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Abstract: Real projective structures are given as projectively flat structures on manifolds or

orbifolds. Hyperbolic structures form examples. Deforming hyperbolic structures into a family
of real projective structures might be interesting from some perspectives. We will try to find
good projective invariants to deform projective 3-orbifolds with triangulations and obtain some
deformations of reflection groups based on tetrahedra, pyramids, octahedra, and so on. This
fixes mistaken examples in my paper JKMS 2003. (We will give some introduction to this area
of research in the talk.)
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1 Preliminary

1.1 Erlangen program
Some history

• Greeks started projective geometry and Mobius geometry.

• Klein proposed Erlangen program classifying all geometry together. (Many ge-
ometry appears as restricted form of projective geometry just as many Lie groups are
subgroups of linear groups. )

• Many mathematicians became interested in lattice subgroups of Lie groups as
they are useful in many parts of mathematics. (These subgroups are rigid and of-
ten unique in many cases particularly in rank two cases, and hence they are very good
objects.)

Erlangen program of Klein

• A Lie group is a set of symmetries of some object forming a manifold.

• Klein worked out a general scheme to study almost all geometries...

• Klein proposed that a "geometry" is a space with a Lie group acting on it transi-
tively.

• Essentially, the transformation group defines the geometry by determining which
properties are preserved.

Erlangen program of Klein

• We extract properties from the pair:

– For each pair (X,G) where G is a Lie group and X is a space.

– Thus, Euclidean geometry is given by X = Rn and G = Isom(Rn) =
O(n) · Rn.

– The spherical geometry: G = O(n+ 1,R) and X = Sn.
– The hyperbolic geometry: G = PO(n, 1) and X upper part of the hy-

perboloid t2 − x2
1 − · · · − x2

n = 1. (Another representations: For n = 2,
G = PSL(2,R) and X the upper half-plane. For n = 3, G = PSL(2,C) and X
the upper half-space in R3.)
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Erlangen program of Klein

• The above are rigid types with Riemannian metrics. We go to flexible geome-
tries.

• Lorentzian space-times.... de Sitter, anti-de-Sitter,...

• The conformal geometry: G = SO(n + 1, 1) and X the celestial sphere in
Rn+1,1.

• The affine geometry G = SL(n,R) · Rn and X = Rn.

• The projective geometry G = PGL(n + 1,R) and X = RPn. (The conformal
and projective geometries are “maximal” geometry in the sense of Klein; i.e.,
most flexible.)

1.2 Projective geometry
Some projective geometry notions.

• The complement of a hyperspace in RPn can be identified with an affine space
Rn. (Moreover, The affine transformations extend to a projective automorphisms and
projective automorphism acting on Rn restricts to affine transformations. Let us call the
complement an affine patch. )

• A convex polytope in RPn is a convex polytope in an affine patch.

• RPn has homogeneous coordinates [x0, ..., xn] so that

[λx0, ..., λxn] = [x0, ..., xn] for λ ∈ R− {0}.

• Projective subspaces always can be described as vector subspaces in homoge-
neous coordinates.

Some projective geometry notions.

• We can find homogeneous coordinates so that a simplex has vertices

[1, 0, ..., 0], .., [0, 0, .., 1].

• A projective automorphism is the map x 7→ Ax for A ∈ GL(n,R). (Classically,
they were known as collineations, or projectivities,... )

• The group of projective automorphism of RPn is PGL(n + 1,R) = GL(n +
1,R)/ ∼.

• One looses notions such as angles, lengths... But these are replaced by other
invariants such as cross ratios. We also gain duality.

• The oriented projective geometry (Sn, SL±(n+ 1,R)) is better.
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Projective geometry

• Many geometries are sub-geometries of projective (conformal) geometry. (The
two correspond to maximal finite-dimensional Lie algebras acting locally on manifolds...)

– Hyperbolic geometry: Hn imbeds in RPn and PO(n, 1) in PGL(n+1,R)
in canonical way.

– spherical, euclidean geometry, anti-de-Sitter geometry

– The affine geometry G = SL(n,R) · Rn and X = Rn, flat Lorentizan
geometry, ...

– Six of eight 3-dimensional geometries: euclidean, spherical, hyperbolic,
nil, sol, S̃L(2,R) (B. Thiel)

– S2 × R and H2 × R. (almost)

2 Manifolds and orbifolds with geometric structures

2.1 Definitions
Manifolds and orbifolds with geometric structures

• A manifold is a familar object.

• An orbifold can be thought of as a quotient space of manifold by a discrete group
(infinite mostly). The action may have fixed points. The quotient topological space with
local information form the orbifold.

• The orbifold has local charts based on open subsets of euclidean space with finite group
actions. This defines the orbifold.

Manifolds and orbifolds with geometric structures

• An (X,G)-geometric structure on a manifold or orbifold M is given by a maxi-
mal atlas of charts to X where the transition maps are in G.

• This equips M with all of the local (X,G)-geometrical notions.

• If the geometry admits notions such as geodesic, length, angle, cross ratio, then
M now has such notions...

• So the central question is: which manifolds and orbifolds admit which structures
and how many and if geometric structures do not exist, why not? (See Sullivan-
Thurston paper 1983 Enseign. Math.)
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Deformation spaces of geometric structures on manifolds and orbifolds

• In major cases, M = Ω/Γ for a discrete subgroup Γ in the Lie group G and an
open domain Ω in X .

• Thus, X provides a global coordinate system and the classification of discrete
subgroups of G provides classifications of manifolds or orbifolds with (X,G)-
structures.

• Here Γ“is" the fundamental group of M . Thus, a geometric structure can be
considered a discrete representation of π1(M) in G up to conjugation by elements
of G.

• Often, there are cases when Γ is unique up to conjugations and there is a unique
(X,G)-structure. (Rigidity)

• Given an (X,G)-manifold (orbifold) M , the deformation space D(X,G)(M) is
locally homeomorphic to the G-representation space Hom(π1(M), G)/G of
π1(M). (M should be a closed manifold. Otherwise the geometric structures and homo-
morphisms should have boundary conditions.)

Deformation spaces of geometric structures

• Closed surfaces have either a spherical, euclidean, or hyperbolic structures de-
pending on genus. We can classify these to form deformation spaces such as
Teichmuller spaces.

– A hyperbolic surface equals H2/Γ for the image Γ of the representation
π → PSL(2,R).

– A Teichmuller space can be identified with a component of the space Hom(π, PSL(2,R))/ ∼
of conjugacy classes of representations. The component consists of discrete
faithful representations.

2.2 Manifolds and orbifolds with (real) projective structures
Real projective manifolds: how many?

• A manifold (orbifold) with a real projective structure is a manifold (orbifold)
with (RPn, PGL(n+ 1,R))-structure.

• By the Klein-Beltrami model of hyperbolic space, we can consider Hn as a
unit ball B in an affine subspace of RPn and PO(n + 1,R) as a subgroup of
PGL(n+ 1,R) acting on B. Thus, a (complete) hyperbolic manifold (orbifold) has a
projective structure. (In fact any closed surface has one.)

• 3-manifolds (orbifolds) with six types of geometric structures have real projec-
tive structures. (Up to coverings of order two, 3-manifolds (orbifolds) with eight
geometric structures have real projective structures.)
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Real projective manifolds: how many?

• Here, M = Ω/Γ for some domain in RPn where a discrete subgroup Γ of
PGL(n+ 1,R) acts on.

• A question arises whether these “induced" projective structures can be deformed
to purely projective structures.

• Deformed projective manifolds from closed hyperbolic ones are convex in the
sense that any path can be homotoped to a geodesic path. (Koszul’s openness)

• For open projective manifolds, this convexity issue is still unknown in some
cases.

Real projective manifolds: how many?

• A (3, 3, 5)-turnover example. (A mathematica file in my homepage.)

• 0.20 0.25 0.30 0.35 0.40

0.25

0.30

0.35

0.40

0.45

0.50

0.20 0.25 0.30 0.35 0.40

0.25

0.30

0.35

0.40

0.45

0.50

Manifolds with (real) projective structures

• Cartan first considered real projective structures on surfaces as projectively flat
torsion-free connections on surfaces.

• Chern worked on general type of projective structures in the differential geome-
try point of view.

• The study of affine manifolds precedes that of projective manifolds.

– There were extensive work on affine manifolds, and affine Lie groups by Chern,
Auslander, Goldman, Fried, Smillie, Nagano, Yagi, Shima, Carriere, Margulis,...
They are related to affine Lie groups, flat Lorentzian manifolds, de Sitter, anti-de-
Sitter spaces,...

– There are outstanding questions such as the Chern conjecture, Auslander conjec-
ture,... I think that these areas are completely open... These questions might be
related to bounded cohomology theory..

– An aside: Conformal manifolds are extensively studied by PDE methods.
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Projective manifolds: how many?

• In 1960s, Benzecri started working on strictly convex domain Ω where a projec-
tive transformation group Γ acted with a compact quotient. That is, M = Ω/Γ is
a compact manifold (orbifold). (Related to convex cones and group transformations
(Kuiper, Koszul,Vinberg,...)). He showed that the boundary is either C1 or is an
ellipsoid.

• In 1970s, Kac and Vinberg found the first nonhyperbolic example for n = 2 for
a triangle reflection group associated with Kac-Moody algebra.

• Recently, Benoist found many interesting properties such as the fact that Ω is
strictly convex if and only if the group Γ is Gromov-hyperbolic.

• The real projective structures on surfaces and 2-orbifolds are completely classi-
fied by Goldman and —. The deformations space is a countable disjoint union
of cells. (converting maple files to mathematica.)

2.3 Projective 3-manifolds and deformations
Projective 3-manifolds and deformations

• We saw that many 3-manifolds, including hyperbolic ones, have projective struc-
tures.

• We wish to understand the deformation spaces for higher-dimensional manifolds
and so on.

• There is a well-known construction of Apanasov using bending: deforming along
a closed totally geodesic hypersurface.

• Johnson and Millson found deformations of higher-dimensional hyperbolic man-
ifolds which are locally singular. (also generalized bending constructions)

Projective 3-manifolds and deformations

• Cooper,Long and Thistlethwaite found a numerical (some exact algebraic) evidences that
out of the first 1000 closed hyperbolic 3-manifolds in the Hodgson-Weeks census, a
handful (10-15?) admit non-trivial deformations of their SO+(3, 1)-representations into
SL(4,R); each resulting representation variety then gives rise to a family of real projec-
tive structures on the manifold. (For example vol3.)

• Some class of 3-dimensional reflection orbifold that have positive dimensional smooth de-
formation spaces. These includes reflection group based on “orderable polytopes" some
of which are compact hyperbolic polytopes. We worked on prism (Benoist), pyramid, and
octahedrons. These are relatively easy, and some are solvable by geometry only.

• The flexibility indicates A. Weil type harmonic form arguments fail here. Also, it is
uncertain if the deformations are from bending constructions.
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Reflection orbifold.

• 3-orbifolds with base space is a 3-dimensional polytope and sides are silvered
with edge orders integers ≥ 2.

• We can study the deformation space using classical geometry.

– An order 2 edge means that each of the fixed points of reflection of the
adjacent sides lies in the planes extending the other sides.

– The order p for p > 2, edge means that the planes containing the fixed point
of the reflections of the adjacent sides and the adjacent sides themselves has
the cross ratio 2 + 2 cos 2π/p.

– Using these ideas, we can determine the deformation space for small orb-
ifolds such as orbifolds based on tetrahedron, pyramid with edges orders 2
or 4, and the octahedron with edge orders 4.

The pyramid deformation space as a 2-cell with four distinguished arcs and the octahedron
deformation space as a 3-cell with three distinguished planes
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2

2

2

2

2
2

2

2

2

4
4

4
4

2

2

2

Projective 3-manifolds and deformations

• The polytope with edge orders given is orderable if faces can be given order so
that each face contains less than 4 edges which are edges of order 2 or edges
in a higher level face. We are trying to classify these types of polytopes which are
hyperbolic.

• The reflection groups based on orderable polytopes: the dimension is 3f−e−e2
and that the local structure of the deformation spaces is smooth.

• Gyeseon Lee and I have worked out some numerical results for 3-dimensional re-
flection orbifolds based on cubes and dodecahedrons deformed from hyperbolic
ones. (These are not orderable and Lee will talk about these in another talk.)
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3 Cross ratios and projective invariant approach in 2-D

3.1 Cross-ratios and Goldman invariants of four adjacent trian-
gles.

Cross-ratios and Goldman invariants of four adjacent triangles in RP 2.

• A cross ratio is defined on a collection of four points x, y, z, t, at least three of
which are distinct, on RP 1 or on an 1-dimensional subspace of RPn.

• Suppose we can give a homogeneous coordinate system so that x = [1, 0], y =
[0, 1], z = [1, 1], then t = [b, 1] for some b. b is the cross ratio b(x, y, z, t).

•
[y, z, u, v] =

ū− ȳ
ū− z̄

v̄ − z̄
v̄ − ȳ

• b(x, y, z, t) = b(x,w, z, t)b(w, y, z, t), b(x, y, z, t) = b(y, x, t, z) = b(z, t, x, y) =

b(t, z, y, x) = 1/b(x, y, t, z).

Cross-ratios and Goldman invariants of four adjacent triangles in RP 2.

• Consider now a triangle T0 with three triangles T1, T2, T3 adjacent to it. Suppose
their union is a domain in RP 2. Then we can regard T0 to have vertices [1, 0, 0], [0, 1, 0], [0, 0, 1].
(See Goldman JDG 1990).

• To obtain projective invariants, we act by positive diagonal matrices and find
which are invariant.

• The complete invariants are cross ratios and two other Goldman σ-invariants:

ρ1 = b3c2, ρ2 = a3c1, ρ3 = a2b1, σ1 = a2b3c1, σ2 = a3b1c2

with complete relations
ρ1ρ2ρ3 = σ1σ2. (1)

No coordinates of wi are zero. All the projective invariants are cyclic invariants first
given by Kac and Vinberg.

Cross ratios and other invariants
The coordinates can be considered slopes in appropriate affine chart with coordi-

nate system
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[0,1,0]

[a_2,!1,b_2]

[a_3,b_3,!1]

[!1,b_1,c_1]

w_3

w_2
w_1

T_1

T_3

T_2

[0,0,1]

[1,0,0]

Cross-ratios and Goldman σ-invariants of four adjacent triangles in RP 2.

• There is a one-to-one correspondence between the space of invariants satisfying
equation 1 and the space of projectively equivalent class of the four triangles
with nonzero conditions on coordinates. (projective invariant coorespondence.)

• Note that if the edges of Ti do not extend one of T0, then the invariants are never
0. But if they do, then cross ratios and some Goldman σ-invariant will be zero.

• There is one configuration, where the invariants do not determined the configuration.

Some “allowable configurations". We can extend projective invariance correspondence
here.

The exceptional case. This does not occur if we restrict that the directions at vertex be
either four or two and not three.
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3.2 Surfaces and 2-orbifolds with real projective structures.
Surfaces and 2-orbifolds with real projective structures.

• To classify convex real projective structures on a orientable closed surface of
genus > 1, Goldman decomposed the surface into pairs of pants.

• Each pair of pants decomposes into a union of two triangles.

• In the universal cover, the union of four adjacent triangles determine the pair of
pants completely. Actually, a pair of four adjacent triangles determine every-
thing.

• After this step, we glue back the results. The gluing parameters contribute to the
dimension.

Surfaces and 2-orbifolds with real projective structures.

• For 2-orbifolds, we again classified convex projective structures using projective
invariants by decomposing into elementary 2-orbifolds. Then we determined the
deformation space for each piece and glued back the result. (See Goldman,—)

• If p, q, r ≥ 2 and 1/p + 1/q + 1/r < 1, a p, q, r turn-over has as a real projective
deformation space diffeomorphic to R2. (A mathematica file will be uploaded.)

• A reflective polygonal orbifold with at least four vertices has a real projective deformation
space diffeomorphic to Rv−v2 where v is the number of vertices and v2 is the number of
vertices of order 2.

• A reflective triangular orbifold of p, q, r order has a real projective deformation space
diffeomorphic to R.
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The polygonal reflection group

2

4 Cross ratios and projective invariant approach in 3-D

4.1 The three-dimensional generalizations of projective invariants
The three-dimensional generalizations to projective invariants

4

[0,0,0,1]

[1,0,0,0]

[0,1,0,0]

[0,0,1,0]

[a_3,b_3,!1,d_3]

[a_2,!1,c_2,d_2]

[!1,b_1,c_1,d_1]

[a_4,b_4,c_4,!1]

w
w

w

w

3

2

1

• Suppose now that we have a tetrahedron T0 and four other tetrahedrons T1, T2, T3, T4.
We can put T0 to have vertices [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1].

• To obtain projective invariants, we act by positive 4 × 4-diagonal matrices and
find which are invariant.

• Assuming these coordinates are nonzero. Cross ratios satisfying ρij = ρji are

12



invariants.

ρ12 = c4d3 ρ13 = b4d2 ρ14 = b3c2

ρ23 = d1a4 ρ24 = c1a3 ρ21 = c4d3

ρ34 = a2b1 ρ31 = d2b4 ρ32 = d1a4

ρ41 = b3c2 ρ42 = a3c1 ρ43 = a2b1 (2)

ρij is the cross ratio of four planes through an edge ij.

• For each vertex vi of T0, we can form a projective plane RP 2
i considering lines

through it. Then the configuration gives us a central triangle and three adjacent triangles
at each vertex. Thus, we have σ-invariants σi, σ

′
i satisfying

σiσ
′
i = ρijρikρil for each i. (3)

• We compute

σ1 = b3c4d2 σ′
1 = b4c2d3

σ′
2 = a3c4d1 σ2 = a4c1d3

σ3 = a2b4d1 σ′
3 = a4b1d2

σ′
4 = a2b3c1 σ4 = a3b1c2 (4)

.

• We finally have a relation

σ1σ2σ3σ4 = ρ14ρ24ρ34ρ23ρ13ρ23 = σ′
1σ

′
2σ

′
3σ

′
4 (5)

• There is a one-to-one correspondence between the space of projective invariants
satisfying the equations 3 and 5 and the space of projective equivalence classes
of five tetrahedron with nonzero coordinate conditions. (The holographic cor-
respondence)

• Note that if the edges of Ti do not extend one of T0, then the invariants are never 0. But
if they do, then cross ratios and some Goldman σ-invariant will be zero.

The various possibilites for our configurations
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4.2 Non-generic cases.
Non-generic cases.

• We can let some coordinates be zero. Then some or all of the projective invariants
can become zero.

• One example is setting c4 = d3 = 0 and a2 = b1 = 0 and other variables
nonzero. Then two cross ratios are zero and four cross ratios are not zero. The Goldman
invariants are zero. Fixing the four cross ratios and Goldman invariants zero, we obtain a
one-dimensional projectively inequivalent configurations. Thus, these invariants are not
enough in this case.

• Such cases are called exceptional cases or nonholographic cases.

• There are other situations, where the 2-dimensional configuration seen from a vertex is
exceptional.

• There are many different types of configurations up to hundreds. The question is how to
classify "holographic ones" and "nonholographic ones".

Some holographic (top three) and nonholographic (bottom two) examples
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4.3 3-manifolds with real projective structures.
Projective 3-manifolds described by projective invariants

• We will only look at triangulations so that each edge meets more than four faces.

• We triangulate a compact projective 3-manifold. Look at the vertex link sphere.

• The spheres are triangulated. We can read invariants of any central triangle with
four adjacent ones: the cross ratios and two Goldman σ-invariants.

• They satisfy equations 1, 4, and 5. (We should avoid nonholographic situations.)

• If the 3-manifold has a hyperbolic structure, the corresponding projective structure will
be described by invariants.

• Denoting vi,j the vertex of the link at vertex vi meeting with the edge ej and ρijk

the cross ratios around the vertex for k = 1, . . . , fj , we have ρijk = ρjik.

• Denoting the triangle Tik, the intersection of a tetrahedron Ti with a linking
sphere at vk. Let vk1 , vk2 , vk3 , vk4 the vertex of T . We have

σTi,k1
σTi,k2

σTi,k3
σTi,k4

= σ′
Ti,k1

σ′
Ti,k2

σ′
Ti,k3

σ′
Ti,k4

= ρ1ρ2ρ3ρ4ρ5ρ6

the product of six cross ratios of the edges of Ti.

• Thus, we have a 2-dimensional description. (holographic representation)

• We can drop σ′ from consideration in holographic situations.
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The converse

• Suppose M be a 3-manifold with a triangulation.

• We are given geometric triangulations of vertex spheres which satisfy the above
equations.

• Assume that these configurations of tetrahedrons are all holographic. Then there
exists a real projective structure on M .

• Solving the equations, we can parameterize the small neighborhood of the defor-
mation space of real projective structures on M . Hence, the deformation from
hyperbolic structures can be understood.

• The question is how to avoid the zero invariants. In manifold cases, this seems
to be avoidable. (We wish to be in holographic situations.)

Example: the figure eight knot complement.

• We can extend above to the case with ideal triangulation exists. The complement
of the union of ideal vertices is an open manifold. Then the ideal vertex can have a torus
as a link.

• The figure eight knot complement is triangulated by two ideal tetrahedra. Here,
there is only a torus which is the link of the unique ideal vertex.

• The torus has a deformation space of dimension 4. The torus is triangulated to
eight triangles. There are three free vertices.

• We (J.R. Kim) showed that there is six cross ratio equations associated with two
edges and two Goldman invariant equations. One equation is redundant.

• This describes the deformation from the hyperbolic structure. However, this does not
include the Dehn surgery.

• The number of variables is 4 + 2× 3.

• We determined that the local dimension of deformation is 3 = 10 − 7 using numerical
computations of Jacobians.

•
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Figure-eight knot complement
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4.4 3-orbifolds with real projective structures.
The generalization to orbifolds

• Now we try to extend this to 3-orbifolds. Let us triangulate the orbifoldM so that
singularities of orbifold lies in the union of right dimensional faces. (equivariant
trianguations)

• Assume that every vertex of the triangulation has linking orbifold which is a
quotient orbifold S2/F or T 2/F .

• Given a real projective 3-orbifold with a triangulation (possibly with ideal ver-
tices), we obtain a triangulation of linking 2-orbifolds.

• Looking at the universal cover of the 2-orbifolds. We recover cross-ratios and
invariants. They satisfy equations as above.

• Here, we might not be able to avoid zero invariants. (We wish to be in holo-
graphic situations.)

• The hyperbolic structure will be described by these invariants.

The converse

• Conversely, given triangulations of linking 2-orbifolds satisfying the equations
so that we have only holographic five tetrahedral configurations, we can construct
the real projective structures.

• Computing the deformation spaces in theory:

– First determine the real projective deformation space of the vertex linking
2-orbifolds.

– Put in vertices. Find the total configuration space with points.

– Find all projective invariants from the quadruples of triangles.

– Find complete independent projective invariants and find all relations. (Find-
ing good parameterization coordinates)

– Now write 3-dimensional equations and solve them.
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– Thus, we can determine the local and global deformation spaces in this
manner.

– We can understand the local deformation from hyperbolic structures.

The case of triangulated-disk vertex-link orbifolds with relations.

• If a triangle has two edge in the singular locus. Then the vertex has to have a
cross ratio 2 + 2 cos 2π/n where n is the vertex order.

• If two triangles divides the angle with dihedral group action, then the two cross
ratios satisfy (ρ1 − 2)(ρ2 − 2) = 2 + 2 cos 2π/n.

• If there are more triangles at a vertex, there are more complicated relations.

• If a vertex of three triangles lies in a silvered line, then there are more compli-
cated relations between their cross ratios.

• The Goldman invariants often satisfy relations.

• Since all these are very complex, you should try to do numerical study instead.
Or is there a simpler theory?

Testing out the theory: example 1: the tetrahedral orbifolds

• Tetrahedrons with edge orders.

– The cross ratio (1 + cos(2π/p))/2 is determined by order p.

– Here the link orbifolds are triangular disk orbifolds of corresponding orders
with no interior vertices. Thus, their deformation space is a real line parameter-
ized by Goldman σ-invariants or a singleton when they have some order 2.

– Suppose that all edge orders are ≥ 3. Thus, four Goldman σ-invariants
satisfying one equation parameterize the space. Hence our space is a three-
dimensional cell.
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• Suppose that there are two edges opposite each other of order 2 and others have higher
orders. (Other edge orders in 3, 4, 5, 6. This is a compact hyperbolic reflective orbifold)

• Then these correspond to a nonholographic situation. The cross ratios of four other edges
are determined by orders. The two cross ratios and the Goldman σ-invariants are zero.

• The deformation space is a real line parameterized by a 3-dimensional projective invariant
(a cylic invariant of Kac and Vinberg).

• In all other cases, there is a unique orbifold and the deformation space is a point. They
are all holographic.

Example 2: Pyramid

• Pyramid with orders 2, 2, 2, 2 on edges from the top vertex and orders 4 on the
opposite edges.

• Here we can divide into two tetrahedrons.

• Each of T1 and T2 has two edges with a cross ratio = 0. Other edges have
cross ratios given by order 4 or have harmonic cross ratio 2. There are only two
nonzero σs which are independent. The two σ-invariants are complete invariant
variables. (Thus here there are no equations to study)

• In generic situation, they are holographic.

• Thus, the choice of points in the triangle edges determine the deformation space.
Hence, the deformation space is a union of two 2-disks.

• For nongeneric choice, we get 1-dimensional line. Their union is again a disk
with a distinguished line through it.

The pyramid
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• If pyramid is given edge orders all > 2, then vertex orbifolds varies in a space of dimen-
sion 4 + 4 ∗ 1 and the two points can move +2 and hence there are 10 variables. The
number of equations are two cross ratio equations for two edges from the top vertex and
two tetrahedral equations. Thus, 10−4 = 6 should be the “dimension". We have to show
that differentials of the equations is of full rank.

The example 4: Octahedrons

• The octahedron with all edge orders 2. Then there is a three-dimensional space
of deformations of the octahedrons in projective 3-space.

• The reflection group is determined by the stellations. Hence, the deformation
space is a cell of dimension 3.

• Here we can divide into four tetrahedrons.

• There are six quadrilateral reflection orbifolds. The top and the bottom ones are
divided into four triangles with an interior vertex. The side ones are all divided
into two. The deformation spaces are all rigid.

• Hence, the configuration space is a cell of dimension four. Thus, the cross ratio
at the center point and σ invariants are important.

The octahedron

pdf ¦

Octahedrons

• We can take one σ from the top and the bottom orbifolds. The two cross ra-
tios and two σ-invariants from the top and the bottom is the complete invariant
variables for 2-dimensional considerations.

• The only equation is the cross ratio equation for two center vertices. (There is a
0 cross ratio for each holographic tetrahedron)
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• Hence, we obtain 3-cells as the deformation space. This is for the generic situa-
tion.

• The total space is a 3-cell with three distinguished planes meeting transversally.
The planes form the nongeneric locus.

• It the edge orders are all > 2, then each quadrilateral orbifold has the deforma-
tion space a cell of dimension 4. Thus, the total configuration space is a cell of
dimension 24 + 4 = 28.

• The relations are from cross ratios of edges from the top and the bottom ver-
tices and the sigma equations of four tetrahedron and the cross ratio matching
condition for the central vertex.

• Thus, our space should be a cell of dimension 28 − 8 − 4 − 1 = 15. (This can
be computed geometrically also.)

The example 5: Hexahedron

• Consider the hexahedron with all edge orders equal to 3.

• We decompose into six tetrahedrons sharing a central diagonal.

• Then the vertex correspond to 3, 3, 3-triangle groups. TwoA,A′ are triangulated
into six triangles (barycentric subdivision form) and the rest is divided into two
triangles.

• The projective structure on each triangle group is classified by a line. The total
dimension is 8 for the triangle group deformations, 4 for two central vertices in
A and A′ and 6 for vertices in the six edges of A and A′ and 6 for vertices in the
edges of the rest of the triangles. Total dimension is 24.

The hexahedron
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DD’

CC’

BB’

A’A

D’
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B’

C
B

A’
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The hexahedron

• The equations are 3 from the diagonal AA′ and 6 from the cross ratio equation
from six sides of the hexahedron and 6 from σ invariants of the six tetrahedra.

• Thus, we should have 24− 15 = 9 dimensional space.

• This agrees with 3f − e = 18− 12 = 6 with 3 dimensional space of hexahedra.

• But we do need to investigate the matrix rank.
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