Chapter 3: Linear transformations

Linear transformations, Algebra of linear transformations, matrices, dual spaces, double duals

Linear transformations

- V, W vector spaces with same fields F .
- Definition: $\mathrm{T}: V \rightarrow \mathrm{~W}$ s.t. $\mathrm{T}(\mathrm{ca+b})=c(T a)+T b$ for all a, b in V. c in F. Then T is linear.
- Property: $T(O)=O . T(c a+d b)=c T(a)+d T(b)$, a, b in V, c, d in F. (equivalent to the def.)
- Example: A mxn matrix over F. Define T by $Y=A X . T: F^{n} \rightarrow F^{m}$ is linear.
- Proof: $T(a X+b Y)=A(a X+b Y)=a A X+b A Y=a T(X)$ $+b T(Y)$.
$-U: F^{1 \times m}->F^{1 \times n}$ defined by $U(a)=a A$ is linear.
- Notation: $\mathrm{F}^{\mathrm{m}}=\mathrm{F}^{\mathrm{mx}}$ (not like the book)
- Remark: $L\left(F^{m \times 1}, F^{n x 1}\right)$ is same as $M_{m \times n}(F)$.
- For each mxn matrix A we define a unique linear transformation Tgiven by $\mathrm{T}(\mathrm{X})=\mathrm{AX}$.
- For each a linear transformation T has A such that $T(X)=A X$. We will discuss this in section 3.3.
- Actually the two spaces are isomorphic as vector spaces.
- If $m=n$, then compositions correspond to matrix multiplications exactly.
- Example: $T(x)=x+4 . F=R . V=R$. This is not linear.
- Example: $\mathrm{V}=\{\mathrm{f}$ polynomial: $\mathrm{F} \rightarrow \mathrm{F}\}$ $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ defined by $\mathrm{T}(\mathrm{f})=\mathrm{Df}$.

$$
\begin{aligned}
f(x) & =c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{k} x^{k} \\
D f(x) & =c_{1}+2 c_{2} x+\cdots+k c_{k} x^{k-1}
\end{aligned}
$$

- $\mathrm{V}=\{\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ continuous $\}$

$$
T f(x)=\int_{0}^{x} f(t) d t
$$

- Theorem 1: V vector space over F. basis $\alpha_{1}, \ldots, \alpha_{n}$. W another one with vectors $\beta_{1}, \ldots, \beta_{m}$ (any kind $\mathrm{m} \geq \mathrm{n}$). Then exists a unique linear tranformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ s.t. $\quad T\left(\alpha_{j}\right)=\beta_{j}, j=1, \ldots, n$
- Proof: Check the following map is linear.

$$
\begin{aligned}
\alpha & =x_{1} \alpha_{1}+\cdots+x_{n} \alpha_{n} \\
T \alpha & =x_{1} \beta_{1}+\cdots+x_{n} \beta_{n}
\end{aligned}
$$

- Null space of $T: V \rightarrow W:=\{v$ in $V \mid T v=0\}$.
- Rank $\mathrm{T}:=\operatorname{dim}\{\mathrm{Tv} \mid \mathrm{v}$ in V$\}$ in W . = dim range T .
- Null space is a vector subspace of V.
- Range T is a vector subspace of W.
- Example:

$$
\left(\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

- Null space $z=t=0 . x+2 y=0$ dim $=1$
- Range $=\mathrm{W}$. dim $=3$
- Theorem: rank $\mathrm{T}+$ nullity $\mathrm{T}=\operatorname{dim} \mathrm{V}$.
- Proof: $\mathrm{a}_{1}, . ., \mathrm{a}_{\mathrm{k}}$ basis of $\mathrm{N} . \operatorname{dim} \mathrm{N}=\mathrm{k}$. Extend to a basis of V : $\mathrm{a}_{1}, . ., \mathrm{a}_{\mathrm{k}}, a_{\mathrm{k}+1}$,
\ldots, a_{n}.
- We show $T a_{k+1}, \ldots, T a_{n}$ is a basis of R. Thus $\mathrm{n}-\mathrm{k}=\operatorname{dim} \mathrm{R}$. $\mathrm{n}-\mathrm{k}+\mathrm{k}=\mathrm{n}$.
- Spans R: $v=x_{1} \alpha_{1}+\cdots+x_{n} \alpha_{n}$

$$
T v=x_{k+1} T\left(\alpha_{k+1}\right)+\cdots x_{n} T\left(\alpha_{n}\right)
$$

- Independence:

$$
\begin{array}{ccc}
\sum_{i=k+1}^{n} c_{i} T \alpha_{i} & = & 0 \\
T\left(\sum_{i=k+1}^{n} c_{i} \alpha_{i}\right) & = & 0 \\
\sum_{i=k+1}^{n} c_{i} \alpha_{i} & \in & N \\
\sum_{i=k+1}^{n} c_{i} \alpha_{i} & = & \sum_{i=1}^{k} c_{i} \alpha_{i} \\
c_{i} & = & 0, i=k+1, \ldots, n
\end{array}
$$

- Theorem 3: A mxn matrix. Row rank $A=$ Column rank A.
- Proof:
- column rank $A=$ rank T where $T: R^{n} \rightarrow R^{m}$ is defined by $Y=A X$. e_{i} goes to $i-$ th column. So range is spaned by column vectors.
- rankT+nullity $\mathrm{T}=\mathrm{n}$ by above theorem.
- column rank $A+\operatorname{dim} S=n$ where $S=\{X \mid A X=O\}$ is the null space.
- dim $\mathrm{S}=\mathrm{n}$ - row rank A (Example 15 Ch .2 p.42)
- row rank = column rank.
- (Example 15 Ch .2 p .42) $A^{m \times n}$. S solution space. R r-re matrix
- $r=$ number of nonzero rows of R.
- $\mathrm{RX}=0 \mathrm{k}_{1}<\mathrm{k}_{2}<\ldots<\mathrm{k}_{\mathrm{r}} . \mathrm{J}=\{1, . ., \mathrm{n}\}-\left\{\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{r}}\right\}$.

$$
x_{k_{1}}
$$

$$
\begin{aligned}
& +\sum_{j=1}^{n-r} C_{1 j} u_{j}=0 \\
& +\sum_{j=1}^{n-r} C_{2 j} u_{j}=0
\end{aligned}
$$

$$
\begin{array}{ccc}
& + & \vdots \\
x_{k_{r}} & +\sum_{j=1}^{n-r} C_{r j} u_{j} & =0
\end{array}
$$

- Solution spaces parameter u_{1}, \ldots, u_{n-r}.
- Or basis E_{j} given by setting $u_{j}=1$ and other $u_{i}=0$ and $\mathrm{x}_{\mathrm{ki}}=\mathrm{c}_{\mathrm{ij}}$.

Algebra of linear transformations

- Linear transformations can be added, and multiplied by scalars. Hence they form a vector space themselves.
- Theorem 4: $T, U: V \rightarrow W$ linear.
- Define $\mathrm{T}+\mathrm{U}: \mathrm{V} \rightarrow \mathrm{W}$ by $(\mathrm{T}+\mathrm{U})(\mathrm{a})=\mathrm{T}(\mathrm{a})+\mathrm{U}(\mathrm{a})$.
- Define cT:V \rightarrow W by cT(a)=c(T(a)).
- Then they are linear transformations.
- Definition: $L(V, W)=\{T: V \rightarrow W \mid T$ is linear $\}$.
- Theorem 5: $\mathrm{L}(\mathrm{V}, \mathrm{W})$ is a finite dim vector space if so are V, W. dimL=dimVdimW.
- Proof: We find a basis: $\mathcal{B}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset V$ $\mathcal{B}^{\prime}=\left\{\beta_{1}, \ldots, \beta_{m}\right\} \subset W$
- Define a linear transformation $\mathrm{V} \rightarrow \mathrm{W}$:

$$
E^{p, q}\left(\alpha_{i}\right)=\left\{\begin{array}{cc}
0, & i \neq q \\
\beta_{p}, & i=q
\end{array}=\delta_{i q} \beta_{p}, \quad 1 \leq p \leq m, 1 \leq q \leq n\right.
$$

- The basis:

$$
\begin{array}{ccc}
E^{1,1}, & \ldots, & E^{1, n} \\
\vdots & \ddots & \vdots \\
E^{m, 1}, & \ldots, & E^{m, n}
\end{array}
$$

- Spans: $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W} . \quad T \alpha_{j}=\sum_{p=1}^{m} A_{p j} \beta_{p}$. We show

$$
\begin{aligned}
& \quad T=U=\sum_{p=1}^{m} \sum_{q=1}^{n} A_{p q} E^{p, q} \\
& U\left(\alpha_{j}\right)=\sum_{p=1}^{m} \sum_{q=1}^{n} A_{p, q} E^{p, q}\left(\alpha_{j}\right) \\
& =\sum_{p=1}^{m}\left(\sum_{q=1}^{n} A_{p, q} \delta_{j, q}\right)\left(\beta_{p}\right) \\
& =\sum_{p=1}^{m} A_{p j} \beta_{p}=T \alpha_{j}, j=1, ., m \\
& T=U
\end{aligned}
$$

- Independence
- Suppose

$$
\begin{array}{ccc}
U & = & \sum_{p} \sum_{q} A_{p q} E^{p, q}=0 \\
U \alpha_{j} & = & 0 \\
\sum_{p} A_{p j} \beta_{p} & = & 0 \\
\left\{\beta_{p}\right\} & & \text { independent } \\
A_{p j} & = & 0 \text { for all } p, j
\end{array}
$$

- Example: $\mathrm{V}=\mathrm{F}^{\mathrm{m}} \mathrm{W}=\mathrm{F}^{\mathrm{n}}$. Then
$-M_{m \times n}(F)$ is isomorphic to $L\left(F^{m}, F^{n}\right)$ as vector spaces. Both dimensions equal mn .
$-E^{p, q}$ is the $m x n$ matrix with 1 at (p, q) and 0 everywhere else.
- Any matrix is a linear combination of $E^{p, q}$.
- Theorem. $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}, \mathrm{U}: \mathrm{W} \rightarrow \mathrm{Z}$.
$U T: V \rightarrow Z$ defined by $U T(a)=U(T(a))$ is linear.
- Definition: Linear operator $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$.
- $\mathrm{L}(\mathrm{V}, \mathrm{V})$ has a multiplication.
- Define $T^{0}=I, T^{n}=T$...T. n times.
- Example: A mxn matrix B pxm matrix T defined by $T(X)=A X$. U defined by $U(Y)=B Y$.
Then $\mathrm{UT}(\mathrm{X})=\mathrm{BAX}$. Thus
$U T$ is defined by $B A$ if T is defined by A and U by B.
- Matrix multiplication is defined to mimic composition.
- Lemma:
- IU=UI=U
$-U\left(T_{1}+T_{2}\right)=U T_{1}+U T_{2,}\left(T_{1}+T_{2}\right) U=T_{1} U+T_{2} U$.
$-c\left(\mathrm{UT}_{1}\right)=(\mathrm{cU}) \mathrm{T}_{1}=\mathrm{U}\left(\mathrm{c} \mathrm{T}_{1}\right)$.
- Remark: This make L(V,V) into linear algebra (i.e., vector space with multiplications) in fact same as the matrix algebra $M_{n x n}(F)$ if $V=F^{n}$ or more generally dim $\mathrm{V}=\mathrm{n}$. (Example 10. P.78)
- Example: $V=\{f: F \rightarrow F \mid f$ is a polynomial $\}$. $-\mathrm{D}: \mathrm{V} \rightarrow \mathrm{V}$ differentiation.

$$
\begin{aligned}
f(x) & =c_{0}+c_{1} x+\cdots+c_{n} x^{n} \\
D f(x) & =c_{1}+\cdots+n c_{n} x^{n-1}
\end{aligned}
$$

$-\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}: \mathrm{T}$ sends $\mathrm{f}(\mathrm{x})$ to $\mathrm{xf}(\mathrm{x})$
$-D T-T D=I$. We need to show DT-TD(f)= f for each polynomial f.

- (QP-PQ=ihl In quantum mechanics.)

Invertible transformations

- $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is invertible if there exists $\mathrm{U}: \mathrm{W} \rightarrow \mathrm{V}$ such that $U T=I_{v} T U=I_{w}$. U is denoted by T^{-1}.
- Theorem 7: If T is linear, then T^{-1} is linear.
- Definition: $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is nonsingular if $\mathrm{Tc}=0$ implies c=0
- Equivalently the null space of T is $\{\mathrm{O}\}$.
- T is one to one.
- Theorem 8: T is nonsingular iff T carries each linearly independent set to a linearly independent set.
- Theorem 9: V, W dim V = dim W. $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is linear. TFAE:
- T is invertible.
$-T$ is nonsingular
- T is onto.
- Proof: We use n=dim V = dim W.
rank T+nullity $\mathrm{T}=\mathrm{n}$.
- (ii) iff (iii): T is nonsingular iff nullity $T=0$ iff rank T $=\mathrm{n}$ iff T is onto.
$-(\mathrm{I}) \rightarrow$ (ii): $\mathrm{TX}=0, \mathrm{~T}^{-1} \mathrm{TX}=0, \mathrm{X}=0$.
- (ii) \rightarrow (i): T is nonsingular. T is onto. T is $1-1$ onto. The inverse function exists and is linear. T^{-1} exists.

Groups

- A group (G, .):
- A set G and an operation $G x G->G$:
- $x(y z)=(x y) z$
- There exists e s.t. $x e=e x=x$
- To each x, there exists x^{-1} s.t. $x x^{-1}=e$ and $x^{-1} x=e$.
- Example: The set of all 1-1 maps of $\{1,2, \ldots, n\}$ to itself.
- Example: The set of nonsingular maps $\mathrm{GL}(\mathrm{V}, \mathrm{V})$ form a group.

Isomorphisms

- V, W T:V->W one-to-one and onto (invertible). Then T is an isomorphism. V, W are isomorphic.
- Isomorphic relation is an equivalence relation: $\mathrm{V} \sim \mathrm{V}, \mathrm{V} \sim \mathrm{W}$ <-> $\mathrm{W} \sim \mathrm{V}, \mathrm{V} \sim \mathrm{W}$, $\mathrm{W} \sim \mathrm{U}$-> V~W.
- Theorem 10: Every n-dim vector space over F is isomorphic to F^{n}.
(noncanonical)
- Proof: V n-dimensional
- Let $B=\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right\}$ be a basis.
- Define T:V -> F^{n} by
$\alpha=x_{1} \alpha_{1}+\cdots+x_{n} \alpha_{n} \mapsto\left(x_{1}, \ldots, x_{n}\right) \in F^{n}$
- One-to-one
- Onto
- Example: isomorphisms (F a subfield of R) $\quad F^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in F\right\}$

$$
\cong\left\{\left.\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \right\rvert\, x_{i} \in F\right\}
$$

$P^{n}(F) \underset{F^{n+1}}{\cong} \underset{\sim}{\cong}\left\{f: F \rightarrow F \mid f(x) \underset{c_{1}}{\left.=c_{0}+c_{1} x+\cdots+c_{n} x^{n}\right\}}\right.$
Basis $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$
$c_{0}+c_{1} x+\cdots+c_{n} x^{n} \mapsto\left(c_{0}, c_{1}, \ldots, c_{n}\right)$
There will be advantages in looking this way!

