3.6. Double dual

Dual of a dual space Hyperspace

- $\left(\mathrm{V}^{*}\right)^{*}=\mathrm{V}^{* *}=$? $(\mathrm{V}$ is a v.s. over F.$)$
- $=\mathrm{V}$.
- a in V. I: a -> $L_{a}: V^{*}->F$ defined by $L_{a}(f)=f(a)$.
- Example: $V=R^{2} . L_{(1,2)}(f)=f(1,2)=a+2 b$, if $f(x, y)=a x+b y$.
- Lemma: If $a \neq 0$, then $L_{a} \neq 0$.
- Proof: $B=\left\{a_{1}, \ldots, a_{n}\right\}$ basis of V s.t. $a=a_{1}$.
- f in V^{*} be s.t. $\mathrm{f}\left(\mathrm{x}_{1} \mathrm{a}_{1}+\ldots+\mathrm{x}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}\right)=\mathrm{x}_{1}$.
- Then $L_{a 1}(f)=f\left(a_{1}\right)=1$. Thus $L_{a} \neq 0$.
- Theorem 17. V. f.d.v.s. over F. The mapping $a->L_{a}$ is an isomorphism V->V**
- Proof: I: a -> La is linear.

$$
\begin{array}{rlc}
L_{\gamma}(f) & = & f(\gamma) \\
& = & f(c \alpha+\beta) \\
\gamma=c \alpha+\beta & & c f(\alpha)+f(\beta) \\
& & c L \alpha(f)+L_{\beta}(f) \\
L_{\gamma} & & = \\
c L_{\alpha}+L_{\beta}
\end{array}
$$

$-I$ is not singular. $L_{a}=0$ iff $a=0$. (-> above. $<-$ obvious)
$-\operatorname{dim} \mathrm{V}=\operatorname{dim} \mathrm{V}^{*}=\operatorname{dim} \mathrm{V}^{* *}$.

- Thus l is an isomorphism by Theorem 9.
- Corollary: V f.d.v.s. over F.

If $L: V->F$, then there exists unique v in V s.t.
$L(f)=f(a)=L_{a}(f)$ for all f in V^{*}.

- Corollary: V f.d.v.s. over F.

Each basis of V^{*} is a dual of a basis of V .

- Proof: $B^{*}=\left\{f_{1}, \ldots, f_{n}\right\}$ a basis of V^{*}.
- By Theorem 15, there exists L_{1}, \ldots, L_{n} for $V^{* *}$ s.t. $\mathrm{L}_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{j}}\right)=\delta_{\mathrm{ij}}$.
- There exists $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}$ s.t. $\mathrm{L}_{\mathrm{i}}=\mathrm{L}_{\mathrm{ai}}$.
$-\left\{a_{1}, \ldots, a_{n}\right\}$ is a basis of V and B^{*} is dual to it.
- Theorem: S any subset of V. f.d.v.s. $\left(S^{0}\right)^{0}$ is the subspace spanned by S in $\mathrm{V}=\mathrm{V}^{* *}$.
- Proof: $\mathrm{W}=\operatorname{span}(\mathrm{S}) . \mathrm{W}^{0}=\mathrm{S}^{0}$. $\mathrm{W}^{00}=\mathrm{S}^{00}$ Show $\mathrm{W}^{00}=\mathrm{W}$.
$-\operatorname{dim} W+\operatorname{dim} W^{0}=\operatorname{dim} V$.
- dim $\mathrm{W}^{0}+\operatorname{dim} \mathrm{W}^{00}=\operatorname{dim} \mathrm{V}^{*}$.
- dimW=dimW00.
$-W$ is a subset of W^{00}.
- v in W. $L(v)=0$ for all L in W^{0}. Thus v in W^{00}.
- If S is a subspace, then $S=S^{00}$.
- Example: $S=\{[1,0,0],[0,1,0]\}$ in R^{3}.
$-S^{0}=\left\{\mathrm{cf}_{3} \mid \mathrm{c}\right.$ in F$\} . \mathrm{f}_{3}:(\mathrm{x}, \mathrm{y}, \mathrm{z})->\mathrm{z}$
$-S^{00}=\{[x, y, 0] \mid x, y$ in $R\}=S p a n(S)$.
- A hyperspace is V is a maximal proper subspace of V.
- Proper: N in V but not all of V .
- Maximal.
$N \subset V$ is maximal if $N \subset W$ implies $W=N$ or $W=V$.
- Theorem. fa nonzero linear functional. The null space N_{f} of f is a hyperspace in V and every hyperspace is a null-space of a linear functional.
- Proof: First part. We show N_{f} is a maximal proper subspace.
$-v$ in $V, f(v) \neq 0$. v is not in $N_{f} . N_{f}$ is proper.
- We show that every vector is of form $\mathrm{w}+\mathrm{cv}$ for win N_{f} and c in $\mathrm{F} .\left(^{*}\right)$
- Let u in V. Let $c=f(u) / f(v) .(f(v) \neq 0)$.
- Let $w=u-c v$. Then $f(w)=f(u)-c f(v)=0$. w in N_{f}.
$-N_{f}$ is maximal: N_{f} is a subspace of W.
- If W contains V s.t. v is not in N_{f}, then $\mathrm{W}=\mathrm{V}$ by $\left(^{*}\right)$. Otherwise $\mathrm{W}=\mathrm{N}_{\mathrm{f}}$.
- Second part. Let N be a hyperspace.
- Fix v not in N. Then $\operatorname{Span}(N, v)=V$.
- Every vector $u=w+c v$ for w in N and c in F.
- w and c are uniquely determined:
$-u=w^{\prime}+c^{\prime} v$. w' in N, c' in F.
$-\left(c^{\prime}-c\right) v=w-w '$.
- If $c^{\prime}-c \neq 0$, then v in N. Contradiction
- c'=c. This also implies $w=w$ '.
- Define $\mathrm{f}: \mathrm{V}->F$ by $u=w+c v->c . f$ is a linear function. (Omit proof.)
- Lemma. f,g linear functionals on V . $g=c f$ for c in F iff N_{g} contains N_{f}.
- Theorem 20. $\mathrm{g}, \mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{r}}$ linear functionals on V with null spaces $N_{g}, N_{f i}, \ldots, N_{f r}$. Then g is a linear combination of f_{1}, \ldots, f_{r} iff N contains $\mathrm{N}_{1} \cap \ldots \cap \mathrm{~N}_{\mathrm{r}}$.
- Proof: omit.

