Chapter 1. Linear equations

Review of matrix theory

Fields
System of linear equations
Row-reduced echelon form
Invertible matrices

Fields

- Field F, +, •
F is a set. $+: F x F \rightarrow F, \bullet: F x F \rightarrow F$
$-x+y=y+x, x+(y+z)=(x+y)+z$
- \exists unique 0 in F s.t. $x+0=x$
$-\forall x \in F, \exists$ unique -x s.t. $\mathrm{x}+(-\mathrm{x})=0$
- $x y=y x, x(y z)=(x y) z$
$-\exists$ unique 1 in F s.t. $x 1=x$
- $\forall x \in F-\{0\}, \exists$ unique x^{-1} s.t. $x x^{-1}=1$
$-x(y+z)=x y+y z$
- A field can be thought of as a generalization of the field of real numbers useful for some other purposes which has all the important properties of real numbers.
- To verify something is a field, we need to show that the axioms are satisfied.
- The real number field R
- Complex number field

$$
\mathbf{C}=\{x+y i \mid x, y \in \mathbf{R}\}
$$

- The field of rational numbers Q
- The set of natural numbers N is not a field.
- For example $2 x z=1$ for no z in N. (no -x also.)
- The set of real valued $2 x 2$ matrices is not a field.
- For example

$$
\left(\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right) A=I
$$

for no A.

- Consider: $Z_{p}=\{0,1,2, \ldots, p-1\}$
$x+y=z(\bmod \quad p) z \in \mathbf{Z}_{\mathbf{p}}$ is the remainder of $x+y$ under the division by p $x y=t(\bmod \quad p) t \in \mathbf{Z}_{\mathbf{p}}$ is the remainder of $x y$ under the division by p
- For $p=5,9=4 \bmod 5.1+4=0 \bmod 5$. $34=2 \bmod 5.32=1 \bmod 5$.
- If p is not prime, then the above is not a field. For example, let $p=6.2 .3=0 \bmod 6$. If $2 . x=1 \bmod 6$, then $3=1 \cdot 3=2 \cdot x \cdot 3=2 \cdot 3 \cdot x=0 \cdot x=0$.
A contradiction.
- If p is a prime, like $2,3,5, \ldots$, then it is a field. The proof follows:
$Z_{p}=\{0,1,2, \ldots, p-1\}$ is a field if p is a prime number
0 and 1 are obvious. For each $x,-x$ equals $p-x$.
For $x \in \mathbf{Z}_{p}-\{0\}, g c d(x, p)=1 . \exists a, b \in \mathbf{Z}$ s.t. $a x+b p=1$.
Let $a^{\prime}=a, b^{\prime}=b \bmod p$. Then $a^{\prime} x+b^{\prime} p=1 \bmod p$ and $a^{\prime} x=1 \bmod p$.
Thus a^{\prime} is the inverse of x.
Other axioms are easy to verify by following remainder rules well.
In fact, only the multiplicative inverse axiom fails if p is not a prime.

Characteristic

- A characteristic of a field F is the smallest natural number p such that p. $1=1+\ldots+1=0$.
- If no p exists, then the characteristic is defined to 0 .
- p is always a prime or 0 . (r, s natural number
If $(\mathrm{rs}) 1=0$, then by distributivity $\mathrm{r} 1 . \mathrm{s} 1=0,=>\mathrm{r} 1=0$ or $\mathrm{s} 1=0$)
- p. $x=0$ for all x in F.
- For R, Q, the chars are zero. p for Z_{p}
- A subfield F^{\prime} of a field F is a subset where F' contains 0 , 1 , and the operations preserve F^{\prime} and inverses are in F^{\prime}.
- Example:

$$
Q \subset R \subset C
$$

$$
\begin{aligned}
& Q+Q i=\{x+y i \mid x, y \in Q\} \subset C \\
& Q+Q \sqrt{2}=\{x+y \sqrt{2} \mid x, y \in Q\} \subset \mathbf{R}
\end{aligned}
$$

- A subfield $F^{\prime \prime}$ of a subfield F ' of a field F is a subfield of F.

A system of linear equations

- Solve for $x_{1}, x_{2}, \ldots, x_{n} \in F$ given $A_{i j} \in F, y_{j} \in F$

$$
\begin{aligned}
& A_{11} x_{1}+A_{12} x_{2}+\cdots+A_{1 n} x_{n}=y_{1} \\
& A_{21} x_{1}+A_{22} x_{2}+\cdots+A_{2 n} x_{n}=y_{2} \\
& \vdots \\
& \vdots \\
& \ddots
\end{aligned} \vdots \quad \vdots \quad 1 \begin{array}{ccc}
A_{m 1} x_{1}+A_{m 2} x_{2}+\cdots+A_{m n} x_{n}=y_{m} \\
\quad\left(\begin{array}{ccc}
A_{11} & \cdots & A_{1 n} \\
\vdots & \ddots & \vdots \\
A_{m 1} & \cdots & A_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right) \text { or } A X=Y
\end{array}
$$

- This is homogeneous if $\quad y_{i}=0$ for $i=1, \ldots, m$
- To solve we change to easier problem by row operations.

Elementary row operations

- Multiplication of one row of A by a scalar in $F-\{0\}$.
- Replacement of r th row of A by row r plus c times s th row of $A(c$ in $F, r \neq s)$
- Interchanging two rows
- An inverse operation of elementary row operation is a row operation,
- Two matrices A, B are row-equivalent if one can make A into B by a series of elementary row operations. (This is an equivalence relation)
(1) $A \sim A,(2) A \sim B \leftrightarrow B \sim A,(3) A \sim B, B \sim C \rightarrow A \sim C$
- Theorem: A, B row-equivalent mxn matrices. $A X=0$ and $B X=0$ have the exactly same solutions.
- Definition: mxn matrix R is row-reduced if
- The first nonzero entry in each non-zero row of R is 1 .
- Each column of R which contains the leading non-zero entry of some row has all its other entries 0
- Definition: R is a row-reduced echelon matrix if
- R is row-reduced
- Zero rows of R lie below all the nonzero rows
- Leading nonzero entry $A_{i k_{i}}$ of row i:

$$
k_{1}<k_{2}<\cdots<k_{r}, 1 \leq k_{j} \leq n
$$

($\mathrm{r} \leq \mathrm{n}$ since strictly increasing)

$$
\begin{aligned}
\left(\begin{array}{cccc}
1 & 1 & i & 0 \\
0 & 2 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right) & \rightarrow\left(\begin{array}{cccc}
1 & 1 & i & 0 \\
0 & 2 & 0 & 1 \\
0 & -1 & -i & 0
\end{array}\right) \rightarrow \\
\left(\begin{array}{cccc}
1 & 0 & i & -1 / 2 \\
0 & 2 & 0 & 1 \\
0 & 0 & -i & 1 / 2
\end{array}\right) & \rightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 1 \\
0 & 0 & -i & 1 / 2
\end{array}\right) \rightarrow \cdots
\end{aligned}
$$

- The main point is to use the first nonzero entry of the rows to eliminate entries in the column. Sometimes, we need to exchange rows. This is algorithmic.
- In this example: $k_{1}=1, k_{2}=2, k_{3}=3$
- Theorem: Every mxn matrix A is rowequivalent to a row-reduced echelon form.
- Analysis of $R X=0$. R mxn matrix
- Let r be the number of nonzero rows of R. Then $r \leq n$
- Take k_{i} Variables of $\mathrm{X}: \quad x_{k_{1}}, x_{k_{2}}, \ldots, x_{k_{r}}$
- Remaining variables of X : $u_{1}, u_{2}, \ldots u_{n-r}$
- RX=0 becomes

$$
\begin{array}{ccccc}
x_{k_{1}} & & & & +\sum_{j=1}^{n-r} C_{1 j} u_{j}
\end{array}=0 \begin{aligned}
& x_{k_{2}} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

- All the solutions are obtained by assigning any values to

$$
u_{1}, u_{2}, \ldots u_{n-r}
$$

- If $r<n, n-r$ is the dimension of the solution space.
- If $r=n$, then only $X=O$ is the solution.
- Theorem 6: A mxn $m<n$. Then $A X=0$ has a nontrivial solution.
- Proof:
- R r-r-e matrix of A.
- $A X=0$ and $R X=0$ have same solutions.
- Let r be the number of nonzero rows of R.
$-r \leq m<n$.
- Theorem 7. A nxn. A is row-equivalent to I iff $A X=0$ has only trivial solutions.
- Proof: $\rightarrow A X=0, I X=0$ have same solutions.
$-\longleftarrow A X=0$ has only trivial solutions. So does $R X=0$.
- Let r be the no of nonzero rows of R.
- $r \geq n$ since $R X=0$ has only trivial solutions.
- But $r \leq n$ always. Thus $r=n$.
$-R$ has leading 1 at each row. $R=I$.
- Matrix multiplications $C=A B, c_{i j}=\sum_{r=1}^{n} A_{i r} B_{r j}$

$$
I=\left(\delta_{i j}\right), I A=A=A I, O \cdot A=O=A \cdot O^{-1}
$$

- $A(B C)=(A B) C A: m x n B: n x r$ C:rxk
- Elementary matrix $E(n \times n)$ is obtained from I by a single elementary move.

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
c & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
d & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Theorem 9: e elementary row-operation E mxm elementary matrix $E=e(I)$. Then $e(A)=E . A=e(I) . A$.

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right)
$$

- Corollary: A, B mxn matrices. B is row-equivalent to A iff $B=P A$ where P is a product of elementary matrices

Invertible matrices

- A nxn matrix.
- If $B A=I B$ nxn, then B is a left inverse of A.
- If $A C=I C$ nxn, then C is a right inverse of A
- B s.t. $B A=I=A B$. B is the inverse of A
- We will show finally, these notions are equivalent.
- Lemma: If A has a left inverse B and a right inverse C, then $B=C$.
- Proof: $B=B I=B(A C)=(B A) C=I C=C$.
- Theorem: A, B nxn matrices.
- (i) If A is invertible, so is A^{-1}. $\left(A^{-1}\right)^{-1}=A$.
- (ii) If both A, B are invertible, so is $A B$ and (AB) $)^{-1}=B^{-1} A^{-1}$.
- Products of invertible matrices are invertible.
- Theorem: An elementary matrix is invertible. e an operation, e_{1} inverse operation. Let $E=e(I) . E_{1}=e_{1}(I)$. Then $E E_{1}=e\left(E_{1}\right)=e\left(e_{1}(I)\right)=I . E_{1} E=e_{1}(e(I))=I$.
- Theorem 12: A nxn matrix. TFAE:
- (I) A is invertible.
- (ii) A is row-equivalent to I.
- (iii) A is a product of elementary matrices.
- proof:
- Let R be the row reduced echelon matrix of A.
$-R=E_{k} \ldots E_{1} A . A=E_{1}{ }^{-1} \ldots E_{k}{ }^{-1} R$.
- A is inv iff R is inv.
- R is inv iff $R=1$
- $((\rightarrow)$ if $R \neq l$. Then exists 0 rows. R is not inv. $(\leqslant) R=1$ is invertible.)
- Fact: $\mathrm{R}=\mathrm{I}$ iff R has no zero rows.
- Corollary: $\mathrm{A} \boldsymbol{\rightarrow}$ I by a series of row operations. Then $I \rightarrow A^{-1}$ by the same series of operations.
- Proof:
- $I=E_{k} \ldots E_{1} A$.
- By multiplying both sides by A^{-1}.
- $A^{-1}=E_{k} \ldots E_{1}$. Thus, $A^{-1}=E_{k} \ldots E_{1}$.

$$
\begin{gathered}
\left(\begin{array}{ccc|ccc}
1 & i & 1 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc|ccc}
1 & 0 & 1-2 i & 1 & -i & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & -1 & 1
\end{array}\right) \\
\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & -1+i & 1-2 i \\
0 & 1 & 0 & 0 & -1 & 2 \\
0 & 0 & -1 & 0 & -1 & 1
\end{array}\right)\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & -1+i & 1-2 i \\
0 & 1 & 0 & 0 & -1 & 2 \\
0 & 0 & 1 & 0 & 1 & -1
\end{array}\right)
\end{gathered}
$$

- Corollary: A, B mxn matrices
B is row-equivalent to A iff $B=P A$ for an invertible mxm matrix P.
- Theorem 13: A nxn TFAE
- (i) A is invertible
- (ii) $A X=O$ has only trivial solution.
- (iii) $A X=Y$ has a unique solution for each $n \times 1$ matrix Y.
- Proof: By Theorem 7, (ii) iff A is row-equiv. to I. Thus, (i) iff (ii).
- (ii) iff (iii) $\rightarrow A$ is invertible. $A X=Y$. Solution $X=A^{-1} Y$.
- \leftarrow Let R be r-r-e of A. We show $R=I$. - We show that the last row of R is not O.
- Let $\mathrm{E}=(0,0, . ., 1) \mathrm{nx1}$ column matrix.
- If $R X=E$ is solvable, then the last row of R is not 0 .
$-R=P A \rightarrow A=P^{-1} R$.
$-\mathrm{RX}=\mathrm{E}$ iff $\mathrm{AX}=\mathrm{P}^{-1} \mathrm{E}$ which is always solvable by the assumption (iii).
- Corollary: nxn matrix A with either a left or a right inverse is invertible.
- Proof:
- Suppose A has a left inverse.
- $\exists B, B A=I$.
- $A X=0$ has only trivial solutions. By Th 13, done.
$-B A X=0->X=0$.
- Suppose A has a right inverse.
$\exists C, A C=I$.
- C has a left-inverse A.
- C is invertible by the first part. $C^{-1}=A$.
- A is invertible since C^{-1} is invertible.

