Row-equivalences again

Row spaces bases
computational techniques using row-equivalences

- The row space of A is the span of row vectors.
- The row rank of A is the dimension of the row space of A.
- Theorem 9: Row-equivalent matrices have the same row spaces.
- proof: Check for elementary row equivalences only.
- Theorem 10: R nonzero row reduced echelon matrix. Then nonzero rows of R form a basis of the row space of R.
- proof: $\rho_{1}, \ldots, \rho_{r}$ row vectors of R.

$$
\begin{array}{cccc}
- & \rho_{i}=\left(R_{i 1}, R_{i 2}, \ldots, R_{i n}\right) \\
- & R_{i j}=0 & \text { if } & j<k_{i}, \\
R_{i, k_{j}} & = & \delta_{i j}, \\
k_{1}<k_{2}< & \ldots & <k_{r} .
\end{array}
$$

- Let $\beta=\left(b_{1}, \ldots, b_{n}\right)$ be a vector in the row space.

$$
\begin{aligned}
& \beta=c_{1} \rho_{1}+\cdots+c_{r} \rho_{r} \\
& \text { Claim: } c_{j}=b_{k_{j}} \\
& b_{k_{j}}=\sum_{i=1}^{r} c_{i} R_{i, k_{j}}=\sum_{i=1}^{r} c_{i} \delta_{i j}=c_{j}
\end{aligned}
$$

If $\beta=0$, then $c_{j}=0, j=0, \ldots, r$.

- $\quad \rho_{1}, \ldots, \rho_{r}$ are linearly independent: basis
- Theorem 11: m, n, F a field. W a subspace of F^{n}. Then there is precisely one mxn r-r-e matrix which has W as a row space.
- Corollary: Each mxn matrix A is row equiv. to one unique r-r-e matrix.
- Corollary. A,B mxn.
A and B are row-equiv iff A, B have the same row spaces.

Proof of Theorem 11

- R r.r.e. for any A whose rows span W.
- $r_{1}, r_{2}, \ldots, r_{s}$ row vectors of R.
- b any vector $b=c_{1} r_{1}+. .+c_{r} r_{s}$.
- $b=\sum_{i-1}^{s} b_{k i} r_{i}, b_{k_{i}} \neq 0$.
- The first nonzero entry of b occurs at k_{i} th position.
- Given any other R' from A' with span A'=W,
- Let r_{j}^{\prime} be the j-th row vector of R^{\prime}.
- The last one $r^{\prime}{ }^{\prime}$, has to coincide with r_{s}. (If not, we cannot write it as a linear combination.)
- In fact, each row r_{j}^{\prime} has to coincide with r_{k}.

Summary of row-equivalences

- TFAE
- A and B are row-equivalent
- A and B have the same row-space
$-B=P A$ where P is invertible.
- $A X=0$ and $B X=0$ has the same solution spaces.
- Proof: (i)-(iii) done before. (i)-(ii) above corollary. (i)->(iv) is also done. (iv)->(i) to be done later.

Computations

- Numerical problems:
- 1 . How does one determine a set of vectors $S=\left(a_{1}, . ., a_{n}\right)$ is linearly independent. What is the dimension of the span W of S ?
- 2. Given a vector v , determine whether it belongs to a subspace W. How to write $v=c_{1} a_{1}+\ldots+C_{n} a_{n}$.
-3 . Find some explicit description of W : i.e., coordinates of W. -> Vague...
- Let A be mxn matrix.
- r-r-e R
- $\operatorname{dim} W=r$ the number of nonzero rows of R.

$$
\begin{aligned}
& W=\left\{\beta \mid \beta=c_{1} \rho_{1}+\cdots+c_{r} \rho_{r}, c_{i} \in F\right\} \\
& \beta=b_{i} \quad\left(b_{1}, \ldots, b_{n}\right) \\
& \beta=\sum_{i=1}^{r} c_{i} R_{i j}, c_{j}=b_{k_{j}} \\
& \beta=\sum_{i=1}^{r} b_{j} p_{i} p_{i} \\
& b_{j}=\sum_{i=1}^{r} b_{k_{i}} R_{i j}
\end{aligned}
$$

$b_{k_{1}}, \ldots, b_{k_{r}}$ give a parametrization of W
(also relations between coordinates of the row space).

- Example:

$$
R=\left(\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
b_{k_{1}}(1,2,0,0)+b_{k_{2}}(0,0,1,0)+b_{k_{3}}(0,0,0,1)
$$

$$
\left(b_{k_{1}}, 2 b_{k_{1}}, b_{k_{2}}, b_{k_{3}}\right)
$$

- (1) can be answered by computing the rank of R. If rank $R=m$, then independent. If rank $R<m$, then dependent. ($A=P R, P$ invertible.)
- (2): b given. Solve for $A X=b$.
- Second method: A=PR, P invertible.

$$
\begin{aligned}
& \beta=x_{1} \alpha_{1}+\cdots+x_{m} \alpha_{m} \\
& \rho_{i}=\sum_{j=1}^{m} P_{i j} \alpha_{j} \\
& \beta=\sum_{i=1}^{r} b_{k_{i}} \rho_{i}=\sum_{i=1}^{r} \sum_{j=1}^{m} b_{k_{i}} P_{i j} \alpha_{j}=\sum_{j=1}^{m} \sum_{i=1}^{r} b_{k_{i}} P_{i j} \alpha_{j} \\
& x_{j}=\sum_{i=1}^{r} b_{k i} P_{i j}
\end{aligned}
$$

- In line 3, we solve for $b_{k_{i}}$
- Final equation is from comparing the first line with the second to the last line.

$$
A=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 1 & -1 & 1
\end{array}\right)
$$

- Find r-r-e R. Find a basis of row space
- Which vectors $\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4}\right)$ is in W?
- coordinate of $\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4}\right)$?
- write $\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4}\right)$ as a linear combination of rows of A.
$\left(\begin{array}{cccc}1 & 1 & 0 & 0 \mid y_{1} \\ 0 & 2 & 1 & 0 \mid y_{2} \\ 0 & 1 & -1 & 1 \mid y_{3}\end{array}\right)\left(\begin{array}{cccc}1 & 1 & 0 & 0 \mid y_{1} \\ 0 & 1 & 1 / 2 & 0 \mid y_{2} / 2 \\ 0 & 1 & -1 & 1 \mid y_{3}\end{array}\right)$

$$
\begin{gathered}
\left(\begin{array}{cccc}
1 & 0 & -1 / 2 & 0 \mid \\
0 & y_{1}-y_{2} / 2 \\
0 & 1 & 1 / 2 & 0 \mid \\
0 & 0 & -3 / 2 & 1 \mid-y_{2} / 2+y_{3}
\end{array}\right) \\
\left(\begin{array}{llll}
1 & 0 & 0 & -1 / 3 \mid y_{1}-y_{2} / 3-y_{3} / 3 \\
0 & 1 & 0 & 1 / 3 \\
0 & y_{2} / 3+y_{3} / 3 \\
0 & 0 & 1 & -2 / 3 \mid \\
y_{2} / 3-2 y_{3} / 3
\end{array}\right) \\
Q=\left[\begin{array}{ccc}
1 & -1 / 3 & -1 / 3 \\
0 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & -2 / 3
\end{array}\right]
\end{gathered}
$$

$$
R=\left(\begin{array}{cccc}
1 & 0 & 0 & -1 / 3 \\
0 & 1 & 0 & 1 / 3 \\
0 & 0 & 1 & -2 / 3
\end{array}\right) \quad Q=\left(\begin{array}{ccc}
1 & -1 / 3 & -1 / 3 \\
0 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & -2 / 3
\end{array}\right)
$$

- $R=Q A$.
- Basis of row spaces: rows above, dim=3 (note relations of b_{4} in terms of other coordinates.)

$$
\begin{aligned}
& \beta=b_{1} \rho_{1}+b_{2} \rho_{2}+b_{3} \rho_{3}=\left(b_{1}, b_{2}, b_{3},-b_{1} / 3+b_{2} / 3-2 b_{3} / 3\right) \\
& =\left[b_{1}, b_{2}, b_{3}\right] R=\left[b_{1}, b_{2}, b_{3}\right] Q A \\
& =x_{1} \alpha_{1}+x_{2} \alpha_{2}+x_{3} \alpha_{3} \\
& x_{i}=\left[b_{1}, b_{2}, b_{3}\right] Q_{i}
\end{aligned}
$$

- Q_{i} is the ith column of Q.

$$
\begin{array}{lcc}
x_{1}= & b_{1} \\
x_{2}= & -b_{1} / 3+b_{2} / 3+b_{3} / 3 \\
x_{3} & = & -b_{1} / 3+b_{2} / 3-2 b_{3} / 3
\end{array}
$$

These are coefficients of $\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$ written in terms of original rows of A.

Find description of solutions space V of $\mathrm{AX}=0$.

- Basis of V ?
- $A X=0 \leftrightarrow R X=0$.
- Basis of V : $(1,-1,2,3)$.

For what $Y, A X=Y$ has solutions?

- $A X=Y$ for what Y ? All Y ? See page 63.
- Again, we find R and change Y in the same way. We consider 0 rows of R to obtain the relations for Y .
- Examples 21 and 22 must be thoroughly understood

A matrix and computations

 - A some matrix.- 1. Find invertible P so that $P A=$ R r.r.e.
- 2. Basis of span W row space of A.
- 3. Characterize W. Parametrize by rows of R.
- 4. Write elements of W as linear combinations of rows of \mathbb{A}. (technique we showed.)
- 5. $\AA \mathrm{A}=0$ Solution space; basis?, dim?
- 6. $\mathbb{A} X=Y$. When Y has solutions? (multiply by P, PAX $=P Y$. RX $=P Y$. Consider 0 rows of $\mathrm{B}^{\mathrm{B}} \mathrm{X}$.)

