Polynomial Ideals

Euclidean algorithm
Multiplicity of roots
ldeals in F[Xx].



Euclidean algorithms

 Lemma. f,d nonzero polynomials in
F[X]. deg d < deg f. Then there exists a
polynomial g in F[x] s.t. either f-dg=0 or
deg(f-dg)<deg f.

* Proof of lemma:
f = @ T™ + Z?;Bl a;z’, Gy # 0
d = b,z"+ E?:_()l b;z*, b, #0,m>n
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Theorem 4. f, d in F[x]. d #0. There exists q,r in
F[X] s.t.

(1) f=dq+r

(i) r=0 or deg r < deg d.



* Proof of Theorem 4. [ff=0 ordegf<
deg d, take g=0, and r=f.
— As sum deg f > deg d.
—dgin F[x] s.t.
(1) deg(f-dg)< deg f or (ii) f-dg=0.
— Case (1) We find h such that
« deg(f-dg-dh)<deg f-dg or f-d(g+h)=0.
 f-d(g+h+h’ +...+h(™) = r with deg r < deg d
or =0.
* Thus f=dqg+r, r=0 or deg r < deg d.



« Uniqueness: f=dq+r, f=dq’ +r .
—deg r <degd.
— Suppose g-q =0 and d=0.
—d(q -q)=r"-r.
—deg d + deg(q’ -q)=deg(r’ -r)
—Butdegr’',degr<degd. Thisis a
contradiction.

—q =q, r =r.



f=dg, d divides f. f is a multiple of d.
g is a quotient of f.

Corollary. f is divisible by (x-c) iff

f(c )=0.

Proof: f=(x-c)g+r, deg r=0, ris in F.

f(c )= 0.q(c )+r. f(c )=0 iff r=0.

Definition. c in F is a root of f iff f(c )=0.
Corollary. A polynomial of degree n over a
field F has at most n roots in F.

— Proof: f=(x-a)g if a is a root. Deg g < deg f. By
iInduction g has at most n-1 roots. F has at most n
roots.



Multiplicity of roots

 Derivative of f=c,+c,x+...+c_x".
— f =Df=c,+2c,x+...+nc x"1.
— '’ =D2f=DDf

* Taylors formula: F a field of char 0.
f a polynomial.




* Proof:
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* Multiplicity of roots: c is a zero of f. The
multiplicity of ¢ is largest positive integer
r such that (x-c)" divides f.

* Theorem 6: F a field of char 0. deg f <n.
— c is a root of f of multiplicity r iff
— D¥f(c )=0, 0 <k=r-1, and D" f(c ) =O0.
* Proof: (->) ¢ mult r. f=(x-c)'g, g(c ) =0.
f@) = (@=-o (Tl 5@ - o)

Yo 2 (€)@ = ™

m=0 m/!

D*f(c)
Zk =0 kfvc(x‘c)k



* By uniqueness of polynomial expansions:

D) — 00<k<r—1
= %‘i, <k<n
PR = g9 #0

« (<-) DXf(c )=0, O<k=r-1.
— By Taylors formula, f = (x-c)"g, g(c ) =0.
— ris the largest integer such that (x-c)" divides f.



ldeals: This is an important concept
introduced by Dedekind in 1876 as a

generalization of numbers....

One can add and multiply ideals but
ideals are subsets of F[x].

|ldeals play an important role in number
theory and algebra. In fact useful in the
Fermat conjecture and in algebraic
geometry.

Search “ideal in ring theory”.
en.wikipedia.org/wiki/Main_Page



» Definition: An ideal in F[x] is a subspace M of
F[x] such that fg is in M whenever fis in F[X]
and gisin M.

General ring theory case is not needed in this book.

 Example: Principal ideals

— d a polynomial

— M = dF[x] ={df|f in F[x]} is an ideal.
» c(df)+dg = d(cf+g).
» fdg= d(fg)

— If d in F not 0, then dF[x]=F[Xx].

— F[x] is an ideal

— M is a principal ideal generated by d.
» (d can be chosen to be monic always)



» Example: d,,d,,...,d_ polynomials in
F[x]. <d,F[x], d,F[X],...,d,F[x]> is an
ideal.

* Proof:
- g4=d,f,+...+d f ,g,=d.h,+...+d h_ in M
* cg4tg, = d,(cf+hy)+...+d (cf .+ h, ) is in M.
—g=d.f,+...+d f is in M and f in F[Xx].
« fg = d ff,+...+d ff isin M



 Ideals can be added and multiplied like
numbers:

— [+J={f+qg|f €l, g&J }
« Example:

— <d,F[x], d,F[X],...,d.F[x]> = d,F[x]+d,F[x]+
...+d F[X].

—d,F[x]d,F[x] = d,d,F[x].



 Theorem: F a field. M any ideal. Then
there exists a unique monic polynomial
d in F[x] s.t. M=dF|[x].

* Proof: M=0 case: done
— Let M=0. M contains some non-zero poly.
— Let d be the minimal degree one.
— Assume d is monic.
—Iffisin M, f=dqg+r. r=0 or deg r < deg d.

— Since r must be in M and d has minimal
degee, r=0.

_ f=dg. M=dFIx].



* Uniqueness: M=dF[x]=gF[x]. d,g monic
— There exists p, g s.t. d = gp, g=dq.

— d=dpqg. degd =degd + deg p + deg q.
— deg p= deg q=0.
— d, g monic. p,g=1.

» Corollary: p4,...,p,, polynomials not all 0. Then
There exists unique monic polynomial d in
F[X] s.t.

— (i) disin < p4F[x],..., p,F[X] >.

— (ii) d divides each of the p;s.

— (iii) d is divisible by every polynomial dividing all
p:s. (i.e., d is maximal such poly with (i),(ii).)



* Proof: (existence) Let d be obtained by
M=p,F[x]+...+p, F[x] = dF[X].
— (ii) Thus, every fin M is divisible by d.
—(i)d is in M.
— (iil) Suppose p/f, i=1,...,n.
— Then p=fg; I=1,...,n
—d=p,q4*...+p,q, Since d is in M.

—d=fg,q,+...+fg,q, =f(g,9,+...+9,q,)
— dif



* (Uniqueness)
— Let d’ satisfy (i),(ii).
— By (i) for d and (ii) ford’, d’ divides d.

— By (i) for d” and (ii) for d, d divides d’.
—Thus, cd’ =d, cin F. d’ satisfies (iii) also.
 Remark: Conversely, (i)(ii)(iii) -> d is the

monic generator of < p,F[x],..., p,F[X]>.



» Definition: p,F[x]+...+p,F[x] = dF[X].
We define d=gcd(p4,..-,p,)
* Pq,-.-,Pp, IS relatively prime if gcd=1.

* If gcd=1, there exists f,,...,f s.t.
1=hps+... 4D,



« Example:  ged(z + 2,2 + 8z + 16)
z°+8z+16= (z+2)(x+6)+4
4e€ M,1€ M,M = F|z]

ged(z +1,2° + 8z + 16) = 1

1= (=1/4)(z +6)(z +2) + (1/4)(z* + 8z + 16)



4.5. Prime Factorization of a
polynomial

* fin F[x] is reducible over F if there

exists g,h s.t. f=gh. Otherwise f is
irreducible.

« Example 1: x?+1 is irreducible in R[Xx].
— Proof: (ax+b)(cx+d)= x?+1, a,b,c,d in R
— =acx? + (bc+ad)x + bd.

—ac=1, bd=1, bctad=0. c=1/a, d=1/b. b/a+a/
b=0. (b%+a?)/ab=0 -> a=0, b=0.



— X%+1=(x+i)(x-i) is reducible in C[Xx].
* A prime polynomial is a non-scalar,
iIrreducible polynomial in F[x].

* Theorem 8. p.f,g in F[x]. Suppose that p
IS prime and p divides fg. Then p divides
f or p divides g.

* Proof: Assume p is monic. (w.l.0.g.)
— Only divisor of p are 1 and p.
— Let d = gcd(f,p). Either d=1 or d=p.
— If d=p, we are done.



— Suppose d=1. f,p rel. prime.

— Since (f, p)=1, there exists f,,p, s.t.
1=f,f+ pyp.

— g=fsfg+ popg = (fg)fy + P(Po9)-

— Since p divides fg and p divides p(p,9),
p divides g.

 Corollary. p prime. p divides f,f,...f .
Then p divides at least one f..
— Proof: By induction.



* Theorem 9. F a field. Every nonscalar
monic polynomial in F[x] can be
factored into a product of monic primes
in F[x] in one and, except for order, only
one way.

* Proof:. (Existence)ln case deg f =1. f=ax
+b=x+b form. Already prime.

— Suppose true for degree < n.

— Let deg f=n>1. If fis irreducible, then f is
prime and done.



— Otherwise, f=gh. g,h nonscalar, monic.

— deg g, deg h < n. g,h factored into monic primes
by the induction hypothesis.

— F=p4p,...p,. P; monic prime.
* (Uniqueness) f= p,ps-...-Pm=q1d5---d,-
— p,, must divide g, for some i by above Cor.
— q; P, are monic prime -> q;=p,,
— If m=1 or n=1, then done.
— Assume m,n > 1.
— By rearranging, p,,=q,.
— Thus, p4...Pm.1=41---9n.1- deg < n.
— By induction {p,,...,pr.1}={q4,---,q11.1}



f=p7t....p0"
primary decomposition of f.
Theorem 10. f = Pl L

fi = f/p | Hz;éj p?i
Then f,,....f, are relatively prime.
Proof: Let g = gecd(f,,....f, ).
— g divides f, for each i.
— g is a product of p;s.
— g does not have as a factor p, for each |
since g divides f.
—g=1.



* Theorem 11: Let f be a polynomial over
F with derivative f . Then f is a product
of distinct irreducible polynomial over F
iff f and f' are relatively prime.

* Proof: (<-) We show If f is not prod of
dist polynomials, then f and f have a
common divisor not equal to a scalar.

— Suppose f=p¢h for a prime p.
—f =p2h’ + 2pp’ h.

—p is a divisor of fand f’.

—fand f are not relatively prime.



* (->)f=p,...p,Where p,,...,p, are distinct
primes.
— = p fi+p, o+ 4p i
— Let p be a prime dividing both f and f’ .
— Then p=p, for some i (since f|p).
— p; divides ffor all j =i by def of f;.
— p;divides ' =p, f,+p, f,+...+p, f..
— p; divides p," f. by above two facts.
— p;, can’ tdivide p,” since deg p; < deg p..
— p; can’ t divide f, by definition. A contradiction.
— Thus fand f' are relatively prime.



A field F is algebraically closed if every
prime polynomial over F has degree 1.

f=clx—c)™ - (z—cp)™
F=R is not algebraically closed.

C is algebraically closed. (Topological
proof due to Gauss.)

f a real polynomial.
— If cis a root, then ¢ is a root.
— f a real polynomial, then roots are

{tl, ...,tk,cl,él, ...,Cf,-,(_},-},tz‘ c R, C; cC—R



» fis a product of (x-t)) and p;s.

pi = (x—¢c;)(x—¢) =%~ (c; + &) + c;C

 fis a product of 1st order or 2nd order
iIrreducible polynomials.



