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Abstract
• A real projective structure on a 3-orbifold is given by

locally modeling the orbifold by real projective geometry.
• We present some methodology to study Coxeter groups

which are fundamental groups of 3-orbifolds with
representations in SL±(4, R) and deformation spaces.

• These examples give us nontrivial deformation spaces of
projective structures.



2

A brief introduction to projective structures

A geometry is a pair (G, X) where G is a Lie group acting on a
space X (analytically, locally effectively, transitively) as defined
by Klein. A study of geometry is the study of G-invariant
properties on X.
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A brief introduction to projective structures

A geometry is a pair (G, X) where G is a Lie group acting on a
space X (analytically, locally effectively, transitively) as defined
by Klein. A study of geometry is the study of G-invariant
properties on X.

A (G, X)-geometric structure on a manifold M is given by

• an atlas of charts to X

• where the transition maps are in G.

This induces “local (G, X)-geometry” on the manifold M
consistently.

{(G, x)− structure on M} ↔
{(dev : M̃ → X, h : π1(M) → G)|
dev ◦ ϑ = h(ϑ) ◦ dev, ϑ ∈ π1(M)}/ ∼
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where dev is an immersion and h a homomorphism. ∼ is given
by

(dev, h) ↔ (g ◦ dev, g ◦ h(·) ◦ g−1).

Some examples:

• Euclidean manifolds: (Rn, Isom(Rn))

• hyperbolic manifolds: (Hn, PSO(n + 1, R)).

• spherical manifolds: (Sn, O(n + 1, R)).

• conformal manifolds: (Sn,Mobius(Sn)).

• projective manifolds: (RPn, PGL(n + 1, R)).
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π1(M). The latter space is fairly hard to understand.

A rigid type geometry usually has G-invariant metrics on X,
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A flexible type geometry has no G-invariant metrics on X, and
the universal cover of (G, X)-manifold M can be complicated
and immerses over X. G-representations of π1(M) are poorly
understood.
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Origins in Geometry

• Cartan defined projectively flat structures on manifolds as:

? “geodesically Euclidean but with no metrics”, i.e.,
∗ torsion-free
∗ projectively flat (i.e., same geodesics structures as flat

metrics)
? affine connection on manifolds.
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? The study of the space of representations of the
fundamental group of surfaces are related to
∗ Gauge theory: Hitchin-Teichmuller components,
∗ affine differential geometry (Calabi-Yau manifolds):

Loftin, Labourie’s work, and
∗ some theoretical physics:
◦ w3-algebra: Fock and Goncharov.
◦ Quantization of 3-manifolds: Ovsienko and Duval
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• Most examples of projective manifolds are by taking quotients
of a domain in RPn by a discrete subgroup of PGL(n+1, R).

? The domains are usually convex and we call the quotient
convex projective manifold. There are of course projective
manifolds that are not from domains.

? Let Hn be the interior of an ellipsoid. Then Hn is
the hyperbolic space and Aut(Hn) is the isometry group.
Hn/Γ has a canonical projective structure.
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• Most examples of projective manifolds are by taking quotients
of a domain in RPn by a discrete subgroup of PGL(n+1, R).

? The domains are usually convex and we call the quotient
convex projective manifold. There are of course projective
manifolds that are not from domains.

? Let Hn be the interior of an ellipsoid. Then Hn is
the hyperbolic space and Aut(Hn) is the isometry group.
Hn/Γ has a canonical projective structure.

• J.L. Koszul showed that convexity is preserved if one slightly
changed the projective structures. (Importance of convex
projective manifolds)

• Kac-Vinberg were first to find examples of convex projective
surfaces that are not hyperbolic. The examples are based on
2-dimensional Coxeter groups and easy matrix computations.
These are related to Kac-Moody algebras.
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Kobayashi and convex projective manifolds

• Kobayashi studied metrics on projective manifolds: He
considers maps

l ⊂ RP1 → M

and take maximal ones. (l proper intervals or a complete real
line.

This defines a pseudo-metric.
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• In this case, Kobayashi metric is Finsler and Hilbert

d(p, q) = log(o, s, q, p).

If Ω = Hn, the metric is the standard hyperbolic metric.

p

q

o

s
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Brief history

• Benzecri (and Milnor) showed affine 2-manifold has Euler
characteristic = 0 (the Chern conjecture for dimension 2).

• Benzecri studied convex domains that arise for convex
projective manifolds. He showed that the boundary of Ω
is C1 and if C2, it is an ellipsoid for 2-dimensional closed
convex projective surfaces.

• Nagano and Yagi classified affine structures on tori.

• Goldman classified projective structures on tori. (His senior
thesis)
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• Grafting: One can insert this type of annuli into a convex
projective surface to obtain non-convex projective surfaces.

• Convex decomposition theorem: actually, one can show that
this is all that can happen. (—)
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• Goldman’s classification of convex projective structures on
surfaces:
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• Goldman’s classification of convex projective structures on
surfaces: Determining the deformation space D(Σ):

? The needed key is that

D(P ) → D(∂P )

for a pair of pants P is a principle fibration for a pair of
pants P .

? first cut up the surface into pairs of pants.
? Each pair of pants is a union of two open triangles.
? We realize the triangles as geodesic ones.
? We investigate the projective invariants of union of four

triangles in RP2.
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? We generalized this to 2-orbifolds of negative Euler
characteristics in a recent paper [CG], showing D(Σ) is
again homeomorphic to a cell.
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Group theory and representations

• One can also consider D(M) the quotient space of all pairs
(dev, h) where dev : M̃ → RPn is an immersion equivariant
with respect to a homomorphism

h : π1(M) → PGL(n + 1, R).
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• As stated earlier, Kac-Vinberg, Koszul started to study the
deformations of representations Γ → PGL(n, R).

• There is a well-known deformation (Apanasov) called bending
for projective and conformally flat structures.

• Johnson and Millson found that a certain hyperbolic manifold
has a deformation space of projective structures that is
singular. (They also worked out this for conformally flat
structures also.)
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• As stated earlier, Kac-Vinberg, Koszul started to study the
deformations of representations Γ → PGL(n, R).

• There is a well-known deformation (Apanasov) called bending
for projective and conformally flat structures.

• Johnson and Millson found that a certain hyperbolic manifold
has a deformation space of projective structures that is
singular. (They also worked out this for conformally flat
structures also.)

• Recent work of Benoist (papers “Convex divisibles I-IV”):

? Theorem. Γ an irreducible torsion-free subgroup of
GL(m, R). Then Γ acts on a proper convex cone C
if and only if Γ is positive proximal.

? If C is not a Lorentzian cone, then Γ is Zariski dense in
GL(m, R).

? Theorem. Let Γ be a discrete torsion-free subgroup of
SL(m, R) acting on an open convex domain in RPm−1.
Let C be the corresponding cone on Rm. Then one of the
following holds.
∗ C is a product
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∗ C is homogeneous
∗ or Γ is Zariski dense in SL(m, R).
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∗ C is homogeneous
∗ or Γ is Zariski dense in SL(m, R).

? If the virtual center of Γ0 is trivial, then

EΓ0 = {ρ ∈ HΓ0| The image of ρ

divides a convex open domain in RPn−1.}

is closed in

HΓ0 := Hom(Γ0, PGL(m, R))

.
The openness was obtained by Koszul.
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∗ C is homogeneous
∗ or Γ is Zariski dense in SL(m, R).

? If the virtual center of Γ0 is trivial, then

EΓ0 = {ρ ∈ HΓ0| The image of ρ

divides a convex open domain in RPn−1.}

is closed in

HΓ0 := Hom(Γ0, PGL(m, R))

.
The openness was obtained by Koszul.

? Let Γ be as above. Then the following conditions are
equivalent:
∗ Ω is strictly convex.
∗ ∂Ω is C1.
∗ Γ is Gromov-hyperbolic.
∗ Geodesic flow on Ω/Γ is Anosov.
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Some questions related to 3-manifold theory

• The abstract of a talk on October 26, 2004 in UC Santa
Barbara:
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Some questions related to 3-manifold theory

• The abstract of a talk on October 26, 2004 in UC Santa
Barbara:

Morwen Thistlethwaite, UTK (jointly with Cooper and Long)
“Deforming closed hyperbolic 3-manifolds”

? The geometric structure on a hyperbolic 3-manifold
determines a discrete faithful representation of its
fundamental group into PSL(2, C), or equivalently into
SO+(3, 1).

? This representation is unique up to conjugation, but if we
consider G := SO+(3, 1) as a subgroup of a larger group
Γ, we can search for deformations of the G-representation
into the group Γ.

? Out of the first 1000 closed hyperbolic 3-manifolds
in the Hodgson-Weeks census, a handful admit non-
trivial deformations of their SO+(3, 1)-representations into
SL(4, R); each resulting representation variety then gives
rise to a family of real projective structures on the manifold.
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? We (J.R.Kim) studied the projective deformation spaces of
knot complements numerically and found the dimension to
be three. To determine the dimension of the projective
deformation spaces, we need three more equations: The
dimension is zero usually.

? If there is an involution reversing a simple closed geodesic in
a hyperbolic 3-manifold, we conjecture that the dimension
is one.
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Projective structures on 3-dimensional Coxeter
orbifolds

• We present some methodology to study Coxeter groups which
are fundamental groups of 3-orbifolds with representations in
SL±(4, R) and deformation spaces. These examples give us
nontrivial deformation spaces of projective structures. (There
are related examples by Benoist.)
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Projective structures on 3-dimensional Coxeter
orbifolds

• We present some methodology to study Coxeter groups which
are fundamental groups of 3-orbifolds with representations in
SL±(4, R) and deformation spaces. These examples give us
nontrivial deformation spaces of projective structures. (There
are related examples by Benoist.)

• An n-dimensional orbifold is a topological space which is
locally modeled on orbit spaces of finite groups acting on
open subsets of Rn. An orbifold is good if its universal cover
is a manifold.

• The fundamental group of the orbifold will be a Coxeter group
with a presentation

Ri, i = 1, 2, . . . , f : R2
i = 1, (RiRj)nij = 1

where Ri is associated with silvered sides and RiRj has order
nij associated with an edge.
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• Let P be a fixed convex 3-dimensional polyhedron. Let us
assign orders at each edge.

? e the number of edges
? e2 the numbers of edges of order-two among the edges.
? f be the number of sides.

3

n

2
2

2

2 2

3

3
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• Definition. A reflection in Sn is given by a great hypersphere
of fixed points and a pair of antipodal points p,−p mapping
to each other, which we call antipodally-fixed points.
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• Given two reflections R1 and R2 in Sn n ≥ 1 with respectively
distinct hyperspheres and pairs of antipodally-fixed points we
can define a dihedral angle between the respective transverse
hyperspheres of fixed points P1 and P2:

? If R1 ◦ R2 is not order-two and antipodally-fixed points of
R1 is not in the hypersphere of R2 and vice versa, R1 ◦R2

will fix P1 ∩ P2 and

∼

 cos θ sin θ 0
− sin θ cos θ 0

0 0 In−1,n−1


if n− 3 < tr(R1 ◦R2) < n + 1. In this case, we define the
dihedral angle to be θ/2.
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? If R1 ◦ R2 is of order-two and P1 and P2 meet, then we
see that the respective antipodally-fixed points p1 and p2

satisfy ±p1 ∈ P2 and ±p2 ∈ P1. In this case, the dihedral
angle is defined to be π/2.
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? If R1 ◦ R2 is of order-two and P1 and P2 meet, then we
see that the respective antipodally-fixed points p1 and p2

satisfy ±p1 ∈ P2 and ±p2 ∈ P1. In this case, the dihedral
angle is defined to be π/2.

• We remove any vertex of P which has more than three edges
ending or with orders of the edges ending there is not of form

(2, 2, n), n ≥ 2, (2, 3, 3), (2, 3, 4), (2, 3, 5),

i.e., orders of spherical triangular groups. This make P into
a possibly open 3-dimensional orbifold.

• Let P̂ denote the differentiable orbifold with sides silvered
and the edge orders realized as assigned from P with vertices
removed. We say that P̂ has a Coxeter orbifold structure.

• Cone-type, product-type, finite fundamental group type
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acting on P . Suppose that P̂ is orderable. Then the restricted
deformation space of projective structures on the orbifold P̂
is a smooth manifold of dimension 3f − e− e2− k(P ) if it is
not empty.
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be the dimension of the group of projective automorphisms
acting on P . Suppose that P̂ is orderable. Then the restricted
deformation space of projective structures on the orbifold P̂
is a smooth manifold of dimension 3f − e− e2− k(P ) if it is
not empty.

? To prove the main theorem, we will be working with
oriented real projective geometry: i.e., the geometry based
on (Sn,SL±(n + 1, R)) where Sn is the double cover
of RPn and SL±(n + 1, R) is the group of projective
automorphisms on Sn.
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? Thus, we reduce the proof to the study of representations
with “fixed P”.

∗ For a fixed convex polyhedron, we can change the
antipodally-fixed points only.

∗ First, we embed the convex polyhedron P in a f -
dimensional simplex ∆ with each side imbedded in the
side of the simplex in a one-to-one manner.

∗ For a f -dimensional simplex, it is easy to solve the
Coxeter edge relation conditions using the methods of
Kac-Vinberg. This amounts to solving a multiplicative
equations.

∗ We will consider the high-dimensional space of all
configurations of antipodally-fixed points. These points
must lie on the subspace determined by the polyhedron
P .

∗ We define a function for each edge defined by computing
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Pictures (due to Yves Benoist)
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• One of the main question currently is how to determine if the
deformation space is empty or not.

• We also wish to understand about the hyperbolic polyhedrons
which we are not necessarily studying in this paper.

• We could approach the Andreev theorem for hyperbolic
polyhedra from projective sides if we accomplish all these.
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