3.6. Double dual

Dual of a dual space Hyperspace

- (V*)*=V** = ? (V is a v.s. over F.)
 = V.
- a in V. *I*: a -> L_a:V*->F defined by L_a(f)=f(a).
- Example: V=R². L_(1,2)(f)= f(1,2)=a+2b, if f(x,y)=ax+by.
- Lemma: If $a \neq 0$, then $L_a \neq 0$.
 - Proof: $B=\{a_1,\ldots,a_n\}$ basis of V s.t. $a=a_1$.
 - f in V* be s.t. $f(x_1a_1+...+x_na_n)=x_1$.
 - Then $L_{a1}(f) = f(a_1) = 1$. Thus $L_a \neq 0$.

- Theorem 17. V. f.d.v.s. over F. The mapping a -> L_a is an isomorphism V->V**
- Proof: I: a -> La is linear.

$$egin{aligned} L_\gamma(f)&=&f(\gamma)\ &=&f(clpha+eta)\ \gamma&=clpha+eta&=&cf(lpha)+f(eta)\ &=&cLlpha(f)+L_eta(f)\ L_\gamma&=&cL_lpha+L_eta \end{aligned}$$

- / is not singular. L_a =0 iff a =0. (-> above. <- obvious)
- $\dim V = \dim V^* = \dim V^{**}$.
- Thus *I* is an isomorphism by Theorem 9.

- Corollary: V f.d.v.s. over F.
 If L:V->F, then there exists unique v in V s.t.
 L(f)=f(a)=L_a(f) for all f in V*.
- Corollary: V f.d.v.s. over F.
 Each basis of V* is a dual of a basis of V.
- Proof: $B^*=\{f_1,\ldots,f_n\}$ a basis of V^* .
 - By Theorem 15, there exists $L_1, ..., L_n$ for V** s.t. $L_i(f_j)$ = δ_{ij} .
 - There exists a_1, \ldots, a_n s.t. $L_i = L_{ai}$.
 - $\{a_1, \ldots, a_n\}$ is a basis of V and B* is dual to it.

- Theorem: S any subset of V. f.d.v.s. (S⁰)⁰ is the subspace spanned by S in V=V**.
- Proof: W =span(S). W⁰=S⁰. W⁰⁰=S⁰⁰
 Show W⁰⁰=W.
 - $-\dim W + \dim W^0 = \dim V.$
 - $-\dim W^0+\dim W^{00}=\dim V^*.$
 - dimW=dimW⁰⁰.
 - W is a subset of W⁰⁰.
 - v in W. L(v)=0 for all L in W⁰. Thus v in W⁰⁰.
- If S is a subspace, then $S=S^{00}$.

- Example: S={[1,0,0],[0,1,0]} in R³. $-S^0=\{cf_3|c \text{ in }F\}.f_3:(x,y,z)->z$ $-S^{00}=\{[x,y,0]|x,y \text{ in }R\}=Span(S).$
- A hyperspace is V is a maximal proper subspace of V.
 - Proper: N in V but not all of V.
 - Maximal.

 $N \subset V$ is maximal if $N \subset W$ implies W = N or W = V.

- Theorem. f a nonzero linear functional. The null space N_f of f is a hyperspace in V and every hyperspace is a null-space of a linear functional.
- Proof: First part. We show N_f is a maximal proper subspace.
 - -v in V, f(v)≠0. v is not in N_f. N_f is proper.
 - We show that every vector is of form w+cv for w in N_f and c in F.(*)
 - Let u in V. Let c = f(u)/f(v). $(f(v) \neq 0)$.
 - Let w = u-cv. Then f(w)=f(u)-cf(v)=0. w in N_f .

- N_f is maximal: N_f is a subspace of W.
- If W contains v s.t. v is not in N_f , then W=V by (*). Otherwise W=N_f.
- Second part. Let N be a hyperspace.
 - Fix v not in N. Then Span(N,v)=V.
 - Every vector u = w+cv for w in N and c in F.
 - w and c are uniquely determined:
 - u=w'+c'v. w' in N, c' in F.
 - (C'-C)V = W-W'.
 - If c'-c \neq 0, then v in N. Contradiction
 - c'=c. This also implies w=w'.
 - Define f:V->F by u = w+cv -> c. f is a linear function. (Omit proof.)

- Lemma. f,g linear functionals on V.
 g=cf for c in F iff N_g contains N_f.
- Theorem 20. g, f_1, \dots, f_r linear functionals on V with null spaces $N_g, N_{f_1}, \dots, N_{f_r}$. Then g is a linear combination of f_1, \dots, f_r iff N contains $N_1 \cap \dots \cap N_r$.
- Proof: omit.