Deformation spaces of real projective structures on Coxeter 3-orbifolds (with some survey)

Suhyoung Choi Department of Mathematics KAIST 305-701 Daejeon, South Korea schoi@math.kaist.ac.kr mathx.kaist.ac.kr/schoi

January 10, 2006

Deformation spaces of real projective structures on Coxeter 3-orbifolds (with some survey)

Suhyoung Choi Department of Mathematics KAIST 305-701 Daejeon, South Korea schoi@math.kaist.ac.kr mathx.kaist.ac.kr/schoi

January 10, 2006

Abstract

A real projective structure on a 3-orbifold is given by locally modeling the orbifold by real projective geometry.
We present some methodology to study Coxeter groups

- which are fundamental groups of 3-orbifolds with representations in $SL_{\pm}(4, \mathbb{R})$ and deformation spaces.
- These examples give us nontrivial deformation spaces of projective structures.

A brief introduction to projective structures

A geometry is a pair (G, X) where G is a Lie group acting on a space X (analytically, locally effectively, transitively) as defined by Klein. A study of geometry is the study of G-invariant properties on X.

A brief introduction to projective structures

A *geometry* is a pair (G, X) where G is a Lie group acting on a space X (analytically, locally effectively, transitively) as defined by Klein. A study of geometry is the study of G-invariant properties on X.

A (G, X)-geometric structure on a manifold M is given by

- an atlas of charts to X
- where the transition maps are in G.

This induces "local (G, X)-geometry" on the manifold M consistently.

A brief introduction to projective structures

A geometry is a pair (G, X) where G is a Lie group acting on a space X (analytically, locally effectively, transitively) as defined by Klein. A study of geometry is the study of G-invariant properties on X.

A (G, X)-geometric structure on a manifold M is given by

- an atlas of charts to X
- where the transition maps are in G.

This induces "local (G, X)-geometry" on the manifold M consistently.

 $\{(G, x) - \text{structure on } M\} \leftrightarrow$ $\{(\operatorname{\mathbf{dev}} : \tilde{M} \to X, h : \pi_1(M) \to G) |$ $\operatorname{\mathbf{dev}} \circ \vartheta = h(\vartheta) \circ \operatorname{\mathbf{dev}}, \vartheta \in \pi_1(M)\} / \sim$

where $\operatorname{\mathbf{dev}}$ is an immersion and h a homomorphism. \sim is given by

$$(\mathbf{dev}, h) \leftrightarrow (g \circ \mathbf{dev}, g \circ h(\cdot) \circ g^{-1}).$$

Some examples:

- Euclidean manifolds: $(R^n, Isom(R^n))$
- hyperbolic manifolds: $(H^n, PSO(n+1, R))$.
- spherical manifolds: $(S^n, O(n+1, R))$.
- conformal manifolds: $(S^n, Mobius(S^n))$.
- projective manifolds: $(\mathbb{R}P^n, PGL(n+1, \mathbb{R}))$.

where $\operatorname{\mathbf{dev}}$ is an immersion and h a homomorphism. \sim is given by

$$(\mathbf{dev}, h) \leftrightarrow (g \circ \mathbf{dev}, g \circ h(\cdot) \circ g^{-1}).$$

Some examples:

- Euclidean manifolds: $(R^n, Isom(R^n))$
- hyperbolic manifolds: $(H^n, PSO(n+1, R))$.
- spherical manifolds: $(S^n, O(n+1, R))$.
- conformal manifolds: $(S^n, Mobius(S^n))$.
- projective manifolds: $(\mathbb{R}P^n, PGL(n+1, \mathbb{R}))$.

General remarks:

 What kind of geometric (projective) structures are on a given manifold? where $\operatorname{\mathbf{dev}}$ is an immersion and h a homomorphism. \sim is given by

$$(\mathbf{dev}, h) \leftrightarrow (g \circ \mathbf{dev}, g \circ h(\cdot) \circ g^{-1}).$$

Some examples:

- Euclidean manifolds: $(R^n, Isom(R^n))$
- hyperbolic manifolds: $(H^n, PSO(n+1, R))$.
- spherical manifolds: $(S^n, O(n+1, R))$.
- conformal manifolds: $(S^n, Mobius(S^n))$.
- projective manifolds: $(\mathbb{R}P^n, PGL(n+1, \mathbb{R}))$.

General remarks:

 What kind of geometric (projective) structures are on a given manifold?

 $D(M) = \{\text{geometric (projective) structures on } M\}/\text{isotopies}$

 $D(M) = \{ \text{geometric (projective) structures on } M \} / \text{isotopies}$

- Rigid type geometric structures is
 - * studied using Margulis type rigidity:
 - * What about flexible types ones: such as
 - * conformally flat,
 - * projectively flat, or
 - affinely flat geometric structures.

 $D(M) = \{ \text{geometric (projective) structures on } M \} / \text{isotopies}$

- Rigid type geometric structures is
 - * studied using Margulis type rigidity:
 - ★ What about flexible types ones: such as
 - * conformally flat,
 - * projectively flat, or
 - * affinely flat geometric structures.
- D(M) is closely related to the space of G-representations of π₁(M). The latter space is fairly hard to understand.

 $D(M) = \{ \text{geometric (projective) structures on } M \} / \text{isotopies}$

- Rigid type geometric structures is
 - * studied using Margulis type rigidity:
 - ★ What about flexible types ones: such as
 - * conformally flat,
 - * projectively flat, or
 - * affinely flat geometric structures.
- D(M) is closely related to the space of G-representations of π₁(M). The latter space is fairly hard to understand.

A rigid type geometry usually has G-invariant metrics on X, and the universal cover of (G, X)-manifold M is isomorphic to the universal cover of X, i.e., M is complete and $M = \tilde{X}/\Gamma$.

 $D(M) = \{ \text{geometric (projective) structures on } M \} / \text{isotopies}$

- Rigid type geometric structures is
 - * studied using Margulis type rigidity:
 - ★ What about flexible types ones: such as
 - * conformally flat,
 - * projectively flat, or
 - * affinely flat geometric structures.
- D(M) is closely related to the space of G-representations of π₁(M). The latter space is fairly hard to understand.

A rigid type geometry usually has G-invariant metrics on X, and the universal cover of (G, X)-manifold M is isomorphic to the universal cover of X, i.e., M is complete and $M = \tilde{X}/\Gamma$. A flexible type geometry has no G-invariant metrics on X, and the universal cover of (G, X)-manifold M can be complicated and immerses over X. G-representations of $\pi_1(M)$ are poorly understood.

- * "geodesically Euclidean but with no metrics", i.e.,
 - * torsion-free
 - * projectively flat (i.e., same geodesics structures as flat metrics)
- ★ affine connection on manifolds.

- * "geodesically Euclidean but with no metrics", i.e.,
 - * torsion-free
 - projectively flat (i.e., same geodesics structures as flat metrics)
- ★ affine connection on manifolds.
- Ehresmann identifies this structure as having a maximal atlas of charts
 - \star to \mathbb{RP}^n
 - * with transition maps in $PGL(n+1, \mathbb{R})$.

- * "geodesically Euclidean but with no metrics", i.e.,
 - * torsion-free
 - projectively flat (i.e., same geodesics structures as flat metrics)
- * affine connection on manifolds.
- Ehresmann identifies this structure as having a maximal atlas of charts
 - \star to \mathbb{RP}^n
 - \star with transition maps in $\mathrm{PGL}(n+1,\mathbb{R})$.
- Some reasons for interest in projective structures:
 - ★ 2-dimensional classical geometries: euclidean, spherical, hyperbolic geometries are projective geometries (and conformal geometries).

- * "geodesically Euclidean but with no metrics", i.e.,
 - * torsion-free
 - projectively flat (i.e., same geodesics structures as flat metrics)
- * affine connection on manifolds.
- Ehresmann identifies this structure as having a maximal atlas of charts
 - \star to \mathbb{RP}^n
 - \star with transition maps in $\mathrm{PGL}(n+1,\mathbb{R})$.
- Some reasons for interest in projective structures:
 - ★ 2-dimensional classical geometries: euclidean, spherical, hyperbolic geometries are projective geometries (and conformal geometries).

- The study of the space of representations of the fundamental group of surfaces are related to
 - * Gauge theory: Hitchin-Teichmuller components,
 - affine differential geometry (Calabi-Yau manifolds): Loftin, Labourie's work, and
 - * some theoretical physics:
 - w3-algebra: Fock and Goncharov.
 - Quantization of 3-manifolds: Ovsienko and Duval

- The study of the space of representations of the fundamental group of surfaces are related to
 - * Gauge theory: Hitchin-Teichmuller components,
 - affine differential geometry (Calabi-Yau manifolds): Loftin, Labourie's work, and
 - * some theoretical physics:
 - w3-algebra: Fock and Goncharov.
 - Quantization of 3-manifolds: Ovsienko and Duval
- * 3-dimensional Thurston geometries are almost projective. $(\mathbb{R}P^3 \# \mathbb{R}P^3$ does not admit a projective structure (Cooper-Long).)
- There are many parallels to conformally flat structures: geometric analysis and so on.

- The study of the space of representations of the fundamental group of surfaces are related to
 - * Gauge theory: Hitchin-Teichmuller components,
 - affine differential geometry (Calabi-Yau manifolds): Loftin, Labourie's work, and
 - * some theoretical physics:
 - w3-algebra: Fock and Goncharov.
 - Quantization of 3-manifolds: Ovsienko and Duval
- * 3-dimensional Thurston geometries are almost projective. $(\mathbb{R}P^3 \# \mathbb{R}P^3$ does not admit a projective structure (Cooper-Long).)
- There are many parallels to conformally flat structures: geometric analysis and so on.

- Most examples of projective manifolds are by taking quotients of a domain in $\mathbb{R}P^n$ by a discrete subgroup of $\mathrm{PGL}(n+1,\mathbb{R})$.
 - ★ The domains are usually convex and we call the quotient convex projective manifold. There are of course projective manifolds that are not from domains.
 - * Let H^n be the interior of an ellipsoid. Then H^n is the hyperbolic space and $Aut(H^n)$ is the isometry group. H^n/Γ has a canonical projective structure.

- Most examples of projective manifolds are by taking quotients of a domain in $\mathbb{R}P^n$ by a discrete subgroup of $\mathrm{PGL}(n+1,\mathbb{R})$.
 - ★ The domains are usually convex and we call the quotient convex projective manifold. There are of course projective manifolds that are not from domains.
 - ★ Let H^n be the interior of an ellipsoid. Then H^n is the hyperbolic space and $Aut(H^n)$ is the isometry group. H^n/Γ has a canonical projective structure.
- J.L. Koszul showed that convexity is preserved if one slightly changed the projective structures. (Importance of convex projective manifolds)
- Kac-Vinberg were first to find examples of convex projective surfaces that are not hyperbolic. The examples are based on 2-dimensional Coxeter groups and easy matrix computations. These are related to Kac-Moody algebras.

Kobayashi and convex projective manifolds

Kobayashi studied metrics on projective manifolds: He considers maps

 $l \subset \mathbb{RP}^1 \to M$

- and take maximal ones. (l proper intervals or a complete real line.
- This defines a pseudo-metric.

Kobayashi and convex projective manifolds

Kobayashi studied metrics on projective manifolds: He considers maps

 $l \subset \mathbb{RP}^1 \to M$

- and take maximal ones. (l proper intervals or a complete real line.
- This defines a pseudo-metric.
- Kobayashi metric is a metric if and only if
 - \star there are no lines of length π if and only if
 - * $M = \Omega/\Gamma$ where Ω is a convex domain in \mathbb{RP}^n .

Kobayashi and convex projective manifolds

Kobayashi studied metrics on projective manifolds: He considers maps

 $l \subset \mathbb{RP}^1 \to M$

- and take maximal ones. (l proper intervals or a complete real line.
- This defines a pseudo-metric.
- Kobayashi metric is a metric if and only if
 - \star there are no lines of length π if and only if
 - * $M = \Omega/\Gamma$ where Ω is a convex domain in \mathbb{RP}^n .

In this case, Kobayashi metric is Finsler and Hilbert

$$d(p,q) = \log(o, s, q, p).$$

If $\Omega = H^n$, the metric is the standard hyperbolic metric.

Brief history

- Benzecri (and Milnor) showed affine 2-manifold has Euler characteristic = 0 (the Chern conjecture for dimension 2).
- Benzecri studied convex domains that arise for convex projective manifolds. He showed that the boundary of Ω is C^1 and if C^2 , it is an ellipsoid for 2-dimensional closed convex projective surfaces.
- Nagano and Yagi classified affine structures on tori.
- Goldman classified projective structures on tori. (His senior thesis)

Brief history

- Benzecri (and Milnor) showed affine 2-manifold has Euler characteristic = 0 (the Chern conjecture for dimension 2).
- Benzecri studied convex domains that arise for convex projective manifolds. He showed that the boundary of Ω is C^1 and if C^2 , it is an ellipsoid for 2-dimensional closed convex projective surfaces.
- Nagano and Yagi classified affine structures on tori.
- Goldman classified projective structures on tori. (His senior thesis)

- Grafting: One can insert this type of annuli into a convex projective surface to obtain non-convex projective surfaces.
- Convex decomposition theorem: actually, one can show that this is all that can happen. (—)

- Grafting: One can insert this type of annuli into a convex projective surface to obtain non-convex projective surfaces.
- Convex decomposition theorem: actually, one can show that this is all that can happen. (—)

 Goldman's classification of convex projective structures on surfaces: • Goldman's classification of convex projective structures on surfaces: Determining the deformation space $D(\Sigma)$:

★ The needed key is that

$D(P) \to D(\partial P)$

for a pair of pants P is a principle fibration for a pair of pants P.

- ★ first cut up the surface into pairs of pants.
- ★ Each pair of pants is a union of two open triangles.
- \star We realize the triangles as geodesic ones.
- * We investigate the projective invariants of union of four triangles in \mathbb{RP}^2 .

* We generalized this to 2-orbifolds of negative Euler characteristics in a recent paper [CG], showing $D(\Sigma)$ is again homeomorphic to a cell.

Group theory and representations

• One can also consider D(M) the quotient space of all pairs (\mathbf{dev}, h) where $\mathbf{dev}: \tilde{M} \to \mathbb{R}P^n$ is an immersion equivariant with respect to a homomorphism

 $h: \pi_1(M) \to \mathrm{PGL}(n+1,\mathbb{R}).$

Group theory and representations

• One can also consider D(M) the quotient space of all pairs (\mathbf{dev}, h) where $\mathbf{dev} : \tilde{M} \to \mathbb{R}P^n$ is an immersion equivariant with respect to a homomorphism

$$h: \pi_1(M) \to \mathrm{PGL}(n+1,\mathbb{R}).$$

• Sending (\mathbf{dev}, h) to h gives us a map

hol: $D(M) \to \operatorname{Hom}(\pi_1(M), \operatorname{PGL}(n+1,\mathbb{R})/\operatorname{PGL}(n+1,\mathbb{R})),$

which is a local homeomorphism if M is a closed manifold (orbifold). Thus, our study is closed related to the study of $PGL(n+1, \mathbb{R})$ -representations.

Group theory and representations

• One can also consider D(M) the quotient space of all pairs (\mathbf{dev}, h) where $\mathbf{dev} : \tilde{M} \to \mathbb{R}P^n$ is an immersion equivariant with respect to a homomorphism

$$h: \pi_1(M) \to \mathrm{PGL}(n+1,\mathbb{R}).$$

• Sending (\mathbf{dev}, h) to h gives us a map

hol: $D(M) \to \operatorname{Hom}(\pi_1(M), \operatorname{PGL}(n+1,\mathbb{R})/\operatorname{PGL}(n+1,\mathbb{R})),$

which is a local homeomorphism if M is a closed manifold (orbifold). Thus, our study is closed related to the study of $PGL(n+1, \mathbb{R})$ -representations.

- As stated earlier, Kac-Vinberg, Koszul started to study the deformations of representations $\Gamma \to PGL(n, \mathbb{R})$.
- There is a well-known deformation (Apanasov) called bending for projective and conformally flat structures.
- Johnson and Millson found that a certain hyperbolic manifold has a deformation space of projective structures that is singular. (They also worked out this for conformally flat structures also.)

- As stated earlier, Kac-Vinberg, Koszul started to study the deformations of representations $\Gamma \to PGL(n, \mathbb{R})$.
- There is a well-known deformation (Apanasov) called bending for projective and conformally flat structures.
- Johnson and Millson found that a certain hyperbolic manifold has a deformation space of projective structures that is singular. (They also worked out this for conformally flat structures also.)
- Recent work of Benoist (papers "Convex divisibles I-IV"):
 - * **Theorem.** Γ an irreducible torsion-free subgroup of $GL(m, \mathbb{R})$. Then Γ acts on a proper convex cone C if and only if Γ is positive proximal.
 - ★ If C is not a Lorentzian cone, then Γ is Zariski dense in $GL(m, \mathbb{R})$.
 - * Theorem. Let Γ be a discrete torsion-free subgroup of $SL(m,\mathbb{R})$ acting on an open convex domain in $\mathbb{R}P^{m-1}$. Let C be the corresponding cone on \mathbb{R}^m . Then one of the following holds.
 - * C is a product

 $\ast C$ is homogeneous

* or Γ is Zariski dense in $SL(m, \mathbb{R})$.

- * C is homogeneous
- * or Γ is Zariski dense in $SL(m, \mathbb{R})$.
- \star If the virtual center of Γ_0 is trivial, then

$$E_{\Gamma_0} = \{ \rho \in H_{\Gamma_0} | \text{ The image of } \rho \}$$

divides a convex open domain in $\mathbb{R}P^{n-1}$.}

is closed in

 $H_{\Gamma_0} := Hom(\Gamma_0, PGL(m, \mathbb{R}))$

The openness was obtained by Koszul.

- * C is homogeneous
- * or Γ is Zariski dense in $SL(m, \mathbb{R})$.
- \star If the virtual center of Γ_0 is trivial, then

 $E_{\Gamma_0} = \{ \rho \in H_{\Gamma_0} | \text{ The image of } \rho \}$

divides a convex open domain in $\mathbb{R}P^{n-1}$.

is closed in

$$H_{\Gamma_0} := Hom(\Gamma_0, PGL(m, \mathbb{R}))$$

The openness was obtained by Koszul.

- * Let Γ be as above. Then the following conditions are equivalent:
 - * Ω is strictly convex.
 - * $\partial \Omega$ is C^1 .
 - * Γ is Gromov-hyperbolic.
 - * Geodesic flow on Ω/Γ is Anosov.

 The abstract of a talk on October 26, 2004 in UC Santa Barbara:

- The abstract of a talk on October 26, 2004 in UC Santa Barbara:
 - Morwen Thistlethwaite, UTK (jointly with Cooper and Long) "Deforming closed hyperbolic 3-manifolds"
 - * The geometric structure on a hyperbolic 3-manifold determines a discrete faithful representation of its fundamental group into $PSL(2,\mathbb{C})$, or equivalently into $SO^+(3,1)$.

- The abstract of a talk on October 26, 2004 in UC Santa Barbara:
 - Morwen Thistlethwaite, UTK (jointly with Cooper and Long) "Deforming closed hyperbolic 3-manifolds"
 - * The geometric structure on a hyperbolic 3-manifold determines a discrete faithful representation of its fundamental group into $PSL(2,\mathbb{C})$, or equivalently into $SO^+(3,1)$.
 - * This representation is unique up to conjugation, but if we consider $G := SO^+(3, 1)$ as a subgroup of a larger group Γ , we can search for deformations of the G-representation into the group Γ .

 The abstract of a talk on October 26, 2004 in UC Santa Barbara:

Morwen Thistlethwaite, UTK (jointly with Cooper and Long) "Deforming closed hyperbolic 3-manifolds"

- * The geometric structure on a hyperbolic 3-manifold determines a discrete faithful representation of its fundamental group into $PSL(2,\mathbb{C})$, or equivalently into $SO^+(3,1)$.
- * This representation is unique up to conjugation, but if we consider $G := SO^+(3, 1)$ as a subgroup of a larger group Γ , we can search for deformations of the G-representation into the group Γ .
- ★ Out of the first 1000 closed hyperbolic 3-manifolds in the Hodgson-Weeks census, a handful admit nontrivial deformations of their SO⁺(3, 1)-representations into SL(4, ℝ); each resulting representation variety then gives rise to a family of real projective structures on the manifold.

- * We (J.R.Kim) studied the projective deformation spaces of knot complements numerically and found the dimension to be three. To determine the dimension of the projective deformation spaces, we need three more equations: The dimension is zero usually.
- ★ If there is an involution reversing a simple closed geodesic in a hyperbolic 3-manifold, we conjecture that the dimension is one.

Projective structures on 3-dimensional Coxeter orbifolds

 We present some methodology to study Coxeter groups which are fundamental groups of 3-orbifolds with representations in SL_±(4, ℝ) and deformation spaces. These examples give us nontrivial deformation spaces of projective structures. (There are related examples by Benoist.)

Projective structures on 3-dimensional Coxeter orbifolds

- We present some methodology to study Coxeter groups which are fundamental groups of 3-orbifolds with representations in SL_±(4, ℝ) and deformation spaces. These examples give us nontrivial deformation spaces of projective structures. (There are related examples by Benoist.)
- An *n*-dimensional orbifold is a topological space which is locally modeled on orbit spaces of finite groups acting on open subsets of Rⁿ. An orbifold is good if its universal cover is a manifold.

Projective structures on 3-dimensional Coxeter orbifolds

- We present some methodology to study Coxeter groups which are fundamental groups of 3-orbifolds with representations in SL_±(4, ℝ) and deformation spaces. These examples give us nontrivial deformation spaces of projective structures. (There are related examples by Benoist.)
- An *n*-dimensional orbifold is a topological space which is locally modeled on orbit spaces of finite groups acting on open subsets of Rⁿ. An orbifold is good if its universal cover is a manifold.
- The fundamental group of the orbifold will be a Coxeter group with a presentation

$R_i, i = 1, 2, \dots, f : R_i^2 = 1, (R_i R_j)^{n_{ij}} = 1$

where R_i is associated with silvered sides and R_iR_j has order n_{ij} associated with an edge.

- Let P be a fixed convex 3-dimensional polyhedron. Let us assign orders at each edge.
 - $\star~e$ the number of edges
 - \star e_2 the numbers of edges of order-two among the edges.
 - $\star~f$ be the number of sides.

- Let P be a fixed convex 3-dimensional polyhedron. Let us assign orders at each edge.
 - $\star e$ the number of edges
 - $\star e_2$ the numbers of edges of order-two among the edges.
 - \star f be the number of sides.

 Definition. A reflection in Sⁿ is given by a great hypersphere of fixed points and a pair of antipodal points p, -p mapping to each other, which we call antipodally-fixed points.

- Given two reflections R₁ and R₂ in Sⁿ n ≥ 1 with respectively distinct hyperspheres and pairs of antipodally-fixed points we can define a *dihedral angle* between the respective transverse hyperspheres of fixed points P₁ and P₂:
 - ★ If $R_1 \circ R_2$ is not order-two and antipodally-fixed points of R_1 is not in the hypersphere of R_2 and vice versa, $R_1 \circ R_2$ will fix $P_1 \cap P_2$ and

$$\sim \begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & I^{n-1,n-1} \end{bmatrix}$$

if $n-3 < tr(R_1 \circ R_2) < n+1$. In this case, we define the dihedral angle to be $\theta/2$.

★ If $R_1 \circ R_2$ is of order-two and P_1 and P_2 meet, then we see that the respective antipodally-fixed points p_1 and p_2 satisfy $\pm p_1 \in P_2$ and $\pm p_2 \in P_1$. In this case, the dihedral angle is defined to be $\pi/2$.

- ★ If $R_1 \circ R_2$ is of order-two and P_1 and P_2 meet, then we see that the respective antipodally-fixed points p_1 and p_2 satisfy $\pm p_1 \in P_2$ and $\pm p_2 \in P_1$. In this case, the dihedral angle is defined to be $\pi/2$.
- We remove any vertex of P which has more than three edges ending or with orders of the edges ending there is not of form

 $(2,2,n), n \ge 2, (2,3,3), (2,3,4), (2,3,5),$

i.e., orders of spherical triangular groups. This make P into a possibly open 3-dimensional orbifold.

- ★ If $R_1 \circ R_2$ is of order-two and P_1 and P_2 meet, then we see that the respective antipodally-fixed points p_1 and p_2 satisfy $\pm p_1 \in P_2$ and $\pm p_2 \in P_1$. In this case, the dihedral angle is defined to be $\pi/2$.
- We remove any vertex of P which has more than three edges ending or with orders of the edges ending there is not of form

 $(2,2,n), n \ge 2, (2,3,3), (2,3,4), (2,3,5),$

i.e., orders of spherical triangular groups. This make P into a possibly open 3-dimensional orbifold.

• Let \hat{P} denote the differentiable orbifold with sides silvered and the edge orders realized as assigned from P with vertices removed. We say that \hat{P} has a *Coxeter orbifold structure*.

- ★ If $R_1 \circ R_2$ is of order-two and P_1 and P_2 meet, then we see that the respective antipodally-fixed points p_1 and p_2 satisfy $\pm p_1 \in P_2$ and $\pm p_2 \in P_1$. In this case, the dihedral angle is defined to be $\pi/2$.
- We remove any vertex of P which has more than three edges ending or with orders of the edges ending there is not of form

 $(2,2,n), n \ge 2, (2,3,3), (2,3,4), (2,3,5),$

i.e., orders of spherical triangular groups. This make P into a possibly open 3-dimensional orbifold.

• Let \hat{P} denote the differentiable orbifold with sides silvered and the edge orders realized as assigned from P with vertices removed. We say that \hat{P} has a *Coxeter orbifold structure*.

Cone-type, product-type, finite fundamental group type

P̂ is orderable if the sides of *P* can be ordered so that each side has no more than three edges of order-two or edges of sides of higher index.

- *P* is orderable if the sides of *P* can be ordered so that each side has no more than three edges of order-two or edges of sides of higher index.
- Main Theorem. Let P be a fixed convex polyhedron and \hat{P} be given a normal-type Coxeter orbifold structure. Let k(P) be the dimension of the group of projective automorphisms acting on P. Suppose that \hat{P} is orderable. Then the restricted deformation space of projective structures on the orbifold \hat{P} is a smooth manifold of dimension $3f e e_2 k(P)$ if it is not empty.

- *P* is orderable if the sides of *P* can be ordered so that each side has no more than three edges of order-two or edges of sides of higher index.
- Main Theorem. Let P be a fixed convex polyhedron and P be given a normal-type Coxeter orbifold structure. Let k(P) be the dimension of the group of projective automorphisms acting on P. Suppose that P is orderable. Then the restricted deformation space of projective structures on the orbifold P is a smooth manifold of dimension 3f e e₂ k(P) if it is not empty.
 - * To prove the main theorem, we will be working with oriented real projective geometry: i.e., the geometry based on $(S^n, \operatorname{SL}_{\pm}(n+1, \mathbb{R}))$ where S^n is the double cover of $\mathbb{R}P^n$ and $\operatorname{SL}_{\pm}(n+1, \mathbb{R})$ is the group of projective automorphisms on S^n .

- *P* is orderable if the sides of *P* can be ordered so that each side has no more than three edges of order-two or edges of sides of higher index.
- Main Theorem. Let P be a fixed convex polyhedron and P be given a normal-type Coxeter orbifold structure. Let k(P) be the dimension of the group of projective automorphisms acting on P. Suppose that P is orderable. Then the restricted deformation space of projective structures on the orbifold P is a smooth manifold of dimension 3f e e₂ k(P) if it is not empty.
 - * To prove the main theorem, we will be working with oriented real projective geometry: i.e., the geometry based on $(S^n, \operatorname{SL}_{\pm}(n+1, \mathbb{R}))$ where S^n is the double cover of $\mathbb{R}P^n$ and $\operatorname{SL}_{\pm}(n+1, \mathbb{R})$ is the group of projective automorphisms on S^n .

★ A projective structure on an orbifold corresponds to a unique (Sⁿ, SL_±(n + 1, ℝ))-structure and vice versa (see page 143 of Thurston's book "Three-dimensional geometry and topology").

- ★ A projective structure on an orbifold corresponds to a unique (Sⁿ, SL_±(n + 1, ℝ))-structure and vice versa (see page 143 of Thurston's book "Three-dimensional geometry and topology").
- ★ Therefore, the deformation space of projective structures on an orbifold equals that of $(S^n, SL_{\pm}(n+1, \mathbb{R}))$ -structures on the orbifold. In this paper, we identify them.

- ★ A projective structure on an orbifold corresponds to a unique (Sⁿ, SL_±(n + 1, ℝ))-structure and vice versa (see page 143 of Thurston's book "Three-dimensional geometry and topology").
- ★ Therefore, the deformation space of projective structures on an orbifold equals that of $(S^n, SL_{\pm}(n+1, \mathbb{R}))$ -structures on the orbifold. In this paper, we identify them.
- ★ Since Sⁿ, a subspace of dimension i of ℝⁿ⁺¹ corresponds to a great sphere of dimension i - 1. They are totally geodesic. A pair of antipodal points are considered a great 0-sphere.
- ★ A projective structure on an orbifold corresponds to a unique (Sⁿ, SL_±(n + 1, ℝ))-structure and vice versa (see page 143 of Thurston's book "Three-dimensional geometry and topology").
- ★ Therefore, the deformation space of projective structures on an orbifold equals that of $(S^n, SL_{\pm}(n+1, \mathbb{R}))$ -structures on the orbifold. In this paper, we identify them.
- ★ Since Sⁿ, a subspace of dimension i of ℝⁿ⁺¹ corresponds to a great sphere of dimension i - 1. They are totally geodesic. A pair of antipodal points are considered a great 0-sphere.
- * **Proposition.** Let p be a point of the deformation space $D(\hat{P})$ of projective structures on the Coxeter orbifold \hat{P} . Then the map

$$hol: D(\hat{P}) \to \operatorname{Hom}(\pi_1(\hat{P}), \hat{G})/\hat{G}$$

induces a local homeomorphism near p from the restricted deformation space $D_P(\hat{P})$ to $\operatorname{Hom}_P(\pi_1(\hat{P}), \hat{G})/\hat{G}$.

- ★ A projective structure on an orbifold corresponds to a unique (Sⁿ, SL_±(n + 1, ℝ))-structure and vice versa (see page 143 of Thurston's book "Three-dimensional geometry and topology").
- ★ Therefore, the deformation space of projective structures on an orbifold equals that of $(S^n, SL_{\pm}(n+1, \mathbb{R}))$ -structures on the orbifold. In this paper, we identify them.
- ★ Since Sⁿ, a subspace of dimension i of ℝⁿ⁺¹ corresponds to a great sphere of dimension i - 1. They are totally geodesic. A pair of antipodal points are considered a great 0-sphere.
- * **Proposition.** Let p be a point of the deformation space $D(\hat{P})$ of projective structures on the Coxeter orbifold \hat{P} . Then the map

$$hol: D(\hat{P}) \to \operatorname{Hom}(\pi_1(\hat{P}), \hat{G})/\hat{G}$$

induces a local homeomorphism near p from the restricted deformation space $D_P(\hat{P})$ to $\operatorname{Hom}_P(\pi_1(\hat{P}), \hat{G})/\hat{G}$.

* Thus, we reduce the proof to the study of representations with "fixed P".

* Thus, we reduce the proof to the study of representations with "fixed P".

- * Thus, we reduce the proof to the study of representations with "fixed P".
 - * For a fixed convex polyhedron, we can change the antipodally-fixed points only.

- ★ Thus, we reduce the proof to the study of representations with "fixed P".
 - * For a fixed convex polyhedron, we can change the antipodally-fixed points only.
 - * First, we embed the convex polyhedron P in a f-dimensional simplex Δ with each side imbedded in the side of the simplex in a one-to-one manner.

- ★ Thus, we reduce the proof to the study of representations with "fixed P".
 - For a fixed convex polyhedron, we can change the antipodally-fixed points only.
 - * First, we embed the convex polyhedron P in a f-dimensional simplex Δ with each side imbedded in the side of the simplex in a one-to-one manner.
 - For a *f*-dimensional simplex, it is easy to solve the Coxeter edge relation conditions using the methods of Kac-Vinberg. This amounts to solving a multiplicative equations.

- * Thus, we reduce the proof to the study of representations with "fixed P".
 - * For a fixed convex polyhedron, we can change the antipodally-fixed points only.
 - * First, we embed the convex polyhedron P in a f-dimensional simplex Δ with each side imbedded in the side of the simplex in a one-to-one manner.
 - For a *f*-dimensional simplex, it is easy to solve the Coxeter edge relation conditions using the methods of Kac-Vinberg. This amounts to solving a multiplicative equations.
 - * We will consider the high-dimensional space of all configurations of antipodally-fixed points. These points must lie on the subspace determined by the polyhedron P.

- ★ Thus, we reduce the proof to the study of representations with "fixed P".
 - * For a fixed convex polyhedron, we can change the antipodally-fixed points only.
 - * First, we embed the convex polyhedron P in a f-dimensional simplex Δ with each side imbedded in the side of the simplex in a one-to-one manner.
 - For a *f*-dimensional simplex, it is easy to solve the Coxeter edge relation conditions using the methods of Kac-Vinberg. This amounts to solving a multiplicative equations.
 - * We will consider the high-dimensional space of all configurations of antipodally-fixed points. These points must lie on the subspace determined by the polyhedron *P*.
 - * We define a function for each edge defined by computing

* We find gradient vectors for these functions and show how to find the dimension of their spans.

- * We find gradient vectors for these functions and show how to find the dimension of their spans.
- We show by a matrix technique that the dimensions are independent of the antipodally-fixed points by natural cancellations following from orderability.

- * We find gradient vectors for these functions and show how to find the dimension of their spans.
- We show by a matrix technique that the dimensions are independent of the antipodally-fixed points by natural cancellations following from orderability.

Pictures (due to Yves Benoist)

- One of the main question currently is how to determine if the deformation space is empty or not.
- We also wish to understand about the hyperbolic polyhedrons which we are not necessarily studying in this paper.
- We could approach the Andreev theorem for hyperbolic polyhedra from projective sides if we accomplish all these.

References

- [Benoist] Yves Benoist, Convexes divisible, C.R. Acad. Sci. 332 (2003) 387–390. (There are more references here (see also Convex divisibles I, II, III, IV))
- [Choi] S. Choi, *The deformation spaces of projective structures on 3-dimensional Coxeter orbifolds.* preprint. mathx.kaist.ac.kr/schoi
- [CG] S. Choi and W. M. Goldman, The deformation spaces

of projectively flat structures on 2-orbifold. Amer. J. Mathematics. **127** 1019–1102 (2005)

[Goldman 90] W. Goldman, *Convex real projective structures on compact surfaces*, J. Differential Geometry **31** 791–845 (1990).

[Goldman88] W. Goldman, *Projective geometry on manifolds*, Lecture notes, 1988.

[Johnson and Millson 86] D. Johnson and J.J. Millson, Deformation spaces associated to compact hyperbolic manifolds. In *Discrete Groups in Geometry and Analysis*, Proceedings of a conference held at Yale University in honor of G. D. Mostow, 1986.