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Fields 

•  Field F, +, �  
F is a set. +:FxFèF, �:FxFèF 
–  x+y = y+x, x+(y+z)=(x+y)+z 
–        unique 0 in F s.t. x+0=x 
–                    unique -x s.t. x+(-x) = 0 
–   xy=yx, x(yz)= (xy)z  
–       unique 1 in F s.t. x1 = x 
–                                unique           s.t. 
–   x(y+z) = xy+yz  



•  A field can be thought of as a generalization of the field of real 
numbers useful for some other purposes which has all the 
important properties of real numbers.  

•  To verify something is a field, we need to 
show that the axioms are satisfied.  
–  The real number field R 
–  Complex number field  
–  The field of rational numbers Q  
–  The set of natural numbers N is not a field. 

•  For example 2x z = 1 for no z in N. (no -x also.)   
–  The set of real valued 2x2 matrices is not a field. 

•  For example                                  for no A.  



•  Consider: Zp ={ 0, 1, 2, …, p-1}                     

–  For p =5, 9=4 mod 5. 1+4 = 0 mod 5.  
3 4 = 2 mod 5. 3 2 = 1 mod 5.     

–  If p is not prime, then the above is not a field. For 
example, let p=6. 2.3= 0 mod 6. If 2.x = 1 mod 6, 
then 3=1.3=2.x.3=2.3.x=0.x=0.  
A contradiction. 

–   If p is a prime, like 2,3,5,…, then it is a field. The 
proof follows: 

 

  



0 and 1 are obvious. For each x, -x equals p-x.  
 
 

 
 
Thus a’ is the inverse of x.  
Other axioms are easy to verify by following 

remainder rules well.  
In fact, only the multiplicative inverse axiom 

fails if p is not a prime. 
 

Zp ={ 0, 1, 2, …, p-1} is a field if p is a prime number 



Characteristic 

•  A characteristic of a field F is the 
smallest natural number p such that  
p.1=1+…+1 = 0.   

•  If no p exists, then the characteristic is 
defined to 0. 



•  p is always a prime or 0. (r, s natural 
number  
If (rs)1=0, then by distributivity r1.s1=0,=> r1=0 or 
s1=0)  

•  p.x = 0 for all x in F.  
•  For R, Q, the chars are zero. p for Zp  



•  A subfield F’ of a field F is a subset 
where F’ contains 0, 1, and the 
operations preserve F’ and inverses are 
in F’. 
– Example:  

– A subfield F’’ of a subfield F’ of a field F is 
a subfield of F. 



A system of linear equations 
•  Solve for  

–  This is homogeneous if  

–  To solve we change to easier problem by row operations.  

A11x1 + A12x2 ++ A1nxn = y1
A21x1 + A22x2 ++ A2nxn = y2
    
Am1x1 + Am2x2 ++ Amnxn = ym



Elementary row operations 
–  Multiplication of one row of A by a scalar in F-{0}.  
–  Replacement of r th row of A by  row r plus c times 

s th row of A (c in F, r ≠ s) 
–  Interchanging two rows  

•   An inverse operation of elementary row 
operation is a row operation,  

•  Two matrices A, B are row-equivalent if one 
can make A into B by a series of elementary 
row operations. (This is an equivalence relation)  



•  Theorem: A, B row-equivalent mxn 
matrices. AX=0 and BX=0 have the 
exactly same solutions.  

•  Definition: mxn matrix R is row-reduced if 
–  The first nonzero entry in each non-zero row of R is 1. 
–  Each column of R which contains the leading non-zero entry 

of some row has all its other entries 0   
•  Definition: R is a row-reduced echelon matrix if  

–  R is row-reduced  
–  Zero rows of R lie below all the nonzero rows 
–  Leading nonzero entry           of row i: 

(r ≤ n since strictly increasing) 



•  The main point is to use the first nonzero 
entry of the rows to eliminate entries in the 
column. Sometimes, we need to exchange 
rows. This is algorithmic.  

•  In this example: 
•  Theorem: Every mxn matrix A is row-

equivalent to a row-reduced echelon form. 



•  Analysis of RX=0.  R mxn matrix  
–  Let r be the number of nonzero rows of R. Then r ≤n 
–  Take    Variables of X:  
–  Remaining variables of X:  
–  RX=0 becomes  
 

–  All the solutions are obtained by assigning any 
values to  

–  If r < n, n-r is the dimension of the solution space.  
–  If r = n, then only X=O is the solution. 



•  Theorem 6: A mxn m< n. Then AX=0 has a nontrivial 
solution. 

•  Proof:  
–  R r-r-e matrix of A.  
–  AX=0 and RX=0 have same solutions. 
–  Let r be the number of nonzero rows of R.  
–   r ≤ m < n.  

•  Theorem 7. A nxn. A is row-equivalent to I iff AX=0 
has only trivial solutions. 

•  Proof: è AX=0, IX=0 have same solutions.  
–  ç AX=0 has only trivial solutions. So does RX=0.  
–  Let r be the no of nonzero rows of R.  
–  r≥n since RX=0 has only trivial solutions. 
–  But r≤n always.  Thus r=n.  
–  R has leading 1 at each row. R = I. 

 



•  Matrix multiplications   

•  A(BC) = (AB)C A: mxn B:nxr C:rxk   
•  Elementary matrix E (nxn) is obtained from I by a 

single elementary move. 

•  Theorem 9: e elementary row-operation 
E mxm elementary matrix E = e(I). Then 
e(A)=E.A= e(I).A.  

 



•  Corollary: A, B mxn matrices.  
B is row-equivalent to A iff B=PA where 
P is a product of elementary matrices 



Invertible matrices 

•  A nxn matrix.  
–  If BA = I B nxn, then B is a left inverse of A.  
–  If AC=I C nxn, then C is a right inverse of A 
–  B s.t. BA=I=AB. B is the inverse of A 
–  We will show finally, these notions are equivalent.  

•  Lemma: If A has a left inverse B and a right 
inverse C, then B = C.  
–  Proof:B=BI=B(AC)=(BA)C=IC=C.  



•  Theorem: A, B nxn matrices. 
–  (i) If A is invertible, so is A-1. (A-1)-1=A.  
–  (ii) If both A,B are invertible, so is AB and  

(AB)-1=B-1A-1.  
– Products of invertible matrices are 

invertible.  
•  Theorem: An elementary matrix is 

invertible. e an operation, e1 inverse 
operation. Let E = e(I). E1=e1(I). Then 
EE1=e(E1)= e(e1(I))=I. E1E=e1(e(I))=I.  



•  Theorem 12: A nxn matrix. TFAE:  
–  (I) A is invertible.  
–  (ii) A is row-equivalent to I.  
–  (iii) A is a product of elementary matrices. 

•   proof:  

–  Let R be the row reduced echelon matrix of A.  
–  R=Ek…E1A. A= E1

-1…Ek
-1R.  

–  A is inv iff R is inv. 
–  R is inv iff R=I  

•  ((è) if R≠I. Then exists 0 rows.  
R is not inv.(ç) R=I is invertible. ) 

•  Fact: R = I iff R has no zero rows.  



•  Corollary: A èI by a series of row 
operations. Then I èA-1 by the same 
series of operations.  
– Proof:  

•  I = Ek…E1A.  
•  By multiplying both sides by A-1 .  
•  A-1= Ek…E1. Thus, A-1= Ek…E1I. 



•  Corollary: A,B mxn matrices 
B is row-equivalent to A iff B=PA for an 
invertible mxm matrix P.  

•  Theorem 13: A nxn TFAE  
–  (i) A is invertible  
–  (ii) AX=O has only trivial solution.  
–  (iii) AX=Y has a unique solution for each nx1 

matrix Y.  
•  Proof: By Theorem 7, (ii) iff A is row-equiv. to 

I. Thus, (i) iff (ii). 
–  (ii) iff (iii) è A is invertible. AX=Y. Solution X=A-1Y. 



•  ç Let R be r-r-e of A. We show R=I.  
– We show that the last row of R is not O.  
– Let E=(0,0,..,1) nx1 column matrix. 
–  If RX=E is solvable, then the last row of R 

is not O.  
– R=PAèA=P-1R. 
– RX=E iff AX=P-1E which is always solvable 

by the assumption (iii).   



•  Corollary: nxn matrix A with either a left 
or a right inverse is invertible.  

•  Proof:  
– Suppose A has a left inverse.  

•                       
•  AX=0 has only trivial solutions. By Th 13, done. 

–  BAX=0 -> X=0.  

– Suppose A has a right inverse.  

•  C has a left-inverse A.  
•  C is invertible by the first part. C-1=A.  
•  A is invertible since C-1 is invertible. 


