bplist00__WebMainResource_ ^WebResourceURL_WebResourceTextEncodingName_WebResourceFrameName_WebResourceData_WebResourceMIMEType_,http://mathsci.kaist.ac.kr/~schoi/logic.htmlUUTF-8POYž Untitled p.MSONORMAL {mso-bidi-theme-font:minor-bidi; mso-bidi-font-family:"Times New Roman";} li.MSONORMAL {mso-bidi-theme-font:minor-bidi; mso-bidi-font-family:"Times New Roman";} div.MSONORMAL {mso-bidi-theme-font:minor-bidi; mso-bidi-font-family:"Times New Roman";} p {mso-bidi-font-family:"Times New Roman";} span.SPELLE {mso-spl-e:yes;} span.GRAME {mso-gram-e:yes;}

Logic and Set theory(MAS 270)

 

Tuesday, Thursday: 14:30-16:00

Room: E6 3433

TA:

 

Instructor: Suhyoung Choi

Room: E64403

Mail: shchoixk at math kaist ac kr

Course Homepage: mathsci.kaist.ac.kr/~schoi/logic.html

 

See moodle.kaist.ac.kr  for the moodle page. All the activity will take place there.

You have to submit reports and so on there. This homepage may not be updated at times
so please go to moodle.kaist.ac.kr.

 

 

We will introduce the logical structure of mathematics. You will learn to prove mathematical statements. Also, the set theory and transfinite numbers are introduced.

We will not go deeply into mathematical logic or set theory but we will concentrate on learning to prove. We will try to be elementary as possible.

 

The students will be required to give presentations and will be graded.

 

Teaching policy!!!!!

Grade points: To be decided later in September.

 

Text: Buy all of these. If not available in Korea, order from www.amazon.com.
Nolt, Logic, Schaum Series (Logic)
Velleman, How to Prove it, Cambridge University Press (HTP)
Halmos, Naive Set theory, Springer (NS)

 

 

Week

Date

 Lecture plan

 Homework

 1

Sept. 1,3

 Logic. Chapter 1,2. Arguments

 

 2

Sept. 8,10

 Logic. Chapter 3. Propositional Logic

 

 3

Sept.15,17

 Logic. Chapter 4. Propositional Calculus

 

 4

Sept. 22,24

 Logic. Chapter 5,6 Predicate Logic

 

 5

Sept. 29. Oct. 1

 Logic. Chapter 7. Predicate Calculus

 

 6.

Oct. 6,8

 HTP. Chapter 2

 

 7

Oct. 13,15

 HTP. Chapter 3.  Proofs

 

 8

Oct. 20-26

 Mid term period

 

 9

Oct. 27,29

 HTP. Chapter 4. Relations HTP.

 

 10

Nov. 3,5

 Chapter 5. Functions, Chapter 6. Induction

 

 11

Nov. 10,12

 NS. Sections 1-5  Set theory

 

 12

Nov. 17,19

 NS. Sections 6-10 Relations, functions

 

 13

Nov. 24, 26

 NS. Sections 11-14 Peano Axioms, order

 

 14

Dec 1, 3

  NS. Sections 15-20 Axiom of Choice

 

 15

Dec 8.10.

 NS. Sections 21-25 Ordinals, Cardinals

 

  16

Dec. 15-21

  Final exam period

 

 

 

 

 

 

Ytext/html (7Ul~”___l Zv