� Hence� the intersection of two convex sets is convex
if it contains at least three points� it contains a pair of nonantipodal points� or one of
the sets contains no pair of antipodal points�

A convex hull of a set A is the minimal convex set including A� A side of a convex
set A is a maximal convex subset of �A� A polyhedron is a convex set with �nitely
many sides�

Lemma ���� � Let A be a convex set� Ao is not empty unless A is empty�

Proof� � Let hAi have dimension k� Then A has to have at least k � � points
p�� � � � � pk�� in general position as unit vectors in Rn�� since otherwise every �k� ���
tuple of vectors are dependent and A is a subset of a great sphere of lower dimension�
The convex hull of the points p�� � � � � pk�� is easily shown to be a spherical simplex
with vertices p�� � � � � pk��� The simplex is obviously a subset of A� and the interior of
the simplex is included in Ao�

We give the classi�cation of convex sets in the following two propositions�
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Proposition ���� � Let A be a convex subset of Sn� Then A is one of the following

sets �

�� a great sphere Sm� � � m � n�
�� an m�dimensional hemisphere Hm� 	 � m � n�
�� a proper convex subset of an i�hemisphere Hm�

Proof� � We will prove by induction on dimension m of hAi� The theorem is obvious
for m ( 	� �� Suppose that the theorem holds for m ( k��� k � �� Suppose now that
the dimension of A equals m for m ( k� Let us choose a hypersphere Sm�� in hAi
intersecting with Ao� Then A� ( A 
 Sm�� is as one of the above ���� ���� ���� The
dimension of A� is at least one� i�e�� m� � � �� Suppose A� ( Sm��� As Ao has two
points x� y respectively in components of hAi � Sm��� taking the union of segments
from x to points of Sm��� and segments from y to points of Sm��� we obtain that
A ( hAi�

If A� is as in ��� or ���� then choose an �m� ���hemisphere H including A� with
boundary a great �m � ���sphere �H � Consider the collection P of all �m � ���
hemispheres including �H � Then P has a natural real projective structure of a great
circle� and let A� be the set of the �m � ���hemispheres in P whose interior meets
A� Then since a convex segment in hAi � �H projects to a convex segment in the
circle P � it follows that A� has the property that any proper pair of points of A� is
connected by a minor geodesic� and by Proposition ��� A� is either a pair of antipodal
points or a convex subset�

Let H� denote the closure of the complement of hA�i � H � Then the interior of
H� do not meet A as it does not meet A�� Hence A� is a subset of P � fH�g�

If A� is a pair of antipodal points� then A� must be fH�H�g� and this is a con�
tradiction� Since A� is a proper convex subset of P � A� must be a convex subset of a
��hemisphere I in P � This means that only the interior of �m � ���hemispheres in I
meets A� and there exists an m�hemisphere in hAi including A� Thus A either equals
this m�hemisphere or a proper convex subset of it�

We say that a subset of a real projective manifold satis�es the Kobayashi�s criterion
if there is no non�constant projective map from the real line R to it� �A convex
open domain in Sn satisfying Kobayashi�s criterion has a complete Hilbert metric by
Proposition ���	 ��	 ��

Given a convex compact subset A of Sn the following statements are equivalent�

� A satis�es Kobayashi�s criterion�
� A does not include a line whose d�length equals ��
� A does not include a pair of points antipodal to each other�

Let A be a convex subset of an i�hemisphere H i for i � �� Assume that A does
not satisfy Kobayashi�s criterion� Then there are great spheres of dimension � 	 in
Cl�A�� Since great spheres in H i are subsets of �H i� they are included in �A 
 �H i�

Given two great spheres Sj and Sk in A for 	 � j� k � i��� the geometry of H i and
the convexity of A easily imply that there exists a great sphere Sl with j� k � l � i��
including the both spheres� �Note that if k ( i� �� then A equals H i��
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Proposition ���� � Let A be a convex subset of an i�dimensional hemisphere H i

for i � �� Then exactly one of the following holds �

� �A includes a unique maximal great j�sphere Sj for some 	 � j � i� �� which
must be in �H i and the closure of A is the union of �j � ���hemispheres with

common boundary Sj � or
� A is a simply convex subset of H i� in which case A can be realized as a bounded

convex subset of perhaps another open i�hemisphere Ki identi�ed with an a�ne

space Ri�

Proof� � We assume without loss of generality that A is closed by taking the closure
of A if necessary� The �rst item is proved in the above paragraph since the second
statement of the �rst item simply follows from convexity of A�

If A includes no pair of antipodal points� then let m be the dimension of hAi and
we do the induction over m� If m ( 	� �� then the second item is obvious� Suppose
we have the second item holding for m ( k � �� where k � �� Now let m ( k� and
choose a great sphere Sm�� meeting Ao� and let A� ( A
Sm��� Since A� is another
simply convex set� A� is a bounded convex subset of an open �m� ���hemisphere K
identi�ed as an a�ne space Rm��� Hence A� does not meet �K� As in the proof of
Proposition ���� we let P be the set of all �m� ���hemispheres with boundary in �K�
which has a natural real projective structure of a great circle� As in the proof� we see
that the subset A� of P consisting of hemispheres whose interior meets A is a convex
subset of a ��hemisphere in P � The boundary of A� consists of two hemispheres H�

and H�� Since A� is connected� H� and H� bound a convex subset L in hAi� and H�

and H� meet in a 	�angle less than or equal to ��
If the angle between H� and H� equals �� then H� �H� is a great �m� ���sphere�

and Ho
� and Ho

� contains two points p� q of A respectively which are not antipodal�
Since A is convex� pq is a subset of A
 since p and q is not antipodal� pq meets �K
by geometry� a contradiction�

Since the angle between H� and H� is less then �� it is now obvious that there
exists an m�hemisphere H including A and meeting L only at �K� Hence A is a
convex subset of Ho� Since A is compact� A is a bounded convex subset of Ho�

An m�bihedron in Sn is the closure of a component of a great sphere Sm removed
with two great spheres of dimension m� � in Sm �m � ��� A ��bihedron is a simply
convex segment�

Lemma ���� � A compact convex subset K of Sn including an �n� ���hemisphere
is either the sphere Sn� a great �n � ���sphere� an n�hemisphere� an n�bihedron� or
the �n� ���hemisphere itself�

Proof� � Let H be the �n� ���hemisphere in K and s the great circle perpendicular
to H at the center of H � Then since K is convex� s 
K is a convex subset of s or a
pair of antipodal point as in the proof of Proposition ���� If s 
K ( s� then every
segment from a point of s to a point of H belongs to K by convexity� Thus� K ( Sn�
Depending on whether s 
 K is a point� a pair of antipodal points� a ��hemisphere
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or a simply convex segment� K is H � a great �n � ���sphere� an n�hemisphere or an
n�bihedron�

Proposition ���� � Let A be a convex m�dimensional subset of Sn other than a

great sphere� Then Ao is homeomorphic to an open m�ball� Cl�A� the compact m�ball�

and �A to the sphere of dimension m� ��

Proof� � We can generalize Section ������ of Berger �� to prove this proposition�

Let A be an arbitrary subset of Sn and x a point of the topological boundary bdA
of A� A supporting hypersphere L for A is a great �n � ���sphere containing x in A
such that the two closed hemispheres determined by L includes A and x respectively�
We say that L is the supporting hypersphere for A at x�

Proposition ��	� � Let A be a convex subset of Sn� other than Sn itself� Then for

each point x of �A� there exists a supporting hypersphere for A at x�

Proof� � If the dimension i of A is 	� this is trivial� Assume i � �� If A is a great
i�sphere or an i�hemisphere i � �� it is obvious� If not� then A is included an i�
hemisphere� say H � Then Ao is a convex subset of the a�ne space Ho� If x 
 Ho�
there exists a supporting hyperplane K for Ao at x by Proposition ������ of �� � The
hyperplane K equals L
Ho for a great �i����sphere L in hAi� Thus any great �n���
sphere P meeting hAi at L is the supporting hypersphere for A at x� If x 
 �H � then
the conclusion is obvious�

We de�ne the Hausdor# distance dH between all compact subsets of Sn� We say
that two compact subsets X�Y have distance dH less than 
� if X is in an 
�d�
neighborhood of Y and Y is in one of X � This de�nes a metric on the space of all
compact subsets of Sn�

Suppose that a sequence of compact sets Ki converges to K�� Then it is well�
known that x belongs to K� if and only if x is a limit of a sequence fxig� xi 
 Ki�
If x 
 K�� then by de�nition for any positive number 
� there exists an N so that
for i � N � Ki contains a point xi so that d�x� xi� � 
� Also� given a point x of Sn�
if a sequence xi 
 Ki converges to x� then x lies in K�� If otherwise� x is at least �
away from K� for � � 	� and so the ����d�neighborhood of K� is disjoint from an
open neighborhood J of x� But since xi 
 J for i su�ciently large� this contradicts
Ki � K��

Proposition ��
� � Given a sequence of compact convex subsets Ki of S
n� we can

always choose a subsequence converging to a subset K�� K� is compact and convex�

Also the following hold �

� If Ki are great i�spheres� then K� is a great i�sphere�
� If Ki are i�hemispheres� that K� is an i�hemisphere�
� If Ki are i�bihedrons� then K� is either an i�hemisphere� an i�bihedron� or an

�i� ���hemisphere�
� If Ki are i�balls� then K� is a convex ball of dimension less than or equal to i�
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Proof� � The �rst statement follows from the well�known compactness of the spaces
of compact subsets of compact metric spaces under Hausdor# metrics�

For each point x of K�� there exists a sequence xi 
 Ki converging to x� Choose
arbitrary two distinct points x and y of K�� and sequences xi 
 Ki and yi 
 Ki

converging to x and y respectively� Then there exists a segment xiyi of d�length
� � in Ki connecting xi and yi� Since the sequence of xiyi is a sequence of compact
subsets of Sn� we may assume that a subsequence converges to a compact subset L
of Sn� By the above paragraph L � K�� Since ��bihedrons and ��hemispheres are
nothing but convex segments� the second and third items imply that L is a convex
segment� Thus K� is convex�

��� A great i�sphere is de�ned by n � i number of dual d�orthonormal vectors of
Rn� Let fsi�� � � � � s

i
n�kg for i ( �� �� � � � to be the set of dual vectors for a great sphere

Ki� Then a point x belongs to K� if and only if it is a limit of a sequence of points
xi 
 Ki� Hence� x belongs to K� if and only if x is zero under the set of limit dual
vectors� Hence� K� is precisely de�ned by a set of �n � i��equations and is a great
i�sphere�

��� This follows as in ��� using d�orthonormal dual vectors de�ning an i�hemisphere�
��� An i�bihedron is de�ned by n � i d�orthonormal vectors de�ning the great i�

sphere including it and two d�unit vectors which are normal to the n� i vectors but
may have an angle with respect to each other�

��� If Ki are i�balls� then Ki � Hi for i�hemispheres Hi� We choose a subsequence
ij of i so that Hij converges to an i�hemisphere H � It follows that K� is a subset of
H by the paragraph above our proposition since Kij converges to K�� Thus� K� is
a compact convex subset of H � which shows that K� is a convex ball of dimension
� i by Proposition ����

Remark ���� � Contrary to above a sequence of simply convex i�balls can converge
to an i�hemisphere or nonsimply convex i�balls� Given a sequence of i�balls Ki� if
Li is the sequence of maximal great spheres in Ki of dimension ji� then the limit
K� includes the limits of subsequences of Li and the maximal great sphere for K�
has dimension greater than or equal to the limit supremum of the sequence of the
dimensions of Li�

Proposition ����� � Let Ki be a sequence of convex n�balls� If dimK� ( n� then
we have

S�
i��K

o
i � Ko

i � In this case �Ki � �Ki�

The proof follows as in Section � of Appendix of ��� � The dimension does not
play a role� We will give a shortened proof here for reader�s convenience�

Given a great sphere Sn�� in Sn and a point x belonging to Sn�Sn��� if a geodesic
from x to Sn�� is perpendicular to Sn��� and its d�length � ���� then its d�length
equals d�x�Sn����

Suppose that x 
 B for a convex i�ball B� Then we have d�x� �B� � ���� We
have d�x� �B� ( ��� if and only if B is an i�hemisphere of which x is the center�

Lemma ����� � Let A and B be two convex n�balls in Sn� Suppose that Ao � Bo

contains a point x such that d�x� �A� � �
 for a positive constant 
� Then dH�A�B� �

�
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Proof� � Since x �
 Bo� an n�hemisphere H contains x and satis�es B 
Ho ( � by
Proposition ���� The proof reduces to the claim that A 
H contains a point y such
that d�y�Sn�Ho� � 
� Let 
 be the diameter of H passing through x� Let � ( 

A�
The subset � is a connected segment in the convex n�ball A
H whose endpoints are
contained in ��A 
H�� Since � � x and at least one of the endpoints of � belongs to
�A� it follows that d�length��� � �
� Since we have � � 
 and �
 � �� the segment
� contains a point y such that


 � d�y� �
� � ����

As 
 is perpendicular to �H � we obtain

d�y�Sn �Ho� � 
�

Proof of Proposition ���	� � Let x 
 Ko� Then d�x� �K� � �
 for a positive con�
stant �
� Let N be a positive integer such that dH�K�Ki� � 
 whenever i � N � By
Lemma ����� x 
 Ko

i whenever i � N � Thus we obtain
S�
i��K

o
i � Ko�

Given two convex n�balls A and B� if dH�A�B� � 
 for a positive real number 
�
then dH��A� �B� � �
� Suppose that dH��A� �B� � �
� Then either �A contains a
point x such that d�x� �B� � �
 or �B contains a point y such that d��A� y� � �
� It
is su�cient to consider the �rst case� If x �
 B� then we have d�x�B� � �
 and� hence�
dH�A�B� � �
� If x 
 B� then we have x 
 Bo and� by Lemma ����� dH�A�B� � 
�
Both are contradictions�



CHAPTER �

CONVEX SUBSETS IN THE KUIPER COMPLETIONS

In this second chapter� we begin by lifting the development pair to the real projec�
tive sphere Sn� Then we de�ne the holonomy cover Mh of a real projective manifold
using the lifts� To make our discussion more familiar� we will de�ne a completion�
called a Kuiper completion or projective completion� by inducing the Riemannian
metric of the sphere to the universal cover �M or the holonomy cover Mh and then
completing them in the Cauchy sense� Then we de�ne the ideal set to be the com�
pletion removed with �M or Mh� i�e�� points in�nitely far away from points of �M or
Mh�

We will de�ne convex sets in these completions� which are always !isomorphic"
to ones in Sn� Then we will introduce n�crescents� which are convex n�balls in the
completions where a side or an �n����hemisphere in the boundary lies in the ideal sets�
We show how two convex subsets of the completion may intersect
 their intersection
properties are described by their images in Sn under the developing map� Finally�
we describe the dipping intersection� the type of intersection which will be useful in
this paper� and on which our theory of n�crescents depends heavily as we shall see in
Chapter ��

Finally� we discuss when a sequence of convex n�balls in the Kuiper complement
may share a common open ball in them� the phenomenon which naturally occurs in
this paper because of dipping intersection properties� When there exists a common
open ball for a sequence of convex n�balls� we can �nd its geometric !limit" and
the geometric !limits" of the sequences of their subsets in many cases� �This part
is rewritten from the appendix of ��� but for general dimension n which creates no
di#erences��

Let M be a real projective n�manifold� Then M has a development pair �dev� h�

of an immersion dev � �M � RPn� called a developing map� and a holonomy ho�
momorphism h � ���M� � PGL�n � ��R� satisfying dev 	 � ( h��� 	 dev for every
� 
 ���M�� Such a pair is determined up to an action of an element � of PGL�n���R�
as follows�

�dev� h���� �� �� 	 dev� � 	 h��� 	 ����������
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Developing maps are obtained by analytically extending coordinate charts in the atlas�
The holonomy homomorphism is determined from the chosen developing map� �See
Ratcli# ��
 for more details�� The development pair characterizes the real projective
structure� and hence another way to give a real projective structure to a manifold is to
�nd a pair �f� k� where f is an immersion �M � RPn which is equivariant with respect
to the homomorphism k from the group of deck transformations to PGL�n � ��R��

We assume that the manifold�boundary �M of a real projective manifold M is
totally geodesic unless stated otherwise� �Surely� M may have empty boundary� This
means that for each point of �M � there exist an open neighborhood U and a lift
� � U � Sn of a chart U � RPn so that ��U� is a nonempty intersection of a closed
n�hemisphere with a simply convex open set� �By an n�hemisphere� we mean a closed
hemisphere unless we mention otherwise�� �M is said to be convex if there exists an
open neighborhood U and a chart � for each point of �M so that ��U� is a convex
domain in Sn� �M is said to be concave if there exists a chart �U� �� for each point of
�M so that ��U� is the complement of a convex open set in an open simply convex
subset of Sn�

We remark that if M has totally geodesic boundary� then so do all of its covers�
The same facts are true for convexity and concavity of boundary� Also� we will need to
allow our manifold M to be a topological manifold with boundary being not smooth�
especially when �M is convex or concave� This does not cause any complications as
transition functions are smooth� and such manifolds can be considered as topologically
imbedded submanifolds of smooth manifolds�

Lemma ���� � Let M have totally geodesic boundary� Suppose that a connected

totally geodesic �n� ���submanifold S of M of codimension � � intersects �M in its

interior point� Then S � �M �

Proof� � The intersection point must be a tangential intersection point� Since � �M
is a closed subset of �M � the set of intersection of S and � �M is an open and closed
subset of S� Hence it must be S�

Remark ���� � If �M is assumed to be convex� the conclusion holds also� This was
done in ��� in dimension �� The proof for the convex boundary case is the same as
the dimension ��

Remark ���� � Given any two real projective immersions f�� f� � N � RPn on a
real projective manifold N � they di#er by an element of PGL�n���R�� i�e�� f� ( � 	f�
for a projective automorphism � as they are charts restricted to an open set� and they
must satisfy the equation there� and by analyticity everywhere� Let p � Sn � RPn

denote the covering map� Given two real projective immersions f�� f� � N � Sn� we
have that p 	 f� ( � 	 p 	 f� for � in PGL�n � ��R�� By equation ���� there exists
an element � � of Aut�Sn� so that p 	 � � ( � 	 p where � � and ASn 	 � � are the only
automorphisms satisfying the equation� This means that p	f� ( p	� � 	f�� and hence
it follows easily that f� ( � � 	 f� or f� ( ASn 	 �

� 	 f� by analyticity of developing
maps� Hence� any two real projective maps f�� f� � N � Sn di#er by an element of
Aut�Sn��
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We agree to lift our developing map dev to the standard sphere Sn� the double
cover of RPn� where we denote the lift by dev�� Then for any deck transformation
� of �M � we have dev� 	 � ( h���� 	 dev� by the above remark� Hence � �� h���� is a
homomorphism� and we see easily that h� is a lift of h for the covering homomorphism
Aut�Sn� � PGL�n � ��R��

The pair �dev�� h�� will from now on be denoted by �dev� h�� and they satisfy
dev 	 � ( h��� 	 dev for every � 
 ���M�� and moreover� given a real projective
structure� �dev� h� is determined up to an action of � of Aut�Sn� as in equation ���
by the above remark�

The sphere Sn has the standard metric 	 so that its projective structure is pro�
jectively equivalent to it
 i�e�� the geodesics agree� We denoted by d the path�metric
induced from 	� From the immersion dev� we induce a Riemannian metric 	 of �M �
and let d denote the induced path�metric on �M � The Cauchy completion of � �M�d�
is denoted by � �M�d�� which we say is the Kuiper completion or projective completion

of �M � We de�ne the ideal set �M� ( �M � �M �
These sets are topologically independent of the choice of dev since the metrics

pulled from developing maps are always quasi�isometric to one another� i�e�� they
di#er by an element of Aut�Sn� a quasi�isometry of Sn with metric d�

Naturally� dev extends to a distance�decreasing map� which we denote by dev
again� Since for each � 
 Aut�Sn�� � is quasi�isometric with respect to d� and

each deck transformations � of �M locally mirror the metrical property of h���� it
follows that the deck transformations are quasi�isometric �see ��� �� Thus� each deck

transformation of �M extends to a self�homeomorphism of �M � The extended map will
be still called a deck transformation and will be denoted by the same symbol � if so was
the original deck transformation denoted� Finally� the equation dev 	� ( h��� 	dev
still holds for each deck transformation ��

The kernel K of h � ���M� � Aut�Sn� is well�de�ned since h is well�de�ned up to
conjugation� Since dev 	 � ( dev for � 
 K� we see that dev induces a well�de�ned
immersion dev� � �M�K � Sn� We say that �M�K the holonomy cover of M � and
denote it by Mh� We identify K with ���Mh�� Since any real projective map f � Mh �
Sn equals � 	 dev� for � in Aut�Sn� by Remark ���� it follows that dev 	 � equals
h���� 	 dev for each deck transformation � 
 ���M�����Mh� and h���� 
 Aut�Sn��
Thus� � �� h���� is a homomorphism h� � ���M�����Mh� � Aut�Sn�� which is easily
seen to equal h� ( h	* for the quotient homomorphism * � ���M� � ���M�����Mh��

Moreover� by Remark ���� �dev�� h�� is determined up to an action of � in Aut�Sn�
as in equation ���� Conversely� such a pair �f� k� where f � Mh � Sn equivariant
with respect to the homomorphism k � ���M�����Mh� � Aut�Sn� determines a real
projective structure on M � From now on� we will denote �dev�� h�� by �dev� h�� and
call the pair a development pair�

Given dev� we may pull�back 	� and complete the path�metric d to obtain �Mh�
the completion of Mh� which is again called a Kuiper or projective completion� We
de�ne the ideal set Mh�� to be �Mh�Mh� As before the developing map dev extends
to a distance�decreasing map� again denoted by dev� and each deck transformation
extends to a self�homeomorphism �Mh � �Mh� which we call a deck transformation still�
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Finally� the equation dev 	� ( h��� 	dev still holds for each deck transformation ��

Mh

Figure ���� A �gure of �Mh� The thick dark lines indicate �Mh

and the dotted lines the ideal boundary Mh��� and ��crescents in
them in the right� They can have as many !pods" and what looks
like !overlaps"� Such pictures happen if we graft annuli into convex
surfaces �see Goldman ��� ��

As an aside� we have the following proposition� A coverM � of M is called developing

cover if it admits a real projective immersion to Sn� We may de�ne the Kuiper
completion �M � and ideal set �M �

� using the metric pulled back from d on Sn using
the immersion� These sets are canonically de�ned regardless of the choice of the
immersion�

Proposition ���� � Let M � be a cover of M � Then M � is developing if and only

if there is a covering map g � M � �Mh� In this case� each real projective immersion

f � M � � Sn equals dev 	 g for a developing map dev of Mh�

Proof� � The converse is clear� Let f � M � � Sn be a real projective immersion�
Then for any loop in M � maps to a loop in M of trivial holonomy since we may break
up f to use it as charts on M � and M � Since ���M

�� thus injects into the kernel of
the holonomy homomorphism ���M� � Aut�Sn�� M � covers Mh by a covering map
g� dev 	 g is also a projective immersion and must agree with k 	 f for k 
 Aut�Sn�
by Remark ���� As k�� 	 dev � Mh � Sn is a developing map� this completes the
proof�

A subset A of �M is a convex segment if devjA is an imbedding onto a convex

segment in Sn� M is convex if given two points of the universal cover �M � there exists
a convex segment in �M connecting these two points �see Theorem ����� A subset A of
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�M is convex if given points x and y of A� A includes a convex segment containing x and
y� We say that A is a tame subset if it is a convex subset of �M or a convex subset of a
compact convex subset of �M � If A is tame� then devjA is an imbedding onto dev�A�
and devjCl�A� for the closure Cl�A� of A onto a compact convex set Cl�dev�A���
The interior Ao of A is de�ned to be the set corresponding to Cl�dev�A��o and the
boundary �A the subset of Cl�A� corresponding to �Cl�dev�A��� Note that �A may
not equal the manifold boundary �A if A has a �topological� manifold structure� But
if A is a compact convex set� then dev�A� is a manifold by Proposition ���� i�e�� a
sphere or a ball� and �A has to equal �A� In this case� we shall use �A over �A� A side

of a compact convex subset A of �M is a maximal convex subset of �A� A polyhedron

is a compact convex subset A of �M with �nitely many sides�

De�nition ���� � An i�ball A in �M is a compact subset of �M such that devjA
is a homeomorphism to an i�ball �not necessarily convex� in a great i�sphere and its

manifold interior Ao is a subset of �M � A convex i�ball is an i�ball that is convex�

A tame set in �M which is homeomorphic to an i�ball is not necessarily an i�ball
in this sense
 that is� its interior may not be a subset of �M � We will say it is a tame

topological i�ball but not i�ball or convex i�ball�
We de�ne the terms convex segments� convex subset� tame subset� i�ball and convex

i�ball in �Mh in the same manner as for �M and the Kuiper completions of developing
covers�

We will from now on be working on �Mh only 
 however� all of the materials in this

chapter will work for �M and the Kuiper completions of developing covers as well� and

much of the materials in the remaining chapters will work also
 however� we will not
say explicitly as the readers can easily �gure out these details�

An n�bihedron is bounded by two �n����dimensional hemispheres
 the correspond�
ing subsets of A are the sides of A �see ��� ��

De�nition ���� � An n�ball A of �Mh is said to be an n�bihedron if devjA is a
homeomorphism onto an n�bihedron� An n�ball A of �Mh is said to be an n�hemisphere
if devjA is a homeomorphism onto an n�hemisphere in Sn�

A bihedron is said to be an n�crescent if one of its side is a subset of Mh�� and
the other side is not� An n�hemisphere is said to be an n�crescent if a subset in the
boundary corresponding to an �n����hemisphere under dev is a subset of Mh�� and
the boundary itself is not a subset of Mh���

Note that an n�crescent in �M �or the Kuiper completions of developing covers� is
de�ned in the same obvious manner�

To distinguish� a bihedral n�crescent is an n�crescent that is a bihedron� and a
hemispheric n�crescent is an n�crescent that is otherwise�

In contrast to De�nition ���� we de�ne an m�bihedron for � � m � n � �� to be
only a tame topological m�ball whose image under dev is an m�bihedron in a great
m�sphere in Sn� and an m�hemisphere� 	 � m � n� �� to be one whose image under
dev is an m�hemisphere� So� we do not necessarily have Ao � Mh when A is one of
these�
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Example ��	� � Let us give two trivial examples of real projective n�manifolds to
demonstrate n�crescents �see ��� for more ��dimensional examples��

Let Rn be an a�ne patch of Sn with standard a�ne coordinates x�� x�� � � � � xn and
O the origin� Consider Rn � fOg quotient out by the group hgi where g � x � �x
for x 
 Rn � f	g� Then the quotient is a real projective manifold di#eomorphic
to Sn�� � S�� Denote the manifold by N � and we see that Nh can be identi�ed
with Rn � fOg� Thus� �Nh equals the closure of Rn in Sn
 that is� �Nh equals an
n�hemisphere H � and Nh�� is the union of fOg and the boundary great sphere Sn��

of H � Moreover� the closure of the set R given by x� � x� � � � �� xn � 	 in H is an
n�bihedron and one of its side is included in Sn��� Hence� R is an n�crescent�

Let H� be the open half�space given by x� � 	� and l the line x� ( � � � (
xn ( 	 �provided n � ��� Let g� be the real projective transformation given by
�x�� x�� � � � � xn� �� ��x�� x�� � � � � xn� and g� that given by

�x�� x�� � � � � xn� �� �x�� �x�� � � � � �xn��

Then the quotient manifold L of H� � l by the commutative group generated by g�
and g� is di#eomorphic to Sn�� � S� � S�� and we may identify its holonomy cover
Lh with H� � l and �Lh with the closure Cl�H�� of H� in Sn� Clearly� Cl�H�� is an
n�bihedron bounded by an �n � ���hemisphere that is the closure of the hyperplane
given by x� ( 	 and an �n � ���hemisphere in the boundary of the a�ne patch Rn�
Therefore� Lh�� is the union of H� 
 l and two �n � ���hemispheres that form the
boundary of Cl�H��� Cl�H�� is not an n�crescent since Cl�H��

o 
Lh�� � l 
Ho
� �( ��

In fact� Cl�H�� includes no n�crescents�

Let R be an n�crescent� If R is an n�bihedron� then we de�ne 
R to be the interior
of the side of R in Mh�� and �R the other side� If R is an n�hemisphere� then we
de�ne 
R to be the union of the interiors of all �n����hemispheres in �R
Mh�� and
de�ne �R the complement of 
R in �R� Clearly� �R is a tame topological �n� ���ball�

Remark ��
� � There is another de�nition of n�crescents due to the referee is as
follows� An n�crescent set in Mh is a closed subset R of Mh such that

� dev restricted to R is injective�
� dev�intR� for the topological interior intR of R is an open n�hemisphere or an

open n�bihedron�
� bdR 
Mh is not empty�
� dev�bdR 
Mh� is included in an �n � ���hemisphere �equivalently� �dev�R�

includes an open �n� ���hemisphere �R disjoint from dev�R���

It is elementary to show the following� If R is an n�crescent� then R 
Mh is an
n�crescent set� Conversely� the closure of an n�crescent set in �Mh is obviously an
n�crescent� Hence� there exists a canonical correspondence between n�crescent sets
and n�crescents�

Finally� this de�nition shows some relationship between crescents and poche and
coque de�ned by Benz�ecri �� �
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Let us now discuss about how two convex sets may meet� Let F� and F� be two
convex i�� j�balls in �Mh respectively� We say that F� and F� overlap if F o

� 
 F o
� �( ��

This is equivalent to F� 
 F o
� �( � or F o

� 
 F o
� �( � when F� and F� are n�balls�

Proposition ���� � If F� and F� overlap� then devjF� � F� is an imbedding onto

dev�F�� � dev�F�� and devjF� 
 F� onto dev�F�� 
 dev�F��� Moreover� if F� and

F� are n�balls� then F� � F� is an n�ball� and F� 
 F� is a convex n�ball�

Proof� � The proof is a direct generalization of that of Theorem ��� of ��� � We see
that it follows from Proposition ���	 since F� and F� satisfy the premise as dev�F��
and dev�F�� are convex�

Proposition ����� � Let A be a k�ball in �Mh and B an l�ball� Suppose that

Ao 
 Bo �( �� dev�A� 
 dev�B� is a compact manifold in Sn with interior equal to

dev�Ao�
dev�Bo� and dev�Ao�
dev�Bo� is pathwise�connected� Then devjA�B
is a homeomorphism onto dev�A� � dev�B��

Proof� � This follows as in its a�ne version Lemma � in ��� but is rather elementary�
First� we prove injectivity� Let x 
 A� y 
 B� and z 
 Ao
Bo with dev�x� ( dev�y��
There is a path � in dev�A�
dev�B� from dev�z� to dev�x� such that �j�	� �� maps
into dev�A�o
dev�B�o� Since devjA is an imbedding onto dev�A�� there is a lift �A
of � into Ao from z to x� Similarly� there is a lift �B of � into Bo from z to y� Note
that �Aj�	� �� agrees with �B j�	� �� by the uniqueness of lifts of paths for immersions�
Thus� x ( y since �M is a complete metric space�

By the injectivity� there is a well�de�ned inverse function f to devjA � B� f
restricted to dev�A� equals the inverse map of devjA� and f restricted to dev�B�
the inverse map of devjB� Since both inverse maps are continuous� and dev�A� and
dev�B� are closed� f is continuous� �See also �
 ��

In the following� we describe a useful geometric situation modeled on !dipping a
bread into a bowl of milk"� Let D be a convex n�ball in �Mh such that �D includes
a tame subset 
 homeomorphic to an �n� ���ball� We say that a convex n�ball F is
dipped into �D�
� if the following statements hold�

� D and F overlap�
� F 
 
 is a convex �n� ���ball � with �� � �F and �o � F o�
� F�� has two convex components O� and O� such that Cl�O�� ( O��� ( F�O�

and Cl�O�� ( O� � � ( F �O��
� F 
D is equal to Cl�O�� or Cl�O���

�The second item sometimes is crucial in this paper�� We say that F is dipped into

�D�
� nicely if the following statements hold�

� F is dipped into �D�
��
� F 
Do is identical with O� and O��
� ��F 
D� ( �� � for a topological �n����ball �� not necessarily convex or tame�

in the topological boundary bdF of F in �Mh where � 
 � ( ���

As a consequence� we have �� � bdF � �As above this is a crucial point�� �The nice
dipping occurs when the bread does not touch the bowl��
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α

α

D

F’

F

D

F’’

Figure ���� Various examples of dipping intersections� Loosely
speaking 
 plays the role of the milk surface� F � F �� and F �� the
breads� and Do the milk� The left one indicates nice dippings� and
the right one not a nice one�

The direct generalization of Corollary ��
 of ��� gives us�

Corollary ����� � Suppose that F and D overlap� and F o
��D�
o� ( �� Assume
the following two equivalent conditions �

� F o 
 
 �( �� � F �� D�

Then F is dipped into �D�
�� If F 
 ��D � 
o� ( � furthermore� then F is dipped

into �D�
� nicely�

Example ����� � In Example ���� choose a compact convex ball B in Rn�fOg (
Nh intersecting R in its interior but not included in R� Then B dips into �R�P � nicely
where P is the closure of the plane given by x� � � � � � xn ( 	� Also let S be the
closure of the half plane given by x� � 	� Then S dips into �R�P � but not nicely�

Consider the closure of the set in �Nh given by 	 � x� � � and that of the set
	 � x� � �� Then these two sets do not dip into each other for any choice of �n� ���
balls in their respective boundaries to play the role of 
�

Since dev restricted to small open sets are charts� and the boundary of Mh is
convex� each point x of Mh has a compact ball�neighborhood B�x� so that devjB�x�
is an imbedding onto a compact convex ball in Sn �see Section ���� of ��� �� dev�B�x��
can be assumed to be a d�ball with center dev�x� and radius 
 � 	 intersected with
an n�hemisphere H so that �Mh 
 B�x� corresponds to �H 
 dev�B�x��� Of course�
�Mh 
 B�x� or �H 
 dev�B�x�� may be empty� We say that such B�x� is an 
�tiny
ball of x and 
 the d�radius of B�x��

Note that for an 
�tiny ball B�x�� �Mh 
 B�x� is a compact convex �n � ���ball
or empty� and the topological boundary bdB�x� equals the closure of �B�x� removed
with this set�

Lemma ����� � If B�x� and an n�crescent R overlap� then either B�x� is a subset
of R or B�x� is dipped into �R� �R� nicely�

Proof� � Since Cl�
R� � Mh�� and B�x� � Mh� Corollary ���� implies the conclu�
sion�
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As promised� we will reproduce two propositions on the sequences of convex n�balls
that !converge" to a convex ball in the Kuiper completions from the Appendix of ��� �

Recall that 	 denote the Riemannian metric on �Mh induced from that of Sn by
dev�

Proposition ����� � Let fDig be a sequence of convex n�balls in �Mh� Let x 
Mh�

and B�x� a tiny ball of x� Suppose that the following properties hold �

�� �Di includes an �n� ���ball �i�
�� B�x� overlaps with Di and does not meet �Di �Cl��i��
�� A sequence fxig converges to x where xi 
 �i for each i�
�� The sequence fnig converges where ni is the outer�normal d�unit vector to �i

at xi with respect to 	 for each i�

Then there exist a positive integer N and a convex open disk P in B�x� such that

P � Di whenever i � N�

Proof� � The appendix of ��� has the proof in dimension �� which easily generalizes
to the dimension n� We follow this proof� Let c be a positive real number so that
d�x� bdB�x�� � c� Let si be the inward maximal segment in Di 
 B�x� with an
endpoint xi in �i� Choosing N� so that for i � N�� d�xi� x� � c��� Then the d�length
of si is greater than c�� for i � N�� Choose a point yi on si of distance c�� from xi�
Then we have d�yi� bdB�x�� � c���

For each i� it is easy to see that Di 
 B�x� includes the ball Bc���yi� of d�radius
c�� with center yi� As ni converges to a d�unit vector at x� the sequence of points
yi converges to a point y of B�x�� Choosing N � N � N�� to be so that for i � N
d�yi� y� � c��� we obtain that Bc���yi� � Bc���y� for i � N � Letting P equal Bc���y�o

completes the proof�

We say that a compact subset D� of Sn is the resulting set of a sequence fDig
of compact subsets of �Mh if fdev�Di�g converges to D�� Let fDig and fBig be
sequences of convex n�balls with resulting sets D� and B� respectively
 let fKig
be a sequence of compact subsets with the resulting set K�� We say that fDig
subjugates fKig if Di � Ki for each i and that fBig dominates fDig if Bi and Di

overlap for each i and if B� includes D�� Moreover� we say that fKig is ideal if
there is a positive integer N for every compact subset F of Mh such that F 
Ki ( �
whenever i � N � In particular� if Ki is a subset of Mh�� for each i� then fKig is an
ideal subjugated sequence�

Proposition ����� � Suppose that fDig is a sequence of n�balls including a com�

mon open ball P� fBig is another sequence of n�balls� and fKig a sequence of subsets

of �Mh� Assume that fDig subjugates fKig and that fBig dominates fDig� Then �Mh

includes two convex n�balls Du and Bu and a compact subset Ku with the following

properties �

�� Du � P� and dev�Du� ( D��

�� Bu � Du� and dev�Bu� ( B��

�� Du � Ku� and dev�Ku� ( K��

�� If fKig is ideal� then Ku �Mh���
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Proof� � The proof is identical with that of Theorem � in the Appendix of ��� �
��� Since dev�Di� includes dev�P� for each i� we have D� � dev�P�
 hence� D�

is a convex n�ball� Since Proposition ���	 implies

��
i��

dev�Di�
o � Do

��

by Proposition ���	 devj
S�
i��D

o
i is an imbedding onto

S�
i�� dev�Di�

o� Thus�
S�
i��D

o
i

includes a convex disk Dsp such that devjDsp is an imbedding onto Do
�� If we let

Du ( Cl�Dsp�� then ��� follows�
��� Let P � be a compact convex n�ball in Po
 let P �� be its interior �P ��o� Noting

that B� � dev�P�� a point x of dev�P ��� satis�es d�x� �B�� � 
 for a small positive
constant 
� Lemma ���� easily shows that there is a positive integer N such that

dev�Bi� � dev�P ��� whenever i � N�

Since devjBi �Di is an imbedding onto dev�Bi� � dev�Di� by Proposition ��
 and
Di � P � it follows that Bi � P �� whenever i � N � ��� follows from ����

��� Since Ki � Di for each i� we have K� � D�� Let Ku ( �devjDu����K���
��� follows�

��� We show that Ku � Mh��� To the contrary� suppose that Ku 
Mh contains
a point x� Suppose further that x 
 Mo

h
 thus� there is a tiny ball B�x� satisfying
x 
 B�x�o and such that dev�B�x��o 
Do

� is star�shaped from a point y of dev�P��
�A star�shaped subset of Sn from a point is a subset such that each of its elements
can be connected by a simply convex segment in it from the point�� We obtain by
Proposition ���	 that

devjDi �B�x� �Du

is an imbedding onto

dev�Di� � dev�B�x�� �D�

for each i�
Since fdev�Ki�g converges to K� and dev�B�x��o is an open neighborhood of

dev�x�� there is a positive integer N such that

dev�Ki� 
 dev�B�x��o �( � whenever i � N�

Let i be an integer greater than N � The open disk B�x�o includes a non�empty subset
�i de�ned by

�i ( �devjB�x�o����dev�Ki� 
 dev�B�x��o��

By the conclusion of the second paragraph above� �i is a subset of Ki� Since we
have �i � B�x� whenever i � N � this contradicts the premise on fKig�

Finally� suppose that x 
 �Mh� Let us extend Mh by attaching a small open n�ball
in Sn around x by a projective map� The resulting projective surface still has convex
boundary� Now the previous argument applies and yields a contradiction again�

As an immediate application� we have



CHAPTER �� CONVEX SUBSETS IN THE KUIPER COMPLETIONS 	�

Corollary ����� � Suppose that M is not projectively di�eomorphic to an open

n�bihedron or n�hemisphere� Let Ri be a sequence of n�crescents such that a sequence

of points xi 
 �Ri
converges to a point x of Mh� Then Mh includes a crescent R

containing x so that dev�Rij � converges to dev�R� for a subsequence Rij of Ri and

R and Rij include a common open ball P for j su�ciently large� Finally if Ri are

n�hemispheres� then so is R� If Ri are n�bihedrons� then R is either an n�hemisphere
or an n�bihedron�

Proof� � Assume without loss of generality that xi 
 B�x� and that the sequence of
d�unit outer normal vectors ni at xi converges to one at x� Then by Proposition �����
there exists a common ball P in Ri 
 B�x� for i su�ciently large�

Note that Cl�
i� � Ri� By choosing a subsequence� we may assume that dev�Cl�
i��
converges to a compact set 
 so that Cl�
i� forms a subjugated sequence of Ri� More�
over Cl�
i� forms an ideal one since Cl�
i� never meets any compact subset of Mh�

By Proposition ����� there exists a convex n�ball R in �Mh so that a subsequence
of dev�Ri� converges to dev�R�� Since each Cl�
i� includes an �n � ���hemisphere�
so does 
 by Proposition ���� Hence� dev�R� is an n�hemisphere or an n�bihedron
by Lemma ���� Furthermore� a subset 
u of R which maps to 
 includes an �n� ���
hemisphere� If �R is a subset of Mh��� then Mh is di#eomorphic to an open n�bihedron
or n�hemisphere by the following lemma ����� Thus� R is an n�crescent as 
u is a
subset of Mh�� by Proposition �����

Since R includes P � R overlaps B�x�� Hence� devjR � B�x� is a homeomorphism
onto dev�R� � dev�B�x��� Since dev�R� contains dev�x�� we have that x 
 R�

The two last statements follow from Proposition ����

Lemma ���	� � Suppose that �Mh includes an n�ball B with �B � Mh��� Then

Mh equals Bo�

Remark ���
� � We can relax the condition xi 
 �Ri
to xi 
 Ri in Corollary �����

The proof requires us to choose a smaller crescent Si in Ri so that xi 
 �Si and

Si � 
Ri

� The rest of the straightforward proof is left to the reader�
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�n� ���CONVEXITY AND n�CRESCENTS

In this chapter� we introduce m�convexity� Then we state Theorem ��� central
to this chapter� which relates the failure of �n � ���convexity with an existence of
n�crescents� or half�spaces� The proof of theorem is similar to what is in Section � in
��� � Let M be a real projective n�manifold with empty or totally geodesic boundary

let Mh be the holonomy cover and �Mh the Kuiper completion of Mh� An m�simplex

T in �Mh is a tame subset of �Mh such that devjT is an imbedding onto an a�ne m�
simplex in an a�ne patch in Sn� If M is compact but not �n����convex� then we can
show that there exists an n�simplex T in �Mh with sides F�� � � � � Fn�� so that T 
Mh��

is a nonempty subset of the interior of F�� We �rst choose a sequence of points qi of F�
converging to a point x in F�
Mh��� Then we pull back qi to points pi in the closure

of a fundamental domain by a deck transformation ���i � Then analogously to ��� � we

show that Ti ( ���i �T � !converges to" a nondegenerate convex n�ball� Showing that
dev�Ti� converges to an n�bihedron or an n�hemisphere is more complicated than in
��� � The idea of the proof is to show that the sequence of the images under �i of the

��n� ���d�balls in ����F�� with center pi often have to degenerate to a point when
x is chosen specially� So when pulled back by ���i � the balls become standard ones

again� and F� must blow up to be an �n� ���hemisphere under ���i �

De�nition ���� � We say that M is m�convex � 	 � m � n� if the following holds� If
T � �Mh is an �m����simplex with sides F�� F�� � � � � Fm�� such that T o�F��� � ��Fm��
does not meet Mh��� then T is a subset of Mh�

Proposition ���� � Let T be an a�ne �m � ���simplex in an a�ne space with

sides F�� F�� � � � � Fm��� The following are equivalent �

�a� M is m�convex�

�b� Any real projective immersion f from T o�F� � � � � �Fm�� to M extends to one

from T �
�c� Every cover of M is m�convex�

Proof� � The proof of the equivalence of �a� and �b� is the same as the a�ne version

Lemma � in ��� � Suppose that M is not m�convex� and let p � �M � M denote the
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universal covering map� Then there exists a d�simplex T in �M such that T 
 �M� (
F o
� 
 �M� �( � for a side F� of T � Since T is a d�simplex� devjT is an imbedding onto

dev�T �� and dev�T � is a d�simplex in an a�ne patch of RPn� Let f be the map
�devjdev�T ���� restricted to dev�T o��dev�F���� � ��dev�Fm���� f is a projective

immersion to �M � It is easy to see that f does not extend to all of dev�T �� Hence�
p 	 f is an a�ne immersion which does not extend to dev�T ��

Suppose that M is m�convex� Let dev � �M � RPn be the developing map� Let
f � T o � F� � � � � � Fm�� be a projective immersion into M � and let �f be the lift of f

to �M � Then dev	 �f is also a real projective immersion from T o�F��� � � �Fm�� into

RPn� Since the rank of the map dev 	 �f is maximal� the map extends to a global
real projective transformation � on RPn� and hence dev 	 �f is an imbedding� Since
devj �f�T o� is an imbedding onto an open m�simplex dev 	 �f�T o� in RPn� and �f�T o�

is a convex subset of �M � it follows that the closure T � of �f�T o� is a tame subset of �M

so that devjT � is an imbedding onto Cl� �f�T o���

Since T � is an �m����simplex with sides �f�F��� � � � � �f�Fm���� and a remaining side

F ��� Since T o and �f�F��� � � � �f�Fm��� are subsets of �M � and M is m�convex� we have

T � � �M � Therefore the a�ne embedding f � � T � T � given as �devjT ���� 	� extends
�f and p 	 f � extends f �

The equivalence of �b� and �c� follows from the fact that a real projective map to
M always lifts to its cover�

Proposition ���� � M is not m�convex if and only if there exists an �m � ���
simplex with a side F� such that T 
Mh�� ( F o

� 
Mh�� �( ��

Proof� � This elementary proof is same as Lemma � in ��� � Suppose that every
�m � ���simplex T has the property that T do not meet Mh�� or T 
 Mh�� is a

subset of the union of two or more sides but not less than two sides or if T 
 �M� is
a subset of a side F � then F 
 �M� is not a subset of F o� Then one sees easily that
the de�nition for m�convexity is satis�ed by M �

Conversely� if M is m�convex� and T is an �m����simplex with sides F�� � � � � Fm��
such that T o � F� � � � � � Fm�� � Mh� then T � �M � Consequently� there is no
�m � ���simplex T with T 
Mh�� ( F o

� 
Mh�� �( ��

Remark ���� � It is easy to see that i�convexity implies j�convexity whenever
i � j � n� �See Remark � in ��� � The proof is the same��

Theorem ���� � The following are equivalent � M is ��convex 
 M is convex 
 M is

real projectively isomorphic to a quotient of a convex domain in Sn�

The proof is similar to Lemma � in ��� � Since there are minor di#erences between
a�ne and real projective manifolds� we will prove this theorem in Appendix A�

Let us give examples of real projective n�manifolds one of which is not �n � ���
convex and the other �n� ���convex�

As in Figure ���� R� removed with a complete a�ne line or a closed wedge� i�e� a
set de�ned by the intersection of two half�spaces with non�parallel boundary planes
is obviously ��convex� But R� removed with a discrete set of points or a convex
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Figure ���� The tetrahedron in the left fails to detect non���
convexity but the right one is detecting non���convexity�

cone de�ned as the intersection of three half�spaces with boundary planes in general
position is not ��convex�

We recall Example ���� Let Rn be an a�ne patch of Sn with standard a�ne
coordinates x�� x�� � � � � xn and O the origin� Consider Rn � fOg quotient out by
the group hgi where g � x � �x for x 
 Rn � f	g� Then the quotient is a real
projective manifold di#eomorphic to Sn�� � S�� We denoted the manifold by N �
and we see that Nh can be identi�ed with Rn � f	g� Thus� �Nh equals the closure
of Rn in Sn
 that is� �Nh equals an n�hemisphere H � and Nh�� is the union of fOg
and the boundary great sphere Sn�� of H � Consider an n�simplex T in Rn given by
xi � � for every i and x� � x� � � � � � xn � 	� Then the side of T corresponding to
x� � x� � � � �� xn ( 	 contains the ideal point O in its interior� Therefore� N is not
�n � ���convex� Moreover� the closure of the set given by x� � x� � � � � � xn � 	 in
�Mh ( H is an n�bihedron and one of its side is included in Sn��� Hence� it is an n�

crescent� �It will aid understanding to apply each course of the proof of Theorem ���
to this example��

Let H� be the open half�space given by x� � 	� and l the line x� ( � � � ( xn ( 	� Let
g� be the real projective transformation given by �x�� x�� � � � � xn� �� ��x�� x�� � � � � xn�
and g� that given by �x�� x�� � � � � xn� �� �x�� �x�� � � � � �xn�� Then the quotient mani�
fold L of H�� l by the commutative group generated by g� and g� is di#eomorphic to
Sn���S��S�� and we may identify Lh with H�� l and �Lh with the closure Cl�H��
of H� in Sn� Clearly� Cl�H�� is an n�bihedron bounded by an �n � ���hemisphere
that is the closure of the hyperplane given by x� ( 	 and an �n � ���hemisphere in
the boundary of the a�ne patch Rn� Therefore� Lh�� is the union of H� 
 l and
two �n � ���hemispheres that form the boundary of Cl�H��� The intersection of an
n�simplex T in Sn with the boundary �n� ���hemispheres or l is not a subset of the
interior of a side of T � It follows from this that L is �n� ���convex�

The main purpose of this chapter is to prove the following principal theorem�

Theorem ���� � Suppose that a compact real projective manifold M with empty

or totally geodesic boundary is not �n � ���convex� Then the completion �Mh of the

holonomy cover Mh includes an n�crescent�
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We may actually replace the word !totally geodesic boundary" with !convex bound�
ary" and the proof is same step by step� However� we need this result at only one
point of the paper so we do not state it�

We can also show that the completion �M of the universal cover �M also includes
an n�crescent� The proof is identical with �M replacing �Mh� Another way to do this
is of course as follows� once we obtain an n�crescent in �Mh we may lift it to one in
�M �see Proposition ������

Remark ��	� � As M is not �n � ���convex� we may assume that �M or Mh is
not projectively di#eomorphic to an open n�bihedron or an open n�hemisphere� If
otherwise� �M is convex and hence �n � ���convex� We will need this weaker but
important hypothesis later�

A point x of a convex subset A of Sn is said to be exposed if there exists a supporting
great �n� ���sphere H at x such that H 
A ( fxg �see Chapter � and Berger ��� p�
��� ��

To prove Theorem ���� we follow Section � of ��� � Since M is not �n� ���convex�
�Mh includes an n�simplex T with a side F� such that T 
Mh�� ( F o

� 
Mh�� �( �
by Proposition ���� where devjT � T � dev�T � is an imbedding onto the n�simplex
dev�T �� Let K be the convex hull of dev�F� 
Mh��� in dev�F��

o� which is simply
convex as dev�F�� is simply convex�

As K is simply convex� we see that K can be considered as a bounded convex
subset of an a�ne patch� i�e�� an open n�hemisphere� We see easily that K has an
exposed point in the a�ne sense in the open hemisphere� which is easily seen to be
an exposed point in our sense as a hyperplane in the a�ne patch is the intersection
of a hypersphere with the a�ne patch�

Let x� be an exposed point of K� Then x� 
 dev�F� 
Mh���� and there exists a
line s� in the complement of K in dev�F��

o ending at x�� Let x and s be the inverse
images of x� and s� in F o

� respectively�
Let Fi for i ( �� � � � � n � � denote the sides of T other than F�� Let vi for each i�

i ( �� � � � � n � �� denote the vertex of T opposite to Fi� Let us choose a monotone
sequence of points qi on s converging to x with respect to d�

Choose a fundamental domain F in Mh such that for every point t of F � there
exists a �
�tiny ball of t in Mh for a positive constant 
 independent of t� We assume

 � ��� for convenience� Let us denote by F�� the closure of the �
�d�neighborhood of
F � and F� that of the 
�d�neighborhood of F so that F� and F�� are compact subsets
of Mh�

For each natural number i� we choose a deck transformation �i and a point pi of
F so that �i�pi� ( qi� We let vj�i� Fj�i� and Ti� i ( �� �� � � � � j ( �� � � � � n � �� denote

the images under ���i of vj � Fj � and T respectively� Let ni denote the outer�normal
vector to F��i at pi with respect to the spherical Riemannian metric 	 of Mh�

We choose subsequences so that each sequence consisting of

dev�vj�i��dev�Fj�i��dev�Ti�� ni� and pi

converge geometrically with respect to d for each j� j ( �� � � � � n � � respectively�
Since pi belongs to the fundamental domain F for each i� the limit p of the sequence
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of pi belongs to Cl�F �� We choose an 
�tiny ball B�p� of p� We may assume without
loss of generality that pi belongs to the interior intB�p� of B�p�� Since the action of
the deck transformation group is properly discontinuous on Mh and Fj�i ( ���i �Fj�
for a compact subset Fj of Mh� there exists a natural number N such that

F�� 
 Fj�i ( � for each j� i� j � �� i � N 
�����

so B�p� 
 Fj�i ( � for j � �� �This corresponds to Lemma ��� in ��� �� Hence�
B�p� � Ti or B�p� dips into �Ti� F��i� for each i� i � N � by Corollary �����

ϑ
i

-1

Figure ���� The pull�back process

By Proposition ����� there exists an integer N�� N� � N � such that Ti includes a
common open ball for i � N�� Let T� be the limit of dev�Ti�� Since dev�Ti� includes
a common ball for i � N�� Proposition ��� shows that T� is a closed convex n�ball
in Sn�

Let Fj�� denote the limit of dev�Fj�i�� Then
Sn��
j�� Fj�� is the boundary �T� by

Proposition ���	�
Proposition ���� implies that �Mh includes a convex n�ball T u and convex sets F u

j

such that dev restricted to them are imbeddings onto T� and Fj�� respectively� We
have F u

j �Mh�� for j � � from the same proposition since Fj�i is ideal�
As we shall prove below that F��� is an �n � ���hemisphere� T� is a compact

convex n�ball in Sn including the �n� ���hemisphere F��� in its boundary �T�� By
Lemma ���� T� is an n�bihedron or an n�hemisphere� As

S
j�� F

u
j is a subset of Mh���

if F u
� �Mh��� then �Mh ( T u and Mh equals the interior of T u by Lemma ����� Mh

is not projectively di#eomorphic to an open n�bihedron or an open n�hemisphere �see
Remark ����
 F u

� is not a subset of Mh��� Since T u is bounded by F u
� and

F u
� � � � � � F u

n�� �Mh���
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it follows that T is an n�crescent� This completes the proof of Theorem ����
We will now show that F u

� is an �n����dimensional hemisphere� This corresponds
to Lemma ��� of ��� showing that one of the sides is a segment of d�length �� �The
following process may require us to choose further subsequences of Ti� However� since
dev�F��i� is assumed to converge to F���� we see that we need to only show that a
subsequence of dev�F��i� converges to an �n� ���hemisphere��

The sequence dev�qi� ( h��i�dev�pi� converges to x�� Since pi belongs to F � Mh

includes an 
�tiny ball B�pi� and a �
�tiny ball B��pi� of pi� Let W �pi� ( F��i 
B�pi�
and W ��pi� ( F��i 
B��pi�� We assume that i � N� from now on�

We now show that W �pi� and W �p�i� are !whole" �n � ���balls of d�radius 
 and
�
� i�e�� they map to such balls in Sn under dev respectively� or they are not !cut o#"
by the boundary �F��i�

If pi 
 �Mh� then the component L of F��i
Mh containing pi is a subset of �Mh by
Lemma ���� This component is a submanifold of �Mh with boundary �F��i� Since �F��i
is a subset of

S
j�� Fj�i� and B�pi� is disjoint from it by equation ���� �Mh
B�pi� is a

subset of Lo� Thus� W �pi� equals the convex �n� ���ball �Mh 
B�pi� with boundary
in bdB�pi� and is a d�ball in F o

��i of dimension �n � �� of d�radius 
 and center pi�

and certainly maps to an �n� ���ball of d�radius 
 with center dev�pi��
If pi 
 Mo

h� then since F��i passes through pi� and Fj�i 
 B�pi� ( � for j � ��
it follows that B�pi� dips into �Ti� F��i� nicely by Corollary ����� Thus W �pi� is an
�n � ���ball with boundary in bdB�pi�� and an 
�d�ball in F o

��i of dimension �n � ��
with center pi�

Similar reasoning shows that W ��pi� is a �
�d�ball in F o
��i of dimension �n��� with

center pi for each i�
Since �i�W �pi�� � F�� and dev�F�� is a compact set� we may assume without

loss of generality by choosing subsequences of �i that the sequence of the subsets
dev��i�W �pi��� of dev�F��� equal to h��i��dev�W �pi���� converges to a set W�

containing x� in dev�F��� Since devjT u is an imbedding onto T�� there exists a
compact tame subset W u in F� such that dev restricted to W u is an imbedding onto
W�� �i�W �pi�� is a subjugated sequence of the sequence of convex n�balls that equal
T always� Since W �pi� is a subset of a compact set F�� it follows that �i�W �pi�� is
ideal� and W u �Mh�� by Proposition ����� We obtain W u � F� 
Mh���

For the proof of the next proposition� the fact that x� is exposed will play a role�

Proposition ��
� � W� consists of the single point x��

Suppose not� Then as dev��i�W �pi�� does not converge to a point� there has
to be a sequence fdev��i�zi��g� zi 
 W �pi�� converging to a point z� distinct from
the limit x� of fdev�qi�g� Since we have dev�qi� ( dev��i�pi��� we choose si to be
the d�diameter of W �pi� containing zi and pi� as a center� We obtained a sequence
of segments si 
 W �pi� passing through pi of d�length �
 so that the sequence of
segments dev��i�si�� in dev�F�� converges to a nontrivial segment s containing x��
and z�� satisfying s �W� � dev�Mh�� 
 F���

Since s is a nontrivial segment� the d�length of h��i��dev�si�� is bounded below
by a positive constant � independent of i� Since h��i��dev�si�� is a subset of the
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�n � ���simplex dev�F��� which is a simply convex compact set� the d�length of
h��i��dev�si�� is bounded above by �� �� for some small positive constant ��� Let s�i
be the maximal segment in W ��pi� including si� Then the d�length of h��i��dev�s�i��
also belongs to the interval ��� � � �� �

Lemma ���� � Let S� be a great circle and o� s� p� q distinct points on a segment

I in S� of d�length � � with endpoints o� s and p between o and q� Let fi be a

sequence of projective maps I � Sn so that d�fi�o�� fi�s�� and d�fi�p�� fi�q�� lie in

the interval ��� ��� for some positive constant � independent of i� Then all of the d�
distances between fi�o�� fi�s�� fi�p�� and fi�q� are bounded below by a positive constant

independent of i�

Proof� � Recall the well�known formula for cross�ratios �see �� ��

�fi�o�� fi�s�
 fi�q�� fi�p� (
sin�d�fi�o�� fi�q���

sin�d�fi�s�� fi�q���

sin�d�fi�s�� fi�p���

sin�d�fi�o�� fi�p���
�

Suppose that d�fi�o�� fi�p�� � 	� Then since

d�fi�o�� fi�q�� ( d�fi�o�� fi�p�� � d�fi�p�� fi�q�� � ��

d�fi�o�� fi�q�� � d�fi�o�� fi�s�� � � � ��

it follows that sin�d�fi�o�� fi�q��� is bounded below and above by sin��� and � respec�
tively� Similarly� so is sin�d�fi�s�� fi�p���� Therefore� the right side of the equation
goes to ��� while the left side remains constant since fi is projective� This is a
contradiction� and d�fi�o�� fi�p�� is bounded below by a positive constant�
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Similarly� we can show that d�fi�s�� fi�q�� is bounded below by a positive constant�
The conclusion follows from these two statements�

Let S� be the unit circle in the plane R�� Let �� ���� � � � ���� denote the
point of S� corresponding to the unit vector having an oriented angle of � with ��� 	�
in R�� Since si and s�i are the diameters of balls of d�radius 
 and �
 with center pi
respectively� for the segment ���
� �
 consisting of points � satisfying ��
 � � � �
 in
S�� we parameterize s�i by a projective map fi � ���
� �
 � s�i� isometric with respect
to d� so that the endpoints of s�i correspond to ��
 and �
� the endpoints of si to �

and 
� and pi to 	�

Lemma ��
 applied to ki ( h��i� 	 dev 	 fi shows that

d�ki��
�� ki�
�� and d�ki���
�� ki��
��

are bounded below by a positive constant since d�ki�
�� ki��
�� and d�ki��
�� ki���
��
are bounded below by a positive number � and above by � � ��� Since ki��
� and
ki���
� are endpoints of h��i��dev�s�i�� and ki�
� and ki��
� those of h��i��dev�si���
a subsequence of h��i��dev�s�i�� converges to a segment s� in dev�F�� including s in
its interior� Hence� s� contains x� in its interior�

Since s�i is a subset of F��� a compact subset of Mh� it follows that the corresponding
subsequence of �i�s

�
i� is ideal in F�� Hence s� � dev�F� 
Mh��� � K by Proposi�

tion ����� Since x� is not an endpoint of s� but an interior point� this contradicts our
earlier choice of x� as an exposed point of K�

Since W� consists of a point� it follows that the sequence of the d�diameter of
h��i��dev�W �pi��� converges to zero� and the sequence converges to the singleton
fx�g�

Let us introduce a d�isometry gi� which is a real projective automorphism of Sn�
for each i so that each gi�dev�W �pi��� is a subset of the great sphere Sn�� includ�
ing dev�F��� and hence h��i� 	 g

��
i acts on Sn��� We may assume without loss of

generality that the the sequence of d�isometries gi converges to an isometry g of Sn�
Thus� h��i� 	 g

��
i �gi�dev�W �pi���� converges to x�� and gi 	 h��i�

���dev�F��� con�
verges to g�F���� by what we required in the beginning of the pull�back process� By
Proposition B��� we see that g�F���� is an �n� ���hemisphere� and we are done�
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THE TRANSVERSAL INTERSECTION OF

n�CRESCENTS

From now on� we will assume that M is compact and with totally geodesic or
empty boundary� We will discuss about the transversal intersection of n�crescents�
generalizing that of crescents in two�dimensions ��� �

First� we will show that if two hemispheric n�crescents overlap� then they are equal�
For transversal intersection of two bihedral n�crescents� we will follow Section ��� of
��� �

Our principal assumption is that Mh is not projectively di#eomorphic to an open
n�hemisphere or n�bihedron� which will be su�cient for the results of this section to
hold �see Remark ����� This is equivalent to requiring that �M is not projectively
di#eomorphic to these� This will be our assumption in Chapters 
 to �� In applying
the results of these Chapters in Chapters 
 and �	 we need this assumption also�

For the following theorem� we may even relax this condition even further�

Theorem ���� � Suppose that Mh is not projectively di�eomorphic to an open

hemisphere� Suppose that R� and R� are two overlapping n�crescents that are hemi�

spheres� Then R� ( R�� and hence �R�
( �R�

and 
R�
( 
R�

�

Proof� � We use Lemma ��� as in ��� � By Proposition ��
� devjR� � R� is an
imbedding onto the union of two n�hemispheres dev�R�� and dev�R�� in Sn� If R�

is not equal to R�� then dev�R�� di#ers from dev�R��� dev�R�� and dev�R�� meet
each other in a convex n�bihedron� dev�R���dev�R�� is homeomorphic to an n�ball�
and the boundary ��dev�R�� � dev�R��� is the union of two �n � ���hemispheres
meeting each other in a great �n� ���sphere Sn���

Since 
R�
and 
R�

are disjoint from any of Ro
� and Ro

� respectively� the images of

R�

and 
R�
do not intersect any of dev�Ro

�� and dev�Ro
�� respectively by Proposi�

tion ��
� Therefore� dev�
R�
� and dev�
R�

� are subsets of ��dev�R�� � dev�R����
Since they are open �n� ���hemispheres� the complement of dev�
R�

��dev�
R�
� in

��dev�R���dev�R��� equals Sn��� and dev�
R�
��dev�
R�

� is dense in ��dev�R���
dev�R���� Since devjR� � R� is an imbedding� it follows that R� � R� is an n�ball�
and the closure of 
R�

� 
R�
equals ��R� � R��� Hence� ��R� � R�� � Mh��� By
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Lemma ���� it follows that Mh ( Ro
� � Ro

�� and Mh is boundaryless� By Lemma ����
this is a contradiction� Hence� R� ( R��

Lemma ���� � Let N be a closed real projective n�manifold� Suppose that dev �
�Nh � Sn is an imbedding onto the union of n�hemispheres H� and H� meeting each

other in an n�bihedron or an n�hemisphere� Then H� ( H�� and Nh is projectively

di�eomorphic to an open n�hemisphere�

Proof� � Let �dev� h� denote the development pair of N � and % the deck transfor�
mation group� As devjNh is a di#eomorphism onto Ho

� �H
o
� � a simply connected set�

we have Nh ( �N �
Suppose that H� �( H�� Then H� �H� is bounded by two �n� ���hemispheres D�

and D� meeting each other on a great sphere Sn��� their common boundary� Since
the interior angle of intersection of D� and D� is greater than �� �Hi�Di is an open
hemisphere included in dev� �N� for i ( �� �� De�ning Oi ( �Hi � Di for i ( �� ��
we see that O� �O� is h�%��invariant since ��H� �H�� is h�%��invariant� This means

that the inverse image dev���O� �O�� is %�invariant�
Let O�i ( dev���Oi�� Then elements of % either act on each of O�� and O�� or

interchange them� Thus� % includes a subgroup %� of index one or two acting on each
of O�� and O��� Since Nh is a simply connected open ball� and so is O��� it follows

that the n�manifold �N�%� and an �n � ���manifold O���%� are homotopy equivalent�

Since �N�%� is a �nite cover of a closed manifold N � �N�%� is a closed manifold� Since

the dimensions of �N�%� and O���% are not the same� this is shown to be absurd by

computing Z��homologies� Hence we obtain that H� ( H�� and since dev� �N� equals

the interior of H�� �N is di#eomorphic to an open n�hemisphere�
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Suppose that R� is an n�crescent that is an n�bihedron� Let R� be another bihedral
n�crescents with sets 
R�

and �R�
� We say that R� and R� intersect transversally if

R� and R� overlap and the following conditions hold �i ( �� j ( �
 or i ( �� j ( ���

�� �R�

 �R�

is an �n� ���dimensional hemisphere�
�� For the intersection �R�


 �R�
denoted by H � H is an �n� ���hemisphere� Ho is

a subset of the interior �oRi
� and dev��Ri

� and dev��Rj
� intersect transversally

at dev�H��
�� �Ri


 Rj is a tame �n � ���bihedron with boundary the union of H and an
�n� ���hemisphere H � in the closure of 
Rj

with its interior H �o in 
Rj
�

�� �Ri

Rj is the closure of a component of �Ri

�H in �Mh�
�� Ri 
 Rj is the closure of a component of Rj � �Ri

�
�� Both 
Ri


 
Rj
and 
Ri

� 
Rj
are homeomorphic to open �n� ���dimensional

balls� which are locally totally geodesic under dev�

Note that since 
Ri
is tame� 
Ri


 
Rj
is tame� �See Figures ��� and �����

By Corollary ���� the above condition mirrors the property of intersection of
dev�R�� and dev�R�� where dev�
R�

� and dev�
R�
� are included in a common

great sphere Sn�� of dimension �n���� dev�R�� and dev�R�� included in a common
n�hemisphere bounded by Sn�� and dev��R�

�o and dev��R�
�o meet transversally �see

Proposition ��
�� Conversely� if the images of R� and R� satisfy these conditions� and
R� and R� overlap� then R� and R� intersect transversally�

Example ���� � In the example ����� R is an n�crescent with the closure of the
plane P given by the equation x� � � � ��xn ( 	 equal to �R� 
R equals the interior of
the intersection of R with �H � �S is the closure of the plane given by x� ( 	 and 
S
the interior of the intersection of S with �H � Clearly� R and S intersect transversally�

Using the reasoning similar to Section ���� of ��� � we obtain�

Theorem ���� � Suppose that R� and R� are overlapping� Then either R� and R�

intersect transversally or R� � R� or R� � R��

Remark ���� � In case R� is a proper subset of R�� we see easily that 
R�
( 
R�

since the sides of R� in Mh�� must be in one of R�� Hence� we also see that �oR�
� Ro

�

as the topological boundary of R� in R� must lie in �R�
�

The proof is entirely similar to that in ��� � A heuristic reason that the theorem
holds is as follows �due to the referee�� We show that devjR��R� is an imbedding onto
dev�R���dev�R�� as R� and R� overlap� As 
R�

and 
R�
are subsets of Mh��� their

images dev�
R�
� and dev�
R�

� are disjoint from dev�R��
o and dev�R��

o� Among
all combinatorial types of con�gurations of bihedrons dev�R�� and dev�R�� in Sn�
the con�guration satisfying this condition should be the one described above� For
reasons of rigor� we present the following somewhat nonintuitive arguments
 however�
a parallel argument purely based on the images of R� and R� in Sn is also possible�

Assume that we have i ( � and j ( � or have i ( � and j ( �� and R� �� R� and
R� �� R�� Since Cl�
Ri

� � Mh��� Corollary ���� and Proposition ��
 imply that Rj
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dips into �Ri� �Ri
�� a point of view we shall hold for a while� Hence� the following

statements hold�

� �Ri

Rj is a convex �n� ���ball 
i such that

�
i � �Rj � 

o
i � Ro

j ������

� Ri 
 Rj is the convex n�ball that is the closure of a component of Rj � 
i�

Since 
oi is disjoint from �Rj
� 
oi is a subset of a component C of �Ri

� �Rj
�

Lemma ���� � If �Ri
and �Rj

meet � then they do so transversally 
 i�e� their images
under dev meet transversally� If �Ri

and 
Rj
meet � then they do so transversally�

Proof� � Suppose that �Ri
and �Rj

meet and they are tangential� Then dev��Ri
�

and dev��Rj
� both lie on a common great �n � ���sphere in Sn� Since dev�Rj� lies

in an n�hemisphere bounded by this sphere� �Ri

 �Rj

( �Ri

Rj by Proposition ��
�

Since �Ri

Rj includes an open �n� ���ball 
oi � this contradicts 
oi � Ro

j �
Suppose that �Ri

and 
Rj
meet and they are tangential� Then �Ri


 Cl�
Rj
� (

�Ri

 Rj as before� which leads to contradiction similarly�

We now determine a preliminary property of 
i� Since 
i is a convex �n� ���ball
in �Ri

with topological boundary in �Ri � �Rj � we obtain

�
i � ��Ri
� ��Rj 
 �

o
Ri

�

� ��Ri
� ��Rj


 �oRi
� � �
Rj


 �oRi
��
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Hence� we have

�
i ( ��
i 
 ��Ri
� � ��
i 
 �Rj


 �oRi
� � ��
i 
 
Rj


 �oRi
��

If 
Rj
meets �oRi

� then since 
Rj
is transversal to �oRi

by Lemma ���� 
Rj
must

intersect Ro
i by Proposition ��
� Since 
Rj

� Mh��� this is a contradiction� Thus�

Rj


 �oRi
( �� We conclude

�
i ( ��
i 
 ��Ri
� � ��
i 
 �Rj


 �oRi
�������

Before continuing the proof� let us state a few easy spherical geometry facts� Given
an i�hemisphere J in Sn� if K is a great sphere in J � then K is included in �J � Thus
if K is a compact convex set containing a point of Jo� then K must be an j�ball for
some j� 	 � j � i� by Proposition ����

An �i � ���hemisphere K� i � �� in J has its boundary in �J � If K contains a
point of Jo� then K equals J 
L for a great �i� ���sphere L� and Jo�K has exactly
two components which are convex� Since the closures of the components includes K�
Lemma ��� shows that the closures of two components are i�bihedrons�

Suppose that K is a convex �i����ball in J meeting Jo� Then K must be a convex
subset of J 
L for a great �i� ���sphere L� If �K meets Jo� then J 
L is an �i� ���
hemisphere which includes K as a proper convex subset� Thus Jo�K can have only
one component� Hence� if K meets Jo� and Jo�K has at least two components� then
K must be an �i� ���hemisphere� In this case� it is obvious that Ko � Jo�

Let us denote by H the set �Ri

 �Rj

� Consider for the moment the case where
�Rj


 �oRi
�( �� Since dev�H� is a compact convex set and is included in an �n� ���

hemisphere dev��Ri
�� Lemma ��� and above paragraphs show that dev�H� is a com�

pact convex �n����ball� Thus� H is a tame topological �n����ball by Proposition ��
�
If H has boundary points� i�e� points of �H � in �oRi

� then �oRi
�H would have only

one component� Since the boundary of 
i in �oRi
is included in H by equation ����


oi is dense in �Ri
� implying 
i ( �Ri

� Since 
oi is a subset of Ro
j by equation ����

�oRi
is a subset of Ro

j � which contradicts our momentary assumption� It follows that

H is an �n � ���hemisphere with boundary in ��Ri
and the interior Ho in �oRi

� and
H separates �Ri

into two convex components� and the closures of each of them are
�n� ���bihedrons� Obviously� 
i is the closure of one of the components�

We need to consider only the following two cases by interchanging i and j if nec�
essary�

�i� �oRj

 �oRi

�( ��

�ii� �Rj

 �oRi

( � or �Ri

 �oRj

( ��

�i� Since 
i is the closure of a component of �Ri
� H � 
i is an �n � ���bihedron

bounded by an �n � ���hemisphere H and another �n � ���hemisphere H � in ��Ri
�

Since H � is a subset of the closure of 
Ri
� H � is a subset of Mh�� and hence disjoint

from Ro
j while Ro

j �Mh�

Since H � is a subset of Rj � we have H � � �Rj � Since �Ri
is transversal to �Rj

�
H � is not a subset of �Rj


 thus� H �o is a subset of 
Rj
� and H � that of Cl�
Rj

� by
Proposition ��
� This completes the proof of the transversality properties ������� in
case �i��
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��� By dipping intersection properties� Ri 
 Rj is the closure of a component of
Rj � 
i and hence that of Rj � �Ri

�
��� Since H �o is a subset of 
Rj

� 
Rj
�H � has two components �� and ��� home�

omorphic to open �n � ���balls� By ���� we may assume without loss of generality
that �� is a subset of Ri� and �� is disjoint from Ri� Since �� � Mh��� we have
�� � �Ri� As �� is a component of 
Rj

removed with H �� we see that �� is an open
�n� ���bihedron bounded by H � in ��Ri

and an �n� ���hemisphere H �� in ��Rj
�see

Figure �����
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Since �i� holds for i and j exchanged� we obtain� by a paragraph above the condition
�i�� Ho belongs to �oRi


 �oRj
�

Since the closure of �� belongs to Ri� we obtain that H �� � Ri and H �� is a subset
of 
j � where 
j ( �Rj


 Ri� As H �� is a subset of ��Rj
� and 
j is the closure of a

component of �Rj
removed with H � we obtain H �� � �
j �

By ������� with values of i and j exchanged� 
j is an �n � ���bihedron bounded
by H and an �n � ���hemisphere H ��� with interior in 
Ri

and is the closure of a
component of �Rj

�H � Since H �� is an �n � ���hemisphere in �
j � and so is H ���� it
follows that H �� ( H ����

Since �� has the boundary the union of H � in ��Ri
and H ��� H �� ( H ���� with

interior in 
Ri
� and �� is a convex subset of Ri� looking at the bihedron dev�Ri� and

the geometry of Sn show that �� � 
Ri
� Thus� we obtain �� � 
Ri


 
Rj
� We see

that dev�
Ri
� and dev�
Rj

� are subsets of a common great �n����sphere
 it follows
easily by Proposition ��
 that �� ( 
Ri


 
Rj
� Hence� 
Ri


 
Rj
and 
Ri

� 
Rj
are

homeomorphic to open �n � ���balls� and under dev they map to totally geodesic
�n� ���balls in Sn�

�ii� Assume �oRj

 �Ri

( � without loss of generality� Then H is a subset of ��Rj
�

Since Ri dips into �Rj � �Rj
�� we have that 
j �( �� Since the boundary of 
j in �oRj
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is included in H �see equation ����� we have 
j ( �Rj
and �Rj

� Ri� Since �Rj
is

an �n � ���hemisphere� and Ri is an n�bihedron� the uniqueness of �n � ���spheres
in an n�bihedron �Proposition ���� shows that ��Ri

( ��Rj
� Thus� the closures of

components of Ri � �Rj
are n�bihedrons with respective boundaries 
Ri

� �Rj
and

�Ri
� �Rj

� By Corollary ����� Ri 
 Rj is the closure of either the �rst component or
the second one�

In the �rst case� Ro
i 
 Ro

j is an open subset of Ro
j since Ro

i is open in Mo
h� The

closure of Ro
i in Mh equals Ro

i � ��Ri

Mh� ( Ri 
Mh� Since �oRi

� which includes
�Ri


Mh� does not meet Rj in the �rst case being in the other component of Ri��Rj
�

we see that the intersection of the closure of Ro
i in Mh with Ro

j is same as Ro
i 
 Ro

j �
Thus� Ro

i 
 Ro
j is open and closed subset of Ro

j � Hence Ro
j � Ro

i and Ri � Rj � This
contradicts our hypothesis�

In the second case� devjRi � Rj is a homeomorphism to dev�Ri� � dev�Rj�� As

Ri

and 
Rj
are subsets of Mh��� their images under dev may not meet that of

Ro
i �R

o
j � Hence� dev�Ri��dev�Rj� is an n�ball bounded by two �n����hemispheres

dev�Cl�
Ri
�� and dev�Cl�
Rj

��� We obtain that Ri � Rj is the n�ball bounded by
two �n� ���dimensional hemispheres Cl�
Ri

� and Cl�
Rj
��

Since Cl�
Ri
� and Cl�
Rj

� are subsets of Mh��� Lemma ���� shows that �Mh (

Ri � Rj and Mh ( Ro
i � Ro

j 
 thus� Mh ( �M and M is a closed manifold� The image
dev�R�� � dev�R�� is bounded by two �n� ���hemispheres meeting each other on a
great sphere Sn��� their common boundary� Since Mh is not projectively di#eomor�
phic to an open n�hemisphere or an open n�bihedron� the interior angle of intersection
of the two boundary �n����hemisphere should be greater than �� However� Lemma ���
contradicts this�

Remark ��	� � Using the same proof as above� we may drop the condition on the
Euler characteristic from Theorem ��� of ��� if we assume that �M is not projectively
di#eomorphic to an open ��hemisphere or an open lune� This is weaker than requiring
that the Euler characteristic of M is less than zero� So� our theorem is an improved
version of Theorem ��� of ��� �

Corollary ��
� � Let R� and R� be bihedral n�crescents and they overlap� Then

the following statements hold �

� dev�
R�
� and dev�
R�

� are included in a common great �n� ���sphere Sn���
� dev��R�

� and dev��R�
� meet in an �n� ���hemisphere transversally�

� dev�R�� and dev�R�� are subsets of a common great n�hemisphere bounded by

Sn���
� dev�Ri � Cl�
Ri

�� is a subset of the interior of this n�hemisphere for i ( �� ��
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HEMISPHERIC n�CRESCENTS AND TWO�FACED

SUBMANIFOLDS

In this chapter� we introduce the two�faced submanifolds arising from hemispheric
n�crescents� We showed above that if two hemispheric n�crescents overlap� then they
are equal� We show that if two hemispheric n�crescents meet but do not overlap�
then they meet at the union of common components of their ��boundaries� which
we call copied components� The union of all copied components becomes a properly
imbedded submanifold in Mh and covers a closed submanifold in M � which is said to
be the two�faced submanifold�

Lemma ���� � Let R be an n�crescent� A component of �Mh is either disjoint

from R or is a component of �R 
Mh� Moreover� a tiny ball B�x� of a point x of

�Mh is a subset of R if x belongs to �R 
Mh� and� consequently� x belongs to the

topological interior intR�

Proof� � If x 
 �Mh� then a component F of the open �n � ���manifold �R 
Mh

intersects �Mh tangentially� and by Lemma ���� it follows that F is a subset of �Mh�
Since F is a closed subset of �R 
Mh� F is a closed subset of �Mh� Since F is an
open manifold� F is open in �Mh� Thus� F is a component of �Mh�

Since x 
 intB�x�� B�x� and R overlap� As Cl�
R� is a subset of Mh��� we
have bdR 
 B�x� � �R and �R 
 B�x� ( F 
 B�x� for a component F of �R 
Mh

containing x� Since F is a component of �Mh� we obtain F 
B�x� � �B�x�
 since we
have bdR 
 B�x� � �B�x�� it follows that B�x� is a subset of R�

Suppose that �Mh includes an n�crescent R that is an n�hemisphere� Then Mh 
R
is a submanifold of Mh with boundary �R 
Mh� Since R is an n�crescent� �R 
Mh

equals �R 
Mh� Let BR denote �R 
Mh�
Let S be another hemispheric n�crescent� and BS the set �S
Mh� By Theorem ����

we see that either S 
 Ro ( � or S ( R� Suppose that S 
 R �( � and S does not
equal R� Then BS 
 BR �( �� Let x be a point of BS 
 BR and B�x� the tiny ball of
x� Since intB�x� 
 R �( �� it follows that B�x� dips into �R� �R� or B�x� is a subset
of R by Lemma ����� Similarly� B�x� dips into �S� �S� or B�x� is a subset of S� If
B�x� is a subset of R� then S intersects the interior of R� Theorem ��� shows S ( R�
a contradiction� Therefore� B�x� dips into �R� �R� and similarly into �S� �S�� If �R



�� CHAPTER �� HEMISPHERIC n
CRESCENTS

and �S intersect transversally� then R and S overlap� implying a contradiction S ( R�
Therefore� BS and BR intersect tangentially at x�

If x 
 �Mh� Lemma ��� shows that B�x� is a subset of R� This contradicts a result
of the above paragraph� Thus� x 
Mo

h � Hence� we conclude that BR 
 BS �Mo
h�

Since BR and BS are closed subsets of Mh� and BR and BS are totally geodesic
and intersect tangentially at x� it follows that BR 
 BS is an open and closed subset
of BR and BS respectively� Thus� for components A of BR and B of BS � either we
have A ( B or A and B are disjoint� Therefore� we have proved�

Proposition ���� � Given two hemispheric n�crescents R and S� we have either

R and S disjoint� or R equals S� or R 
 S equals the union of common components

of �R 
Mh and �S 
Mh in Mo
h�

Readers may easily �nd examples where �R 
Mh and �S 
Mh are not equal in the
above situations�

De�nition ���� � Given a hemispheric n�crescent T � we say that a component of
�T 
Mh is copied if it equals a component of �U 
Mh for some hemispheric n�crescent
U not equal to T �

Let cR be the union of all copied components of �R
Mh for a hemispheric n�crescent
R� Let A denote

S
R�H cR where H is the set of all hemispheric n�crescents in Mh�

A is said to be the pre�two�faced submanifold arising from hemispheric n�crescents�

Proposition ���� � Suppose that A is not empty� Then A is a properly imbedded

totally geodesic �n � ���submanifold of Mo
h and pjA is a covering map onto a closed

totally geodesic imbedded �n� ���manifold in Mo�

First� given two n�crescents R and S� cR and cS meet either in the union of common
components or in an empty set� Let a and b be respective components of cR and cS
meeting each other� Then a is a component of �R 
Mh and b that of �S 
Mh� Since
R 
 S �( �� either R and S overlap or a ( b by the above argument� If R and S
overlap� R ( S and hence a and b must be the identical component of �R 
Mh and
hence a ( b� Therefore� A is a union of mutually disjoint closed path�components
that are components of cR for some n�crescent R�

Second� given a tiny ball B�x� of a point x of Mh� we claim that no more than one
path�component of A may intersect intB�x�� Let a be a component of cR intersecting
intB�x�� Since copied components are subsets of Mo

h� a intersects B�x�o and hence
B�x� is not a subset of R� By Lemma ����� �R
B�x� is a compact convex �n����ball
with boundary in bdB�x�� Since it is connected� a
B�x� ( �R 
B�x�� and B�x�
R
is the closure of a component C� of B�x� � �a 
 B�x�� by Corollary ����� Since a is
copied� a is a component of �S 
Mh for an n�crescent S not equal to R� and B�x�
S
is the closure of a component C� of B�x�� �a
B�x��� Since R and S do not overlap�
it follows that C� and C� are the two disjoint components of B�x� � �a 
 B�x���

Suppose that b is a component of cT for an n�crescent T and b intersects intB�x�
also� If the �n����ball b
B�x� intersects C� or C�� then T overlapsR or S respectively
and hence T ( R or T ( S respectively by Theorem ���
 therefore� we have a ( b�
This is absurd� Hence b 
 B�x� � a 
 B�x� and T overlaps with either R or S�
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Since these are hemispheric crescents� we have either T ( R or T ( S respectively

therefore� a ( b� We conclude that if intB�x� 
A is not empty� then B�x� 
A equals
a compact �n� ���ball with boundary in bdB�x��

Since each path�component of A is an open subset of A� the above shows that A is
a totally geodesic �n� ���submanifold of Mo

h � closed and properly imbedded in Mo
h �

Let p � Mh � M be the covering map� Since A is the deck transformation group
invariant� we have A ( p���p�A�� and pjA covers p�A�� The above results show that
p�A� is a closed totally geodesic manifold in Mo�

De�nition ���� � The image p�A� for the union A of all copied components of
hemispheric n�crescents in �Mh is said to be the two�faced �n � ���manifold of M
arising from hemispheric n�crescents �or type I ��

Each component of p�A� is covered by a component of A� i�e�� a copied component
of �R
Mh for some crescent R� Since 
R is the union of the open �n����hemispheres
in �R� �R 
Mh lies in an open �n � ���hemisphere� i�e�� an a�ne patch in the great
�n� ���sphere �R� Hence� each component of p�A� is covered by an open domain in
Rn� as we mentioned in the introduction�

We end with the following observation�

Proposition ���� � Suppose that A (
S
R�H cR� Then A is disjoint from So for

each hemispheric n�crescent S in �Mh�

Proof� � If not� then a point x of cR meets So for some hemispheric n�crescent S�
But if so� then R and S overlap� and R ( S� a contradiction�
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BIHEDRAL n�CRESCENTS AND TWO�FACED

SUBMANIFOLDS

In this chapter� we will de�ne an equivariant set )�R� for a bihedral n�crescent
R� which will play the role of hemispheric n�crescents in the previous chapter� We
discuss its properties which are exactly same as those of its two�dimensional version
in ��� � Then we discuss the two�faced submanifold that arises from )�R��s� We show
that )�R� and )�S� for two n�crescents are either equal or disjoint or meet at their
common boundary components in Mh� The union of all such boundary components
for )�R� for every bihedral n�crescent R is shown to be a totally geodesic properly
imbedded submanifold in Mh and cover a closed totally geodesic submanifold of M �

We will suppose in this chapter that �Mh includes no hemispheric crescent
 i�e�� we
assume that all n�crescents in �Mh are bihedrons� Two bihedral n�crescents in �Mh are
equivalent if they overlap� This generates an equivalence relation on the collection of
all bihedral n�crescents in �Mh
 that is� R � S if and only if there exists a sequence of
bihedral n�crescents Ri� i ( �� � � � � n� such that R� ( R�Rn ( S and Ri�� 
 Ro

i �( �
for i ( �� � � � � n�

We de�ne

)�R� �(
�
S�R

S� ��)�R� �(
�
S�R


S � )��R� �(
�
S�R

�S � �R��

Example 	��� � Consider the universal cover L of Ho � fOg where H is a ��
hemisphere in S�� Then it has an induced real projective structure with developing
map equal to the covering map c� There is a nice parameterization �r� �� of L where
r denotes the d�distance of c�x� from O and ��x� the oriented total angle from the
lift of the positive x�axis for x 
 L� i�e�� one obtained by integrating the ��form lifted
from the standard angular form d� on the a�ne space Ho� Here r belongs to �	� ����
and � to ������� L is hence a holonomy cover of itself as it is simply connected�
�L may be identi�ed with the universal cover of H � fOg with a point O� added to
make it a complete space where O� maps to O under the extended developing map c�
�We use the universal covering space since the holonomy cover gives us uninteresting
examples��
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We can determine that �L� equals the union of fO�g and a d�in�nite geodesic
given by equation d�O�� x� ( ���� i�e�� the inverse image of �H � A crescent in �L is
the closure of a lift of an a�ne half space in Ho � fOg� A special type of a crescent
is the closure of the set given by �� � � � �� � �� Given a crescent R in �L� we see
that )�R� equals �L�

We may also de�ne another real projective manifold N by an equation f��� � r �
��� for a function f with values in �	� ����� Then �N equals the closure of N in �L�
Given a crescent R in �N � we see that )�R� may not equal to �N especially in case f
is not a convex function �as seen in polar coordinates�� �See Figure �����

For a higher dimensional example� let H be a ��hemisphere in S�� and l a segment
of d�length � passing through the origin� Let L be the universal cover of Ho � l�
Then L becomes a real projective manifold with developing map the covering map
c � L � Ho � l� The holonomy cover of L is L itself� The completion �L of L equals
the completion of the universal cover of H � l with l attached to make it a complete
space� A ��crescent is the closure of a lift of an open half space in H � l� Given a
��crescent R� )�R� equals �L�

We introduce coordinates on Ho so that lo is now the z�axis� Note that L is
parameterized by �r� �� �� where r�x� equals the d�distance from O to c�x�� � the angle

that Oc�x� makes with the positive z�axis� and ��x� again the integral of the obvious
��form lifted from the standard angular form d� in R�� We may also de�ne other real
projective manifolds by equation f��� �� � r � ��� for f � R� �	� �� � �	� ����� The
readers may work out how the completions might look and what )�R� be when R is
a ��crescent� We remark that for certain f which converges to ��� as �� 	 or �� we
may have no ��crescents in the completion of the real projective manifold given by f �

Even higher�dimensional examples are given in a similar spirit by removing sets
from such covers� After reading this section� the reader can easily see that these are
really typical examples of )�R��

Let us state the properties that hold for these sets� The proofs are straightforward
and exactly as in ��� �

int)�R� 
Mh ( int�)�R� 
Mh�

bd)�R� 
Mh ( bd�)�R� 
Mh� 
Mh

�see Lemma ��� ��� �� For a deck transformation �� from de�nitions we easily obtain

��)�R�� ( )���R��

����)�R�� ( ��)���R��

��)��R�� ( )����R�������

int��)�R�� 
Mh ( ��int)�R�� 
Mh ( ��int)�R� 
Mh�

bd��)�R�� 
Mh ( ��bd)�R�� 
Mh ( ��bd)�R� 
Mh��

The sets )�R� and )��R� are path�connected� ��)�R� is an open �n����manifold�
Since Theorem ��� shows that for two overlapping n�crescents R� and R�� 
R�

and

R�

extend each other into a larger �n � ���manifold� there exists a unique great
sphere Sn�� including dev���)�R�� and by Corollary ���� a unique component AR
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r

θ

Figure ���� Figures of )�R��

of Sn � Sn�� such that dev�)�R�� � Cl�AR� and dev�)�R� � Cl���)�R��� � AR�
For a deck transformation � acting on )�R�� AR is h����invariant� )��R� admits a
real projective structure as a manifold with totally geodesic boundary ��)�R��

Proposition 	��� � )�R� 
Mh is a closed subset of Mh�

Proof� � Lemma 
�� implies this proposition�

Lemma 	��� � bd)�R� 
 Mh is a properly imbedded topological submanifold of

Mo
h� and )�R� 
Mh is a real projective submanifold of Mh with concave boundary

bd)�R� 
Mh�

Proof� � Let r be a point of bd)�R� 
Mh� Since )�R� is closed� r is a point of a
crescent R� equivalent to R� If r is a point of �Mh� then Lemma ��� implies that
r 
 intR� and r 
 int)�R�� a contradiction� Thus� bd)�R� 
Mh �Mo

h �
Let B�r� be an open tiny ball of r� Since by Lemma ���� bd)�R� 
Mh is a subset

of Mo
h � B�r�o is an open neighborhood of r� Since B�r�o 
 )�R� is a closed subset of

B�r�o� O ( B�r�o � )�R� is an open subset�
We claim that O is a convex subset of B�r�o� Let x� y 
 O� Then let s be the

segment in B�r� of d�length � � connecting x and y� If so 
 )�R� �( �� then a point
z of so belongs to an n�crescent S� S � R� If z belongs to So� since s must leave S�
s meets �S and is transversal to �S at the intersection point� Since a maximal line
in the bihedron S transversal to �S have an endpoint in 
S � at least one endpoint
of s belongs to So� which is a contradiction� If z belongs to �S and s is transversal
to �S at z� the same argument gives us a contradiction� If z belongs to �S and s is
tangential to �S at z� then s is included in the component of �S 
Mh containing z
since s �Mh is connected� Since x and y belong to O� this is a contradiction� Hence
s � O� and O is convex�
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Since O is convex and open� bdO in Mh is homeomorphic to an �n � ���sphere
by Proposition ���� As the boundary bdB�r	oO of O relative to B�r�o equals bdO 

B�r�o� bdB�r	oO is an imbedded open �n � ���submanifold of B�r�o� While we have
bd)�R� 
 B�r�o ( bdB�r	oO� bd)�R� 
Mh is an imbedded �n� ���submanifold�

Figure ���� A pre�two�faced submanifold�

Using the same argument as in Section ��� of ��� �see Lemma ��� of ��� �� we
obtain the following lemma�

Lemma 	��� � If int)�R� 
Mh 
 )�S� �( � for an n�crescent S� then we have

)�R� ( )�S�� Moreover� if for a crescent S� )�R� 
Mh and )�S� 
Mh meet and

they are distinct� then )�R�
)�S�
Mh is a subset of bd)�R�
Mh and bd)�S�
Mh�

Proof� � If int�)�R� 
Mh� 
 )�S� �( � for an n�crescent S� then an n�crescent T �
T � S� intersects intB�x� for B�x� � int)�R� 
Mh where B�x� is a tiny ball of a
point x of int)�R� 
Mh�

If B�x� is not a subset of T � then a component of B�x� � a for an �n � ���ball a�
a ( �T 
B�x�� with bda � bdB�x� is a subset of T o by Lemma ����� Thus� whether
B�x� is a subset of T or not� a point y of intB�x� lies in T o� Since y belongs to
T � for some T � � R� it follows that T � and T overlap and hence R � S
 therefore�
)�R� ( )�S��

The second part follows easily from the �rst part�
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Assume now that )�R� and )�S� are distinct but meet each other
 R and S are not
equivalent� Let x be a common point of bd)�R� and bd)�S�� and B�x� a tiny�ball
neighborhood of x� By Lemma ���� x 
 Mo

h and so x 
 B�x�o� Let T be a crescent
equivalent to R containing x� and T � that equivalent to S containing x� Then T
B�x�
is the closure of a component A of B�x� � P for a totally geodesic �n� ���ball P in
B�p� with boundary in bdB�x� by Lemma ����� Moreover� �T 
 B�x� ( P and
T o
B�x� ( A� and A is a subset of int)�R�� Let B denote B�x� removed with A and
P � Similarly� T � 
 B�x� is the closure of a component A� of B�x� � P � for a totally
geodesic �n����ball P �� P � ( �T � 
B�x� with boundary in bdB�x�� and A� is a subset
of T �o in int)�S�� Since we have

T o � int)�R�� T � � )�S��

the sets T � 
 B�x� and T o 
 B�x� are disjoint� Since P and P � contains x� it follows
that P ( P � and B ( A�
 that is� P and P � are tangential� �We have that P ( P � (
�S 
 B�x� ( �S� 
 B�x�� �

Since B is a subset of int)�S�� B contains no point of )�R� by Lemma ���� and
similarly A contains no point of )�S�� Thus� )�R� 
 B�x� is a subset of the closure
of A� and )�S� 
 B�x� is that of B� Since A � int)�R� and B � int)�S�� it follows
that

A ( int)�R� 
B�x�� B ( int)�S� 
B�x��

P �A ( )�R� 
B�x�� P �B ( )�S� 
B�x�������

P ( bd)�R� 
B�x� ( bd)�S� 
 B�x��

Hence� we have P ( bd)�R�
 bd)�S�
B�x� and P is a totally geodesic �n� ���ball
with boundary in bdB�x� and our point x belongs to P o� to begin with� Since this
holds for an arbitrary choice of a common point x of bd)�R� and bd)�S�� a tiny ball
B�x� of x� it follows that bd)�R�
bd)�S�
Mh is an imbedded totally geodesic open
�n � ���submanifold in Mo

h � It is properly imbedded since B�x� 
 bd)�R� 
 bd)�S�
is compact for every choice of B�x��

The above paragraph also shows that bd)�R�
bd)�S�
Mh is an open and closed
subset of bd)�R� 
Mh� Therefore� for components B of bd)�R� 
Mh and B� of
bd)�S� 
 Mh where R �� S� either we have B ( B� or B and B� are disjoint� If
B ( B�� the above paragraph shows that B is a properly imbedded totally geodesic
�n� ���submanifold of Mh�

We say that a component of bd)�R� 
Mh is copied if it equals a component of
bd)�S� 
Mh for some n�crescent S not equivalent to R� Let cR be the union of all
copied components of bd)�R� 
Mh�

Lemma 	��� � Each component of cR is a properly imbedded totally geodesic �n�
���manifold� and equals a component of �T 
 Mh for �xed T � T � R and that of

�T � 
Mh for �xed T �� T � � S� where S is not equivalent to R�

Proof� � From above arguments� we see that given x in a component C of cR� and a
tiny ball B�x� of x� there exists a totally geodesic �n� ���ball P with �P � bdB�x�
so that a component of B�x� � P is included in T � T � R and the other component
in T � for T � equivalent to S but not equivalent to R�
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Since P is connected� P � C� Let y be another point of C connected to x by a
path � in C� a subset of Mh� Then we can cover � by a �nitely many tiny balls� By
induction on the number of tiny balls� we see that y belongs to �T 
Mh and �T � 
Mh

for �xed T and T ��

Let A denote
S
R�B cR where B denotes the set of representatives of the equivalence

classes of bihedral n�crescents in �Mh� A is said to be the pre�two�faced submanifold

arising from bihedral n�crescents� A is a union of path�components that are totally
geodesic �n� ���manifolds closed in Mo

h�

Proposition 	��� � Suppose that A is not empty� Then A is a properly imbedded

submanifold of Mh and pjA is a covering map onto a closed totally geodesic imbedded

�n� ���dimensional submanifold in Mo�

Proof� � We follow the argument in Chapter � somewhat repetitively� Every pair
of two components a of cR and b of cS for n�crescents R and S where R�S 
 B� are
either disjoint or identical� Hence� A is a union of disjoint closed path�components
that are some components of cR for R 
 B� This is proved exactly as in Chapter ��

Second� given a tiny ball B�x� of a point x of Mh� no more than one path�component
of A may intersect intB�x�� Let a be a component of cR intersecting intB�x�� By
Lemma ���� a is a component of �S 
 Mh for S � R and that of �T 
 Mh for T
not equivalent to S� Furthermore� �S 
 B�x� is a compact convex �n � ���ball with
boundary in bdB�x�� Since it is connected� a 
 B�x� ( �S 
 B�x�� and B�x� 
 S is
the closure of a component C� of B�x�� �a
B�x��� Similarly� a
B�x� ( �T 
B�x��
and B�x� 
 T is the closure of the other component C� of B�x� � �a 
 B�x�� for an
n�crescent T not equivalent to R� Since S and T do not overlap� it follows that C�
and C� are the two disjoint components of B�x� � �a 
B�x���

Suppose that b is a component of cU for U 
 B intersecting intB�x� also� By
Lemma ���� b is a component of �T � 
Mh for T � � U � If the �n � ���ball b 
 B�x�
intersects C� or C�� then U � S or U � T and )�U� ( )�R� or )�U� ( )�T � by
Lemma ���� implying that a ( b� If we have b 
 B�x� � a 
 B�x�� then T � overlaps
with at least one of S or T � and a ( b as above�

Since given a tiny ball B�x� no more than one distinct path�component of A may
intersect intB�x�� A is a properly imbedded closed submanifold of Mo

h � The rest of
the proof of proposition is the same as that of Proposition ����

De�nition 	�	� � p�A� for the union A of all copied components of )�R� for
bihedral n�crescents R in �Mh is said to be the two�faced submanifold of M arising

from bihedral n�crescents �or type II ��

Each component of p�A� is covered by a component of A� i�e�� a component of
�R 
Mh for some bihedral n�crescent R� Hence� each component of p�A� is covered
by open domains in Rn as in Chapter � and as we said in the introduction�

We end with the following observation�

Proposition 	�
� � Suppose �Mh includes no hemispheric n�crescents and A (S
R�B cR� Then A is disjoint from Ro for each n�crescent R�
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Proof� � The proof is same as that of Proposition ����

Example 	��� � Finally� we give an example in dimension �� Let � be the projec�
tive automorphism of S� induced by the diagonal matrix with entries �� �� and ����
Then � has �xed points ���� 	� 	 � �	���� 	 � and �	� 	��� corresponding to eigenvalues
�� �� ���� Given three points x� y� z of S�� we let xyz denote the segment with endpoints
x and z passing through y if there exists such a segment� If x and y are not antipo�
dal� then let xy denote the unique minor segment with endpoints x and y� We look
at the closed lune B� bounded by �	� 	� � ��� 	� 	 �	� 	��� and �	� 	� � �	� �� 	 �	� 	��� �
which are to be denoted by l� and l� respectively� and the closed lune B� bounded
by ��� 	� 	 �	���� 	 ���� 	� 	 and ��� 	� 	 �	� 	� � ���� 	� 	 � which are denoted by l� and
l� respectively�

We consider the domain U given by U ( Bo
� � Bo

� � lo� � lo� � f��� 	� 	 � �	� 	� � g�
Since there exists a compact fundamental domain of the action of h�i� U�h�i is a
compact annulus A with totally geodesic boundary� U is the holonomy cover of A�
The Kuiper completion of U can be identi�ed with B� �B�� It is easy to see that B�

is a ��crescent with 
B�
( lo� and �B�

( l� and B� one with 
B�
( lo� and �B�

( l��
Also� any other crescent is a subset of B� or B�� Hence )�B�� ( B� and )�B�� ( B�

and the pre�two�faced submanifold L equals ��� 	� 	 �	� 	� � 
o
� L covers a simple closed

curve in A given by ��� 	� 	 �	� 	� � 
o
�h�i�
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THE PRESERVATION OF CRESCENTS AFTER

DECOMPOSING AND SPLITTING

In this chapter� we consider somewhat technical questions� What become of the
n�crescents in the completions of the holonomy cover of a submanifold in those of
the holonomy cover of an ambient manifold& What happen to n�crescents in the
completion of a manifold when we split the manifold along the two�faced manifolds�
The answer will be that they are preserved in the best possible sense� Propositions ����
���� and ���	� In the process� we will de�ne splitting manifolds precisely and show
how to construct holonomy covers of split manifolds�

Also� from this chapter� covering spaces need not be connected� which only compli�
cates the matter of identifying the fundamental groups with the deck transformation
groups� Even for disconnected spaces we can de�ne projective completions as long as
immersions to Sn� i�e�� developing maps� are de�ned since we can always pull�back
the metrics in that case�

For an alternative and more intuitive approach due to the referee to proving the
materials here� see Remarks ��� and �����

Let M be a real projective manifold with empty or totally geodesic boundary
 let
Mh be the holonomy cover of M with development pair �dev� h� and the group of deck
transformations GM 
 let p � Mh �M denote the covering map� Let N be a connected
submanifold of M of codimension 	 with an induced real projective structure� Then
p���N� is a codimension 	 submanifold of Mh� Choose a component A of p���N��
Then A is a submanifold in Mh and pjA covers N with the deck transformation group
GA equal to the group of deck transformations of Mh preserving A�

We claim that A is a holonomy cover of N with development pair �devjA� h�� where
h� is a composition of the inclusion homomorphism and h � GM � Aut�Sn�� First�
for each closed path in N which lifts to one in A obviously has a trivial holonomy
�see Section ��� in ��
 �� Given a closed path in N with a trivial holonomy� it lifts to
a closed path in Mh with a base point in A� Since A is a component of p���N�� it
follows that the closed path is in A� Therefore� A is the holonomy cover of N �

Lemma 
��� � Let A be a component of p���N� in Mh of a submanifold N of M �

Then A is a holonomy cover of N with developing map devjA�
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Let us discuss about the Kuiper completion of A� The path�metric on A is induced
from the Riemannian metric on A induced from Sn by devjA� The completion of A
with respect to the metric is denoted by �A and the set of ideal points A�
 that is�
A� ( �A�A�

Note that �A may not necessarily equal the closure of A in �Mh� A good example is
the complement of the closure of the positive axis in R� as A and R� as Mh�

Let i � A�Mh be an inclusion map� Then i extends to a distance�decreasing map
�� � �A� Cl�A� � �Mh�

Lemma 
��� �

�i� �����Mh��� is a subset of A��

�ii� If A is closed as a subset of Mh� then ���A�� � Mh��� Thus� in this case�

�����Mh��� ( A��

�iii� Let P be a submanifold in A with convex interior P o� Then the closure P � of
P in �A maps isometric to the closure P �� of P in �Mh under ��� Here P � and P ��

are tame�

�iv� �� maps P � 
 A� homeomorphic onto P �� 
Mh���

Proof� � �i� If x is a point of �����Mh���� then x does not belong to A since otherwise
���x� ( i�x� 
Mh�

�ii� Suppose not� Then there exists a point x in Mh such that x ( ���y� for y 
 A��
There exists a sequence of points yi 
 A with unique limit point y with respect to the
path�metric dA on A induced by 	� and hence� yi � y with respect to d also� The
sequence of points i�yi� ( yi 
 A converges x since i is distance�decreasing� Therefore
we obtain y ( x and y 
 A� a contradiction�

�iii� Since ijP o is an isometry with respect to dA and d on Mh� the third part
follows�

�iv� By �i�� the inverse image of P �� 
Mh�� under ��jP � is a subset of A�� By �ii��
we see ���P � 
 A�� � P �� 
Mh���

Suppose that A is a closed subset of Mh� Let R be an n�crescent in �Mh� and
consider a submanifold R� ( R 
Mh with convex interior Ro� If R� is a subset of a
submanifold A of Mh� then the above lemma shows that the closure R�� of R� in �A is
isometric to R under ��� By the above lemma� we obtain that R�� is also a crescent with

R�� ( �����
R�� and �R�� ( ������R�� Moreover� if R is bihedral �resp� hemispheric��
then R�� is bihedral �resp� hemispheric��

Conversely� let R be an n�crescent in �A� By Lemma ���� ��jR � R � ���R� is
an imbedding� and the closure of i�R 
 A� equals ���R� and is a convex n�ball� By
Lemma ���� ���R� is an n�crescent� which is bihedral �resp� hemispheric� if R is bihedral
�resp� hemispheric� since 
���R	 ( ���
R� and ����R	 ( ����R� hold�

Thus� we have proved�

Proposition 
��� � Let A be a submanifold of Mh closed as a subset of Mh� There

exists a one to one correspondence of all bihedral n�crescents in �A and those in Cl�A�
in �Mh given by R� R� for a bihedral n�crescent R in �A and R� one in Cl�A� if and

only if Ro ( R�o� The same statement holds for hemispherical n�crescents�
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Remark 
��� � An alternative proof suggested by the referee is as follows� If R
is a n�crescent in �A� then R 
Mh is an n�crescent set� By Remark ���� the closure
of R in �Mh is a crescent� Conversely� given a crescent R in Cl�A�� as R 
Mh is an
n�crescent set in Mh� R 
Mh is an n�crescent set in A� Thus the closure of R 
Mh

is an n�crescent in �A�

We give a precise de�nition of splitting� Let N be a real projective n�manifold
with a properly imbedded �n � ���submanifold A� We take an open regular neigh�
borhood N of A� which is an I�bundle over A� Let us enumerate components of A
by A�� � � � � An� � � � and corresponding components of N by N�� � � � � Nn� � � � which are
regular neighborhoods of A�� � � � � An� � � � respectively� �We do not require the number
of components to be �nite��

For an i� Ni is an I�bundle over Ai� By parameterizing each �ber by a real line�
Ni becomes a vector bundle over A with a �at linear connection� We see that there
is a subgroup Gi of index at most two in ���Ai� with trivial holonomy� The single or

double cover �Ni of Ni corresponding to Gi is a product I�bundle over �Ai the cover of
Ai corresponding to Gi� considered as a submanifold of �Ni�

Since Ni is a product or twisted I�bundle over Ai� Ni � Ai has one or two com�
ponents� If Ni � Ai has two components� then we take the closure of each com�
ponents in Ni and take their disjoint union �Ni which has a natural inclusion map
li � Ni�Ai � �Ni� If Ni�Ai has one component� then take the double cover �Ni of Ni

so that �Ni is now a product I�bundle over �Ai� Then Ni �Ai lifts and imbeds onto a
component of �Ni � �Ai� We denote by �Ni the closure of this component in �Ni� There
is a natural lift li � Ni � Ai � �Ni� which is an imbedding� After we do this for each
i� i ( �� � � � � n� � � � � we identify N � A and the disjoint union

�n
i��

�Ni of all Ni by
the maps li� When A is not empty� the resulting manifold M is said to be the split

manifold obtained from N along A �this is just for terminological convenience��
We see that for each component of A� we get either two copies or a double cover of

the component of A in the boundary of the split manifold M which are newly created
by splitting� There is a natural quotient map q � M � N by identifying these new
faces to A� i�e�� qjq���A� � q���A� � A is a two�to�one covering map� Therefore� it is
easy to see that M is compact if N is compact and M has totally geodesic boundary
if A is totally geodesic�

Let Nh be a holonomy cover of N with a development pair �dev� h�� We let GN be
the group of deck transformations of the covering map p � Nh � N � If one splits Nh

along the properly imbedded submanifold p���A�� then it is easy to see that the split
manifold M � covers the manifold M of N split along A with covering map p� obtained
from extending p� However� M � may not be connected
 for each component Mi of M �
we choose a component M �

i of M � covering that component� Mi includes exactly one
component Pi of N �A� and M �

i includes exactly one component P �i of Nh � p���A�
as a dense open subset� Thus�

�n
i�� P

�
i covers

�n
i�� Pi and

�n
i��M

�
i covers M �

Remark 
��� � The submanifold p���A� is orientable since great �n����spheres in
Sn are orientable and dev maps each components of p���A� into great �n����spheres
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as immersions� Thus� there are no twisted I�bundle neighborhoods of components of
p���A� as Nh is orientable also�

Let Gi be the subgroup of deck transformations of Nh acting on P �i � which is the
group of deck transformations of the covering map pjP �i � P �i � Pi� For each i� we
de�ne the homomorphism hi � Gi � Aut�Sn� by h 	 li where li � Gi � GN is the
homomorphism induced from the inclusion map� Since P �i covers a component Pi of
N � A� Lemma ��� shows that P �i is a holonomy cover of that component with the
development pair �dev�jP �i � hi��

The developing map devjPi uniquely extends to a map from M �
i as an immersion

for each i
 we denote by dev� �
�n

i��M
�
i � Sn the map obtained this way� It is

easy to see that the action of Gi naturally extends to one on M �
i and becomes the

group of deck transformations of the covering map pjM �
i � M �

i � Mi� Since M �
i is

obtained from P �i by attaching boundary� it follows that M �
i is the holonomy cover of

Mi with development pair �dev�jM �
i � hi�� We say that the disjoint union

�n
i��M

�
i is

a holonomy cover of M (
�n

i��Mi�
Suppose that there exists a nonempty pre�two�faced submanifold A of Nh arising

from hemispheric n�crescents� Then we can split N by p�A� to obtain M and Nh

by A to obtain M �� and M � covers M under the extension p� of the covering map
p � Nh � N �

We claim that the collection of hemispheric n�crescents in �Nh and the completion
�M � of M � are in one to one correspondence� Let q � M � � Nh denote the natural

quotient map identifying the newly created boundary components which restricts to
the inclusion map Nh �A � Nh� We denote by A� the set q���A�� which are newly
created boundary components of M �� Let �M � denote the projective completion of M �

with the metric d extended from Nh�A� Then as q is distance�decreasing� q extends
to a map �q � �M � � �Nh which is one�to�one and onto on M � �A� � Nh �A�

Lemma 
��� � �q maps A� to A� M � to Nh� and M �
� to Nh��� � Which implies

that �q���A� ( A�� �q���Nh� ( M �� and �q���Nh��� ( M �
� ��

Proof� � The result of this lemma is essentially a consequence of the properness of
the map q� We obviously have �q�A�� ( q�A�� ( A and �q�M �� ( q�M �� ( Nh�

If a point x of �M � is mapped to that of A� then let � be a path in Nh � A
ending at �q�x� in A� Then we may lift � to a path �� in M � � A�� �q�x� has a small
compact neighborhood B in Nh where � eventually lies in� and as the closure B� of
a component of B � A is compact� there exists a compact neighborhood B�� in M �

mapping homeomorphic to B� under q and �� eventually lies in B��� This means that
x lies in B�� and hence in M �� As q���A� ( A�� x lies in A�� Thus� �q���A� ( A� and
points of M �

� cannot map to a point of A�
Using a path�lifting argument� we may show that �q�M �

�� is a subset of A �Nh��

as �qjM � �A� � Nh � A is a homeomorphism and a d�isometry� Hence� this and the
above paragraph show that �q�M �

�� � Nh���

First� consider the case when �Nh includes a hemispheric n�crescent R� Since by
Proposition ���� Ro is a subset of Nh � A� Ro is a subset of M �� The closure R� of
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Ro in �M � is naturally an n�hemisphere as devjRo is an imbedding onto an open n�
hemisphere in Sn� As �q is a d�isometry restricted to Ro� it follows that �qjR� � R� � R
is an imbedding�

Lemma ��� shows that ��qjR�����
R� is a subset of M �
�� Thus� R� includes an open

�n � ���hemisphere in �R� 
M �
�� which shows that R� is a hemispheric n�crescent�

��R� cannot belong to M �
� by Lemma ������

Now if an n�crescent R is given in �M �� then we have Ro � M � � A�� and �q�R�
is obviously an n�hemisphere as the closure R� of Ro in �Nh is an n�hemisphere and
equals �q�R�� Since �q�
R� is a subset of Nh�� by Lemma ���� �q�R� is a hemispheric
n�crescent�

Proposition 
�	� � There exists a one�to�one correspondence between all hemi�

spheric n�crescents in �Nh and those of �M � by the correspondence R� R� if and only

if we have Ro ( R�o�

Corollary 
�
� � If �Nh includes a hemispheric n�crescent� then the Kuiper com�

pletion of the holonomy cover of at least one component of the split manifold M along

the two�faced submanifold� also includes a hemispheric n�crescent�

Proof� � Let Mi be the components of M and M �
i their holonomy cover as obtained

earlier in this chapter
 let Pi be the component of N � p�A� in Mi and P �i that
of Nh � A in M �

i so that P �i covers Pi� We regard two components of Nh � A to be
equivalent if there exists a deck transformation of Nh mapping one to the other� Then
Pi is a representative of an equivalence class Ai� As the deck transformation group
is transitive in an equivalence class Ai� we see that given two elements P a

i and P b
i in

Ai� the components Ma
i and M b

i of M � including them respectively are projectively
isomorphic as the deck transformation sending P a

i to P b
i extends to a projective map

Ma
i � M b

i � and hence to a quasi�isometry �Ma
i � �M b

i � Since real projective maps
extending to quasi�isometries send hemispheric n�crescents to hemispheric n�crescents�
if no �M �

i includes a hemispheric n�crescent� then it follows that �M � do not also� This
contradicts Proposition ����

Proposition 
��� � If the Kuiper completions of holonomy cover of a submanifold

of N or a split manifold of N by a properly�imbedded totally�geodesic closed subman�

ifold in N includes hemispheric n�crescents� then so does �Nh�

Proof� � The �rst part follows from Proposition ��� and the second part follows from
Lemma ��� as in the last part of the argument to prove Proposition ����

Now� we suppose that �Nh includes no hemispheric n�crescents R but includes some
bihedral n�crescents� Let A be the pre�two�faced submanifold of Nh arising from
bihedral n�crescents� We split N by p�A� to obtain M and Nh by A to obtain M ��
and M � covers M under the extension p� of the covering map p � Nh�A� N �p�A��

By same reasonings as above� we obtain
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Proposition 
���� � There exists a one�to�one correspondence between all bihedral

n�crescents in �Nh and those of �M � by the correspondence R � R� if and only if

Ro ( R�o�

Corollary 
���� � If �Nh includes a bihedral n�crescent� then the projective com�

pletion of the holonomy cover of at least one component of the split manifold M along

the two�faced submanifold� also includes a bihedral n�crescent�

Remark 
���� � An alternative proof of Propositions ��� and ���	� we use the
crescent sets �see Remark ����� As the interior of n�crescent sets are disjoint from pre�
two�faced submanifolds� if we split along the submanifolds� we see that the boundary
parts of n�crescents !double" along the pre�two�faced submanifolds� and hence� the
crescent sets are preserved� This intuitive argument can be made into a proof quite
easily�

Lastly� we will note the relationship between covering spaces and crescents with a
proof sketched� This result will not be used but for the completeness sake we include
it here�

Proposition 
���� � Let M� and M� be connected developing covers of M and

M� covers M� by g� Then hemispheric �resp� bihedral� n�crescents in the Kuiper

completion �M� of M� correspond to hemispheric �resp� bihedral� n�crescents in the

Kuiper completion �M� of M� by the number of sheets ����M
�� � ���M

�� to one�

To begin a proof� we can choose developing maps dev� and dev� for M� and M�

so that dev� ( dev� 	 g as in Proposition ���� Then we pull�back the metric d to d�

and d� on M� and M� respectively� and obtain completed spaces �M� and �M�� The
covering map g extends to a distance�decreasing map g� � �M� � �M��

We need to �rst show�

Lemma 
���� � g� maps the ideal set �M�
� of �M� into the ideal set �M�

� of �M� 


hence� g���� �M�
�� ( �M�

��

Proof� � The proof again uses a path�lifting argument and the properness of g�

The next step is to show that given an n�crescent R in �M�� the image g��R� is an
n�crescent in �M�� This follows by the fact that g� restricted to R is an imbedding and
the above lemma ����� Given an n�crescent S in �M�� as S 
M� is simply connected�
there exists a set S� in M� mapping homeomorphic to S 
M� by g� We can show
easily that the closure of S� is an n�crescent�
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THE CONSTRUCTION OF CONCAVE AFFINE

MANIFOLDS

In this chapter we prove Theorem ��� using the previous three�sections� in a more
or less straightforward manner� We will start with hemispheric crescent case and then
the bihedral case� The proof of the bihedral case is entirely similar but will be spelled
out

De�nition ���� � A concave a�ne manifold N of type I is a real projective man�
ifold such that its holonomy cover Nh is a subset of a hemispheric n�crescent in �Nh�
A concave a�ne manifold N of type II is a real projective manifold with concave or
totally geodesic boundary so that Nh is a subset of )�R� for a bihedral n�crescent R
in �Nh and �Nh includes no hemispheric n�crescents� We allow N to have nonsmooth
boundary that is concave�

It is easy to see that N is a concave a�ne manifold of type I if and only if �Nh

equals a hemispheric n�crescent�
Given a real projective manifold N with a developing map dev � Nh � Sn and the

holonomy homomorphism h � ���N� � Aut�Sn�� suppose that dev�Nh� is a subset
of an open n�hemisphere� i�e�� an a�ne patch� and h����N�� acts on this hemisphere�
Then obviously h����N�� restricts to a�ne transformations of the a�ne patch� and
�dev� h� can be considered a development pair of an a�ne structure� Hence� N admits
a natural a�ne structure�

If M is a concave a�ne manifold of type I� from the properties proved in the
above Chapter �� dev� �Mh� equals an n�hemisphere H � Since the holonomy group
acts on H � the interior Mo has a compatible a�ne structure� If M is one of the
second type� then for each bihedral n�crescent R� dev maps R
Mh into the interior
of an n�hemisphere H �see Chapter ��� Hence� it follows that dev maps Mh into
Ho� Since given a deck transformation �� we have ��)�R�� ( )���R�� � Mh� we
obtain int)���R�� 
 int)�R� 
Mh �( � and R � ��R� by Lemma ���� This shows
that )�R� ( )���R�� ( ��)�R�� and ��)�R� ( ��)���R�� ( ����)�R�� for each
deck transformation � by equation ���� Since dev���)�R�� is a subset of a unique
great sphere Sn��� it follows that h��� acts on Sn�� and since dev�Mh� lies in Ho�
the holonomy group acts on Ho� Therefore� M has a compatible a�ne structure�
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If M is a concave a�ne manifold of type I� then �M is totally geodesic since
Mh ( R 
Mh for an hemispheric n�crescent R and �Mh ( �R 
Mh� If M is one of
type II� then �M is concave� as we said in the de�nition above�

Let M be a compact real projective manifold with empty or totally geodesic bound�
ary� and p � Mh � M the holonomy covering map with development pair �dev� h��
For the purpose of the following lemma� we say that two n�crescents S and T � hemi�
spheric or bihedral� to be equivalent if there exists a chain of n�crescents T�� T�� � � � � Tn
so that S ( T� and T ( Ti and Ti and Ti�� overlap for each i ( �� � � � � n� �� We will
use this de�nition in this chapter only�

Lemma ���� � Let xi be a sequence of points of Mh converging to a point x of

Mh� and xi 
 Ri for n�crescents Ri for each i� Then for any choice of an integer

N � we have Ri � Rj for in�nitely many i� j � N � Furthermore� if each Ri is an

n�hemisphere� then Ri ( Rj for in�nitely many i� j � N � Finally x belongs to an

n�crescent R for R � Ri for in�nitely many i�

Proof� � Let B�x� be a tiny ball of x� Assume xi 
 intB�x� for each i� We can
choose a smaller n�crescent Si in Ri so that xi now belongs to �Si with 
Si included
in 
Ri

as Ri are geometrically !simple"� i�e�� a convex n�bihedron or an n�hemisphere�
Since B�x� cannot be a subset of Si� Si 
 B�x� is the closure of a component of

B�x�� ai for ai ( �Si 
B�x� an �n� ���ball with boundary in bdB�x�� Let vi be the
outer�normal vector at xi to �Si for each i� Choose a subsequence ij � with i� ( N � of i
so that the sequence vij converges to a vector v at x� Corollary ���� shows that there
exists an n�crescent R so that dev�R� is a limit of dev�Sij �� R contains x� and R and
Sij include a �xed common n�ball P for j su�ciently large� Hence� Sij is equivalent
to Sik for j� k su�ciently large� Since we have Rij � Sij as Sij is a subset of Rij � we
obtain Rij � Rik for j� k su�ciently large�

If Ri are n�hemispheres� then Theorem ��� shows that Rij ( Rik for j� k su�ciently
large�

We begin the proof of the Main Theorem ���� Actually� what we will be proving
is the following theorem� which together with Theorem ��� implies Theorem ����

Theorem ���� � Suppose that M is a compact real projective n�manifold with to�

tally geodesic or empty boundary� and that Mh is not real projectively di�eomorphic

to an open n�hemisphere or n�bihedron� Then the following statements hold �

� If �Mh includes a hemispheric n�crescent� then M includes a compact concave

a�ne n�submanifold N of type I orMo includes the two�faced �n����submanifold
arising from hemispheric n�crescent�

� If �Mh includes a bihedral n�crescent� then M includes a compact concave a�ne

n�submanifold N of type II or Mo includes the two�faced �n � ���submanifold
arising from bihedral n�crescent�

Converse statements also hold�
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First� we consider the case when �Mh includes an n�crescent R that is an n�
hemisphere� Suppose that there is no copied component of �T 
Mh for every hemi�
spheric n�crescent T � Recall from Chapter � that either R ( S or R and S are disjoint
for every pair of hemispheric n�crescents R and S�

Let x 
 Mh and B�x� the tiny ball of x� Then only �nitely many distinct
hemispheric n�crescents intersect a compact neighborhood of x in intB�x�� Other�
wise� there exists a sequence of points xi converging to a point y of intB�x�� where
xi 
 intB�x� and xi 
 Ri for mutually distinct hemispheric n�crescents Ri� but
Lemma 
�� contradicts this�

Consider R
Mh for a hemispheric n�crescent R� Since R is a closed subset of �Mh�
R
Mh is a closed subset of Mh� Let A be the set

S
R�HR
Mh� Then A is a closed

subset of Mh by above� Since R 
Mh is a submanifold for each n�crescent R� A is
a submanifold of Mh� a closed subset� Since the union of all hemispheric n�crescents
A is deck transformation group invariant� we have p���p�A�� ( A� Thus� pjA is a
covering map onto a compact submanifold N in M � and pjR 
Mh is a covering map
onto a component of N for each hemispheric n�crescent R�

Since the components of A are locally �nite in Mh� it follows that N has only
�nitely many components� Let K be a component of N � By Lemma ���� R
Mh is a
holonomy cover of K� Let �K be the projective completion of R 
Mh� The closure of
R
Mh in �K is a hemispheric n�crescent identical with �K by Proposition ���� Hence�
K is a concave a�ne manifold of type I�

If there is a copied component of �T 
 Mh for some hemispheric n�crescent T �
Proposition ��� implies the Main theorem�

Now� we assume that �Mh includes only n�crescents that are n�bihedrons� Suppose
that there is no copied component of bd)�T � 
Mh for every bihedral n�crescents T �
T 
 B� Then either )�R� ( )�S� or )�R� and )�S� are disjoint for n�crescents R
and S� R�S 
 B� by the results of Chapter ��

Using this fact and Lemma 
��� we can show similarly to the proof for the hemi�
spheric n�crescent case that A (

S
R�B )�R� 
Mh is closed� )�R� 
Mh is a closed

subset of Mh by Proposition ���� For each point x of Mh and a tiny ball B�x�
of x� there are only �nitely many mutually distinct )�Ri� intersecting a compact
neighborhood of x in intB�x� for n�crescents Ri� Otherwise� we get a sequence xi�
xi 
 intB�x�� converging to y� y 
 intB�x�� so that xi 
 )�Ri� for n�crescents Ri

with mutually distinct )�Ri�� i�e�� Ri is not equivalent to Rj whenever i �( j� Then
xi 
 Si for an n�crescent Si equivalent to Ri� Lemma 
�� implies Si � Sj for in�nitely
many i� j � N � Since Si is equivalent to Ri� this contradicts the fact that )�Ri� are
mutually distinct�

The subset A is a submanifold since each )�R� 
Mh is one for each R� R 
 B�
Similarly to the hemisphere case� since p���p�A�� ( A� we obtain that pjA is a
covering map onto a compact submanifold N in M � and pj)�R� 
Mh� R 
 B� is a
covering map onto a component of N � N has �nitely many components since the
components of A are locally �nite in Mh by the above paragraph�

Let K be the component of N that is the image of )�R� 
 Mh for R� R 
 B�
By Lemma ���� )�R� 
Mh is a holonomy cover of K� Let �Kh denote the projective
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completion of )�R� 
Mh� For each crescent S� S � R� the closure S� of S 
Mh in
�Kh is an n�crescent by Proposition ���� It follows that each point x of )�R� 
Mh is
a point of a crescent S� in �K equivalent to the crescent R�� the closure of R 
Mh in
�K� Therefore� by Lemma ���� N is a �nite disjoint union of compact concave a�ne
manifolds of type II�

When there are copied components of bd)�R� 
Mh for some R 
 B� then Propo�
sition ��� completes the proof of the Main theorem�

The converse part of the Main theorem follows by Proposition ��� since the Kuiper
completions of concave submanifolds includes an n�crescents clearly�
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SPLITTING AND DECOMPOSING MANIFOLDS

In this chapter� we will prove Corollary ���� The basic tools are already covered in
previous three chapters� As before� we study hemispheric case �rst�

Let M be a compact real projective n�manifold with empty or totally geodesic
boundary� We will assume that M is not �n����convex� and so Mh is not projectively
di#eomorphic to an open n�bihedron or an open n�hemisphere� so that we can apply
various results in Chapters � to �� such as the intersection properties of hemispheric
and bihedral n�crescents� We will carry out various decomposition of M in this
chapter� Since in each of the following steps� the results are real projective manifolds
with nonempty boundary if nontrivial decomposition had occurred� it follows that
their holonomy covers are not projectively di#eomorphic to open n�bihedrons and
open n�hemispheres� So our theory in Chapters � to 
 continues to be applicable�

We show a diagram of manifolds that we will be obtaining in the construction� The
ladder in the �rst row is continued to the next one� Consider them as one continuous
ladder�

M �p�A�	 M s � N
�
K �p�A�	

� p � �
Mh �A�

M s

h � Nh

�S
R�HfR 
Nhg �A�

N s
�
K � S

�
T
�
K

� �
N s

h

�
f
S
R�HR 
Nhg � Sh

�
f
S
R�B )�R� 
N s

hg
�
f
S
R�HR 
Nhg

��	���

where the notation �A means to split along a submanifold A if A is compact and
means to split and take appropriate components to obtain a holonomy cover if A is
noncompact� � means to decompose and to take appropriate components�

�
means

a disjoint union and other symbols will be explained as we go along� When any of
A��K�A�� T is empty� then the operation of splitting or decomposition does not take
place and the next manifolds are identical with the previous ones� For convenience�
we will assume that all of them are not empty in the proof�

To begin� suppose that M is not �n� ���convex� and we will now be decomposing
M into various canonical pieces� Let p � Mh � M denote the holonomy covering
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map with development pair �dev� h�� �Note that the covering maps in the spaces
constructed below will be all denoted by p� Since the domains of de�nition are di#erent
this causes no confusion��

Since M is not �n � ���convex� �Mh includes an n�crescent �see Theorem ����� By
Theorem 
��� M has a two�faced �n� ���manifold S� or M includes a concave a�ne
manifold�

Suppose that �Mh has a hemispheric n�crescent� and that A� is a pre�two�faced
submanifold arising from hemispheric n�crescents� �As before A� is two�sided�� Let
M s denote the result of the splitting of M along p�A��� and M � that of Mh along
A�� and A�� the boundary of M � corresponding to A�� !newly created from splitting�"
We know from Chapter � that there exists a holonomy cover M s

h of M s that is a
disjoint union of suitable components of M �� This completes the construction of the
�rst column of arrows in equation �	���

We now show that M s now has no two�faced submanifold of type I� Let �M � denote
the projective completion of M �� Suppose that two hemispheric n�crescents R and S
in �M � meet at a common component C of �R 
M � and �S 
M � and that R and S
are not equivalent� Proposition ��� applied to M � shows that C �M �o
 in particular�
C is disjoint from A���

Recall the map �q � �M � � �Mh extending the quotient map q � M � �Mh identifying
newly created split faces in M �� There exist hemispheric n�crescents �q�R� and �q�S�
in �Mh with same interior as Ro and So included in Mh �A� by Proposition ����

Since �R 
 �S 
 M � belongs to M � � A�� ( Mh � A�� it follows that q��R� and
q��S� meet in Mh � A�� Since obviously q��R� � �q�R� and q��S� � �q�S�� we have
that �q�R� and �q�S� meet in Mh �A�� However� since �q�R� and �q�S� are hemispheric
n�crescents in �Mh� q�C� is a subset of the pre�two�faced submanifold A�� which is a
contradiction� Therefore� we have either R ( S or R 
 S ( � for n�crescents R and
S in �M �� Finally� since the completion �M s

h of the holonomy cover M s

h is a subset of
�M �� we also have R ( S or R 
 S ( � for n�crescents R and S in �M s

h�
The above shows that M s has no two�faced submanifold arising from hemispheric n�

crescents� Let H denote the set of all hemispheric n�crescents in �M s

h� As in Chapter 
�
pj
S
R�HR 
M s

h is a covering map to the �nite disjoint union K of compact concave
a�ne manifolds of type I� Since any two hemispheric n�crescents are equal or disjoint�
it is easy to see that p���Ko� (

S
R�HRo� Then N � N ( M s�Ko� is a real projective

n�manifold with totally geodesic boundary
 in fact� M s decomposes into N and K
along totally geodesic �n� ���dimensional submanifold

p�
�
R�H

�R 
M s

h��

We see that p���N� equals M s

h � p���Ko�� and so M s

h � p���Ko� covers N � As
we saw in Chapter �� we may choose a component L�i of M s

h � p���Ko� for each
component Li of N covering Li as a holonomy cover with the developing map devjL�i
and a holonomy homomorphism as described there


�n
i�� L

�
i becomes a holonomy

cover Nh of N by Lemma ����
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We will show that �Nh includes no hemispheric n�crescent� which implies that N
includes no concave a�ne manifold of type I by the converse portion of Theorem 
���
This completes the construction of the second column of arrows of equation �	���

The Kuiper completion of L�i is denoted by �L�i� The Kuiper completion �Nh of Nh

equals the disjoint union of �L�i� Since the inclusion map i � L�i � M s

h is distance�

decreasing� it extends to �� � �Nh � �M s

h� If �Nh includes any hemispheric n�crescent R�
then ���R� is a hemispheric n�crescent by Proposition ���� Since ���R�
Mh is a subset of
p���K� by the construction of K� and Ro � ���R�
M s

h� it follows that Ro � p���K��
On the other hand� since Nh 
 p���K� equals p���bdK�� it follows that Nh 
 p���K�
includes no open subset of M s

h� Since Ro � Nh� this is a contradiction� Therefore� �Nh

includes no hemispheric n�crescent�
We see after this stage that the completions of the covers of the subsequently

constructed manifolds include no hemispheric n�crescents as the splitting and taking
submanifolds do not a#ect this fact by Proposition ��
�

Now we go to the second stage of the construction� Suppose that �Nh includes
bihedral n�crescents and A� is the two�faced �n����submanifold arising from bihedral
n�crescents� Then we obtain the splitting N s of N along p�A���

We split Nh along A� to obtain N s�� Then the holonomy cover N s

h of N s is a

disjoint union of components of N s� chosen for each component of N s� Let �N s

h denote
the completion�

The reasoning using Proposition ���	 as in the eighth paragraph above shows that
)�R� ( )�S� or )�R� 
 )�S� ( � for every pair of bihedral n�crescents R and S in
�N s

h� Theorem 
�� shows that N s includes the �nite disjoint union T of concave a�ne
manifolds of type II with the covering map

pj
�
R�B

)�R� 
N s

h �
�
R�B

)�R� 
N s

h � T

where B denotes the set of representatives of the equivalence classes of bihedral n�
crescents in �N s

h� And we see that N s � T o is a real projective manifold with convex
boundary while T has concave boundary� By letting S ( N s � T o� we see that N s

decomposes into S and T �
Each component J of T is a maximal compact concave a�ne manifold of type II�

If not� then J is a proper submanifold of a compact concave a�ne manifold J � of type
II in N s� A component of p���J� is a proper subset of a component of p���J ��� By
Proposition ���� p���J �� is a subset of

S
R�B )�R� 
N s

h� This is absurd�

For each component Si of S� we choose a component S�i of N s

h�p
���T o�� Then

�
S�i

is a holonomy cover Sh of S� The projective completion �Sh equals the disjoint union� �S�i� As in the sixth paragraph above� we can show that �Sh includes no bihedral
n�crescent using Proposition ���� By the converse part of Theorem 
��� we see that
�Sh includes no compact concave a�ne manifold�

If S is not �n� ���convex� then �Sh includes an n�crescent since the proof of Theo�
rem ��� easily generalizes to the case when the real projective manifold M has convex
boundary instead of totally geodesic one or empty one� Since �Sh does not include a
hemispheric or bihedral n�crescent� it follows that S is �n� ���convex�
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Now� we will show that the decomposition of Corollary ��� is canonical� First� the
two�faced submanifolds A� and A� are canonically de�ned� Now let M ( M s and
N ( N s for convenience� First� suppose that M decomposes into N � and K � where
K � is a submanifold whose components are compact concave a�ne manifolds of type
I and N � is the closure of M�K � and N � includes no compact concave a�ne manifold
of type I� We will show that N � ( N and K � ( K�

Let K �
i� i ( �� � � � � n� be the components of K �� K �

i�h their respective holonomy

cover� and �K �
i�h the projective completions� which equals a hemispheric n�crescent Ri�

We claim that p���K �� equals
S
R�HR 
Mh where H is the set of all n�crescents in

�Mh�
Each component Kj

i of p���K �
i� is a holonomy cover of K �

i �see Chapter ��� Let

lji denote the lift of the covering map K �
i�h � K �

i to Kj
i which is a homeomorphism�

dev 	 lji is a developing map for K �
i�h as it is a real projective map �see Ratcli# ��
 ��

We may put a metric d on K �
i�h induced from d on Sn� a quasi�isometric to any such

choice of metric� using developing maps� Thus� we may identify Kj
i with K �

i�h and
their completions respectively for a moment�

From the de�nition of concave a�ne manifolds of type I� the completion of K �
i�h

equals a hemispheric n�crescent Ri� and K �
i�h ( Ri
K

�
i�h� Proposition ��� shows that

there exists a hemispheric n�crescent R�i in �Mh with identical interior as that of Ri�

and clearly R�i includes Kj
i in �Mh so that Kj

i ( R�i 
Mh� Since this is true for any

component Kj
i � we have that p���K �� is a disjoint union of hemispheric n�crescents

intersected with Mh and a subset of
S
R�HR 
Mh�

Suppose that there exists a hemispheric n�crescent R in �Mh so that R
Mh is not a
subset of p���K ��� Suppose R meets p���K ��� Then R meets a hemispheric n�crescent
S where S 
Mh � p���K ��� If R and S overlap� then R ( S� which is absurd� Thus�
R 
Mh and S 
Mh may meet only at �R 
Mh and �S 
Mh� Hence� R 
Mh is a
subset of p���M �K �o�� Since each component of p���M �K �o� is a holonomy cover
of a component of M �K �o� it follows that the completion of a holonomy cover of a
component of M �K �o includes a hemispheric n�crescent by Proposition ����

The part N � has no two�faced submanifold of type I since otherwise we easily see
that such a submanifold becomes a two�faced submanifold of type I for M itself by
Proposition ��
� Since N � includes no compact concave a�ne manifold of type I� the
converse part of Theorem 
�� shows that �N �

h includes no hemispheric n�crescent where
�N �
h is the completion of the holonomy cover N �

h of N �� As this is a contradiction� we
have that p���K �� equals

S
R�HR 
Mh� Therefore� we obtain N � ( N and K � ( K�

Second� if N decomposes into S� and T � where T � is the �nite union of a maximal
compact concave a�ne manifold of type II� and S� includes no compact concave a�ne
manifold of type II� then we claim that S� ( S and T � ( T � As above� we show that
p���T �� is a disjoint union of sets of form )�R� 
 Nh for a bihedral crescent R in
�Nh using maximality� As above� the converse part of Theorem 
�� shows that the

completion of the holonomy cover of each component of S� does not include a set of
from )�R� 
Nh for a bihedral n�crescent R� The rest of proof is the same as in the
hemispheric case�
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LEFT�INVARIANT REAL PROJECTIVE STRUCTURES

ON LIE GROUPS

Finally� we end with an application to a�ne Lie groups� Let G be a Lie group with
a left�invariant real projective structure� which means that G has a real projective
structure and the group of left�translations are projective automorphisms�

As G is a manifold with real projective structure� there is an associated developing
map �G � Sn and a holonomy homomorphism ���G� � Aut�Sn�� Let Gh be the
holonomy cover with induced development pair �dev� h�� Then Gh is also a Lie group
with the induced real projective structure� which is clearly left�invariant� Moreover�
given an element g of Gh� as dev	Lg is another developing map for the left�translation
Lg by g� dev 	 Lg ( h��g� 	 dev for an element h��g� of Aut�Sn�� We see easily
that h� � Gh � Aut�Sn� is a homomorphism� which is still said to be a holonomy

homomorphism�
As before if G is not �n� ���convex� then Gh is not projectively di#eomorphic to

an open n�bihedron or an open n�hemisphere�

Theorem ����� � If G is not �n����convex as a real projective manifold� then the

projective completion �Gh of Gh includes an n�crescent B�

Proof� � This is proved similarly to Theorem ��� by a pull�back argument� The
reason is that the left�action of Gh on Gh is proper and hence given two compact sets
K and K � of Gh� the set fg 
 Ghjg�K� 
K � �( �g is a compact subset of Gh� That
is� all arguments of Chapter � go through by choosing an appropriate sequence fgig
of elements of Gh instead of deck transformations�

Obviously� if Gh includes a cocompact discrete subgroup� then this is a corollary
of Theorem ���� But if not� this parallel argument is needed�

Suppose that from now on �Gh includes an n�crescent B� Since the action of Gh on
Gh is transitive� �Gh equals the union of g�B� for g 
 Gh� We claim that g�B� � g��B�
for every pair of g and g� in Gh� That is� there exists a chain of n�crescents Bi�
i ( �� � � � � k� of same type as B so that B� ( g�B�� Bi overlaps with Bi�� for each
i ( �� � � � � k � �� and Bk ( g��B�� Let x be a point of Bo and B�x� a tiny ball of x
in Bo� We can choose a sequence g�� � � � � gn with g� ( g and gn ( g� where g��i��gi�x�
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belongs to B�x�o� In other words� we require g��i��gi to be su�ciently close to the
identity element� Then gi�B

o�
 gi���Bo� �( � for each i� Hence g�B� � g��B� for any
pair g� g� 
 Gh�

If B is an n�hemisphere� then we claim that g�B� ( B for all g and Gh ( B 
Gh�
The proof of this fact is identical to that of Theorem ��� but we have to use the
following lemma instead of Lemma ����

Lemma ����� � Suppose that dev � �Gh � Sn is an imbedding onto the union

of two n�hemispheres H� and H� meeting each other on an n�bihedron or an n�
hemisphere� Then H� ( H�� and Gh is projectively di�eomorphic to an open n�
hemisphere�

Proof� � If H� and H� are di#erent� as in the proof of Lemma ��� we obtain two
�n� ���dimensional hemispheres O� and O� in Gh where a subgroup of index one or
two in Gh acts on� Since the action of Gh is transitive� this is clearly absurd�

So if B is an n�hemisphere� then we obtain Gh ( B 
 Gh� Since Gh is boundary�
less� �B must consist of ideal points� which contradicts the de�nition of n�crescents�
Therefore� every n�crescent in �Gh is a bihedral n�crescent�

The above shows that Gh � )�B� for a bihedral n�crescent B� Gh is a concave
a�ne manifold of type II and hence so is G� To prove this� we need to show that two
overlapping n�crescents intersect transversally as the proof for the Lie group case is
slightly di#erent� The transversality is proved entirely as in the proof of Theorem ���
using Lemma ���� instead of Lemma ����

Let H be a Lie group acting transitively on a space X � It is well�known that for a
Lie group L with left�invariant �H�X��structure� the developing map is a covering map
onto its image� an open subset �see Proposition ��� in Kim ��� �� Thus dev � Gh � Sn

is a covering map onto its image�
Recall that dev maps )�B�o into an open subset of an open hemisphere H � and

��)�B� is mapped into the boundary Sn�� of H � Each point of Gh belongs to So

for an n�crescent S equivalent to R since the action of Gh on Gh is transitive �see
above�� Since each point of dev�Gh� belongs to the interior of an n�bihedron S with
a side in Sn��� the complement of dev�Gh� is a closed convex subset of H � Thus�
devjGh is a covering map onto the complement of a convex closed subset of Rn� As
�G covers Gh� we see that this completes the proof of Theorem ����

An a�ne m�convexity for � � m � n is de�ned as follows� Let M be an a�ne
n�manifold� and T an a�ne �m����simplex in Rn with sides F�� F�� � � � � Fm��� Then
M is a�ne m�convex if every nondegenerate a�ne map f � T o�F��� � ��Fm�� �M
extends to one T �M �see ��� for more details��

If G has a left�invariant a�ne structure� then G has a compatible left�invariant
real projective structure� It is easy to see that the �n� ���convexity of G in the real
projective sense is equivalent to the a�ne �n� ���convexity of G�

By Theorem ���� G is either �n � ���convex or Gh is a concave a�ne manifold of
type II� As before� if Gh is a concave a�ne manifold of type II� the argument above
shows that Gh is mapped by dev to the complement of a closed convex set in Rn�
This completes the proof of Corollary ����
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Finally� we easily see that the following theorem holds with the same proof as the
Lie group case�

Theorem ����� � Let M be a homogenous space on which a Lie group G acts

transitively and properly� Suppose M has a G�invariant real projective structure�

Then M is either �n � ���convex� or M is concave a�ne of type II� Also� M is

a�ne �n� ���convex or M is concave a�ne of type II if M has a G�invariant a�ne

structure�
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APPENDIX A

TWO MISCELLANEOUS THEOREMS

We prove in this section the fact that ��manifolds with homogeneous Riemannian
geometric structures admit real projective structures� and Theorem ��� on the equiv�
alent de�nitions of convex real projective manifolds� The proofs are a little sketchy
here
 however� they are elementary�

Recall that given a pair of a space X and a Lie group G acting on X � Klein
de�ned �X�G��geometry as the G�invariant properties on X � An �X�G��structure on
a manifold is given by a maximal atlas of charts to X with transition functions lying
in G�

Given the product space RP ��RP �� the group PGL���R��PGL���R� acts on the
space in the standard manner
 i�e�� �g� h��x� y� ( �g�x�� h�y�� for x 
 RP �� y 
 RP ��
g 
 PGL���R�� and h 
 PGL���R�� The geometry modeled on the pair is said to
be the product real projective geometry and the geometric structure modeled on the
geometry is said to be the product real projective structure�

The following theorem is proved essentially using Moln�ar�s work ��� � �See also
Thiel ��� ��

Theorem A��� � Let M be a ��manifold with Riemannian homogeneous structure�

Then M admits a real projective structure or a product real projective structure�

Proof� � The Euclidean� spherical� and hyperbolic geometries correspond to the pairs
�Rn� O�n�R� �Rn�� �Sn� O�n � ��R��� and �Hn�PSO��� n��� Here� O�n�R� denotes
the group of orthogonal transformations of Rn� and O�n�R� � Rn the orthogonal
group extended by translations� i�e�� the group of rigid motions of Rn� Hn denotes
the positive part of the conic in Rn�� given by x���x��� � � ��xon ( �� and PSO��� n�
the group of linear transformations acting on Hn�

As we said above� Rn is an a�ne patch and the group of rigid motions are a�ne�
and hence projective� Hn can be identi�ed with an open ball in RPn� with PSO��� n�
identi�ed with an obvious copy in PGL�n � ��R�� Hence� these geometries can be
considered as a pair of open subsets in RPn or Sn and subgroups of projective au�
tomorphisms of the open subsets respectively� Hence� an �X�G��atlas for each of
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these geometries �X�G� is a real projective atlas� and so the three�manifold with an
�X�G��structure admits real projective structures�

Using the notation in Scott�s paper ��� � the geometries Sol� Nil� and fSL���R�
can be realized as pairs of open subsets of real projective space RP � or real projective
spheres S� and subgroups of projective automorphism groups� This can be seen in
Moln�ar ��� as he gives explicit domains and the group of projective automorphisms
corresponding to the isometry group� Hence� ��manifolds admitting these structures
also admit real projective structures�

For H��R�� and S��R� geometries� as two�dimensional hyperbolic and spherical
geometries are realized by projective models� we see easily that they have models
subsets of RP � � RP � with the automorphism groups subgroups of PGL���R� �
PGL���R��

Theorem A��� � Let M be a real projective n�manifold� The following are equiva�

lent �

�� M is ��convex�
�� M is convex�

�� M is real projectively isomorphic to a quotient of a convex domain in Sn�

Furthermore� Mh can be identi�ed with �M if any of the above items is true�

Proof� � �������� Since M is ��convex� �M is ��convex� Any two points x and y in �M
are connected by a chain of segments si� i ( �� � � � � n� of d�length � � with endpoints
pi and pi�� so that si 
 si�� ( fpi��g exactly� This follows since any path may be
covered by tiny balls which are convex� We will show that x and y are connected by
a segment of d�length � ��

Assume that x and y are connected by such a chain with n being a minimum� We
can assume further that si are in a general position� i�e�� si and si�� do not extend
each other as an imbedded geodesic for each i ( �� � � � � n� �� which may be achieved
by perturbing the points p�� � � � � pn� unless n ( � and s� � s� form a segment of d�
length �
 in which case� we are done since s��s� is the segment we need� To show we
can achieve this� we take a maximal sequence of segments which extend each other
as geodesics� Suppose that si� si��� � � � � sj form such a sequence for j � i� Then the
total length of the segment will be less than �jj � ij� We divide the sequence into
new segments of equal d�length �� �� s�i� s

�
i��� � � � � s

�
j where s�k has new endpoints

p�k� p
�
k�� for i � k � j where p�i ( pi and p�j�� ( pj��� Then we may change p�k

for k ( i � �� � � � � j toward one�side of the segments by a small amount generically�
Since p�k� k ( i � �� � � � � j� are in an open hemisphere �an a�ne patch� determined
by the original geodesic si � � � � � sj � we see that new segments s��i � s

��
i��� � � � � s

��
j are in

general position together with si�� and sj��� This would work unless j � i ( � and
the total d�length equals � since in this case changing p�i�� still preserves s��i � s

��
i�� to

be a segment of d�length �� However� since n � �� we may move p�i or p�j�� in some
direction to put the segments into a general position�
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Let us choose a chain si� i ( �� � � � � n� of segments with minimal number of seg�
ments� in general position� We assume that we are not in case when n ( � and s��s�
forming a segment of d�length ��

We show that the number of the segments equals one� which shows that �M is
convex� If the number of the segments is not one� then we take s� and s� and
parameterize each of them by projective maps fi � �	� � � si� i ( �� �� so that
fi�	� ( p�� Then since a tiny ball B�p�� can be identi�ed with a convex ball in an
a�ne patch� it follows that for t su�ciently small there exists a nondegenerate real
projective map ft � �t � B�p�� where �t is a triangle in R� with vertices �	� 	�� �t� 	��
and �	� t� and ft�	� 	� ( p�� ft�s� 	� ( f��s� and ft�	� s� ( f��s� for 	 � s � t�

We consider the subset A of �	� � so that ft � �t � �M is de�ned� For t 
 A�

ft � �t � �M is always an imbedding since dev	ft is a nondegenerate projective map
�t � Sn � Sn� Thus A is open in �	� � since as f��t� is compact� there exists a

convex neighborhood of it in �M where dev restricts to an imbedding�
We claim that A is closed by ��convexity� we consider the union K (

S
t�A ft��t��

Then the closure of K in �M is a compact triangle in �M with two sides in s� and s��
Since two sides of K and Ko are in �M � K itself is in �M by ��convexity� Hence A must
equal �	� � and there exists a segment s�� of d�length � �� namely f����� 	��	� ����
connecting p� and p�� This contradicts the minimality� and x and y are connected by
a segment of d�length � ��

������� As �M is convex� the closure of �M in �M is tame as we explained in Chap�
ter �� Thus �M is a tame set� dev � �M � Sn is an imbedding onto a convex subset
of Sn� and devj �M is an imbedding onto a convex subset of Sn� Since the equation

dev 	 � ( h��� 	 dev holds for each deck transformation � of �M � it follows that dev

induces a real projective di#eomorphism �M����M� � dev� �M��h����M���

������� Since �M can be identi�ed with a convex domain in Sn� �M is ��convex
from the de�nition of ��convexity�





APPENDIX B

SHRINKING AND EXPANDING n�BALLS BY

PROJECTIVE MAPS

Proposition B��� � Suppose we have a sequence of 
�d�balls Bi in a real projective

sphere Sn for some n � � and a �xed positive number 
 and a sequence of projective

maps �i� Assume the following �

� The sequence of d�diameters of �i�Bi� goes to zero�

� �i�Bi� converges to a point� say p� in the Hausdor� sense�

� For a compact n�ball neighborhood L of p� ���i �L� converges to a compact set

L��

Then L� is an n�hemisphere�

Recall that Rn�� has a standard Euclidean metric and d on Sn is obtained from
it by considering Sn as the standard unit sphere in Rn���

The Cartan decomposition of Lie groups states that a real reductive Lie group G
can be written as KTK where K is a compact Lie group and T is a maximal real tori�
Since Aut�Sn� is isomorphic to SL��n� ��R�� we see that Aut�Sn� can be written as
O�n���D�n���O�n��� where O�n��� is the orthogonal group acting on Sn as the
group of isometries and D�n��� is the group of determinant � diagonal matrices with
positive entries listed in decreasing order where D�n � �� acts in Sn as a subgroup
of GL�n � ��R� acting in the standard manner on Sn� In other words� each element
g of Aut�Sn� can be written as i�g�d�g�i��g� where i�g� and i��g� are isometries and
d�g� 
 D�n � �� �see Carri�ere �
 and Choi ��� � and also ��
 ��

We may write �i as K��i 	Di 	K��i where K��i and K��i are d�isometries of Sn and
Di is a projective map in Aut�Sn� represented by a diagonal matrix of determinant
� with positive entries� More precisely� Di has �n � � �xed points ��e� � � � � � ��en �
the equivalence classes of standard basis vectors �e�� � � � ��en of Rn��� and Di has a
matrix diagonal with respect to this basis
 the diagonal entries �i� i ( 	� �� � � � � n� are
positive and in decreasing order� Let O�e�� denote the open n�hemisphere containing

�e� whose boundary is the great sphere Sn�� containing ��ej  for all j� j � �� and
O��e�� that containing ��e� with the same boundary set�

Since �i�Bi� converges to p� and K��i is an isometry� the sequence of the d�diameter
of Di 	K��i�Bi� goes to zero as i � �� We may assume without loss of generality
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that Di�K��i�Bi�� converges to a set consisting of a point by choosing a subsequence if
necessary� By the following lemma B��� Di�K��i�Bi�� converges to one of the attractors
�e� and ��e� � We may assume without loss of generality that Di�K��i�Bi�� converges
to �e� �

Since L is an n�dimensional ball neighborhood of p� L includes a d�ball B��p� in
Sn with center p with radius � for some positive constant �� There exists a positive
integer N so that for i � N � we have

�i�pi� � B����p�

for the d�ball B����p� of radius ��� in Sn� Letting qi ( �i�pi� for the d�center pi of
the ball Bi� we see that B����qi� is a subset of L for i � N �

Since K��
��i �qi� ( Di	K��i�pi�� the sequence K��

��i �qi� converges to �e� by the second

paragraph above� There exists an integer N�� N� � N � such that K��
��i �qi� is of d�

distance less than ��� from �e� for i � N�� Since K��
��i is a d�isometry� K��

��i �B����qi��

includes the ball B�����e� � for i � N�� Hence K��
��i �L� includes B�����e� � for i � N��

Since �e� is an attractor under the action of the sequence fDig by Lemma B��� the
images of B�����e� � under D��i eventually include any compact subset of O�e��� Thus�

D��i �B�����e� �� converges to Cl�O�� in the Hausdor# metric� and up to a choice of a

subsequence K��
��i 	D

��
i �B�����e� �� converges to an n�hemisphere� The equation

���i �L� ( K��
��i 	D

��
i 	K��

��i �L�

� K��
��i 	D

��
i �B�����e� ����B���

shows that ���i �L� converges to an n�hemisphere�
The straightforward proof of the following lemma is left to the reader�

Lemma B��� � Let Ki be a sequence of 
�d�balls in Sn and di a sequence of au�

tomorphisms of Sn that are represented by diagonal matrices of determinant � with

positive entries for the standard basis with the �rst entry �i the maximum� Suppose

di�Ki� converges to the set consisting of a point y� Then there exists an integer N so

that for i � N � the following statements hold �

�� �e� and ��e� are attracting �xed points of di�
�� y equals �e� or ��e� �
�� The eigenvalue �i of di corresponding to e� and �e� is strictly larger than the

eigenvalues corresponding to �ej � j ( �� � � � � n�
�� �i��

�
i � �� for the maximum eigenvalue ��i of di corresponding to �ej � j (

�� � � � � n�



FREQUENTLY USED SYMBOLS

Ao� the topological interior of a convex set A in hAi�
hAi� the unique minimal great sphere including a convex subset A of Sn�

R� the union of all open �n����hemispheres in the intersection of �R with the ideal

set if R is a hemispheric n�crescent� or the interior of a side of R in the ideal set
if R is a bihedral n�crescent�

bdA� the topological boundary of the set A with respect to the obvious largest ambient
space�

Cl�A�� the topological closure of A in the obvious largest ambient space�
intA� the topological interior of A in the obvious largest ambient space�
cR� the union of copied components of a hemispheric n�crescent R�
�A� the manifold boundary of a manifold A�

��)�R�� the union of 
S for all bihedral n�crescents S equivalent to an n�crescent R�
)�R�� the union of all bihedral n�crescents equivalent to an n�crescent R�
Mo� the manifold interior of a manifold M �

�M � the Kuiper completion of the universal cover of M �
�M � the universal cover of a manifold M �

Mh� the holonomy cover of a real projective manifold M �
�Mh� the Kuiper completion of a holonomy cover Mh�

Mh��� the set of ideal points of the Kuiper completion of a holonomy cover Mh�
�M�� the set of ideal points of the Kuiper completion of a universal cover �M �
�R� the complement of 
R in �R if R is a hemispheric n�crescent or the side of R

not in the ideal set if R is a bihedral n�crescent�
�A� the topological boundary of a convex subset A in hAi if A is a subset of Sn�

or the subset of Cl�A� corresponding to �B for the image B of A under the
developing map if A is a tame subset of a Kuiper completion�

���M�� the fundamental group of a manifold M or the deck transformation group�
R� the real number �eld�

RPn� the n�dimensional real projective space�
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