Chapter 2: Vector spaces

Vector spaces, subspaces, basis, dimension, coordinates, rowequivalence, computations

A vector space (V,F, +, .)

- F a field
- V a set (of objects called vectors)
- Addition of vectors (commutative, associative) $\exists 0, \forall \alpha \in V, \alpha+0=0$.

$$
\forall \alpha \exists!-\alpha, \alpha+(-\alpha)=0
$$

- Scalar multiplications $(c, \alpha) \mapsto c \alpha, c \in F, \alpha \in V$

$$
1 \alpha=\alpha,\left(c_{1} c_{2}\right) \alpha=c_{1}\left(c_{2} \alpha\right), c(\alpha+\beta)=c \alpha+c \beta,\left(c_{1}+c_{2}\right) \alpha=c_{1} \alpha+c_{2} \alpha
$$

Examples

$$
\begin{array}{ccc}
F^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in F\right\} \\
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right) & = & \left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \\
c\left(x_{1}, \ldots, x_{n}\right) & = & \left(c x_{1}, \ldots, c x_{n}\right)
\end{array}
$$

- Other laws are easy to show

$$
\begin{aligned}
& \quad \mathbf{C}^{n},(Q+\sqrt{2} Q)^{n}, Z_{p}^{n} \\
& F^{m \times n}=\left\{\left\{A_{i j}\right\} \mid A_{i j} \in F, i=1, \ldots, m, j=1, \ldots, n\right\}= \\
& F^{m n}=\left\{\left(A_{11}, A_{12}, \ldots, A_{m n-1}, A_{m n}\right) \mid A_{i j} \in F\right\}
\end{aligned}
$$

- This is just written differently
- The space of functions: A a set, F a field

$$
\{f: A \rightarrow F\},(f+g)(s)=f(s)+g(s),(c f)(s)=c(f(s))
$$

- If A is finite, this is just $\mathrm{F}^{|\mathrm{A}|}$. Otherwise this is infinite dimensional.
- The space of polynomial functions
$\left\{f: F \rightarrow F \mid f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}, c_{i} \in F\right\}$
- The following are different.

$$
\begin{array}{ccc}
V=\mathbf{C}=\{x+i y \mid x, y \in \mathbf{R}\} & , \quad F=\mathbf{R} \\
V=\mathbf{C} & , & F=\mathbf{C} \\
V=\mathbf{C} & , & F=\mathbf{Q}
\end{array}
$$

Subspaces

- V a vector space of a field F. A subspace W of V is a subset W s.t. restricted operations of vector addition, scalar multiplication make W into a vector space.
- +:WxW -> W, •:FxW -> W.
- W nonempty subset of V is a vector subspace iff for each pair of vectors a, b in W, and c in F, $c a+b$ is in W. (iff for all a, b in W, c, d in $W, c a+d b$ is in W.)
- Example:

$$
\mathbf{R}^{n-1} \subset \mathbf{R}^{n},\left\{\left(x_{1}, \ldots, x_{n-1}, 0\right) \mid x_{i} \in \mathbf{R}\right\}
$$

- $S_{m \times m}=\left\{A \in F^{m \times m} \mid A^{t}=A\right\} \subset F^{m \times m}$ is a vector subspace with field F.
- Solution spaces: Given an mxn matrix A

$$
W=\left\{X \in F^{n} \mid A X=0\right\} \subset F^{n}
$$

$\forall X, Y \in W c \in F, A(c X+Y)=c A X+A Y=0 . \mapsto c X+Y \in W$.

- Example $x+y+z=0$ in $R^{3} . x+y+z=1$ (no)
- The intersection of a collection of vector subspaces is a vector subspace
- $W=\{(x, y, z) \mid x=0$ or $y=0\}$ is not.

Span(S)

$$
\operatorname{Span}(S)=\left\{\sum_{i} c_{i} \alpha_{i} \mid \alpha_{i} \in S, c_{i} \in F\right\} \subset V
$$

- Theorem 3. $\mathrm{W}=\operatorname{Span}(\mathrm{S})$ is a vector subspace and is the set of all linear combinations of vectors in S .
- Proof:

$$
\begin{aligned}
& \alpha, \beta \in W, c \in F, \\
& \alpha=x_{1} \alpha_{1}+\cdots+x_{m} \alpha_{m}, x_{i} \in F \\
& \beta=y_{1} \beta_{1}+\cdots+y_{n} \beta_{n}, y_{i} \in F \\
& c \alpha+\beta=c x_{1} \alpha_{1}+\cdots+c x_{m} \alpha_{m}+y_{1} \beta_{1}+\cdots+y_{n} \beta_{n}
\end{aligned}
$$

- Sum of subsets $S_{1}, S_{2}, \ldots, S_{k}$ of V

$$
S_{1}+S_{2}+\ldots+S_{k}=\left\{\alpha_{1}+\alpha_{2}+\ldots+\alpha_{k} \mid \alpha_{i} \in S_{i}\right\}
$$

- If S_{i} are all subspaces of V, then the above is a subspace.
- Example: $y=x+z$ subspace:
$\operatorname{Span}((1,1,0),(0,1,1))=\{c(1,1,0)+d(0,1,1) \mid c, d \in \mathbf{R}\}=\{(c, c+d, d) \mid c, d \in \mathbf{R}\}$
- Row space of A : the span of row vectors of A.
- Column space of A : the space of column vectors of A.

Linear independence (sensitive to the field F)

- A subset S of V is linearly dependent if
$\exists \alpha_{1}, \ldots, \alpha_{n} \in S, c_{1}, \ldots, c_{n} \in F$ not all 0 s.t. $c_{1} \alpha_{1}+\cdots+c_{n} \alpha_{n}=0$.
- A set which is not linearly dependent is called linearly independent:
The negation of the above statement
- $\forall \alpha_{1}, \ldots, \alpha_{n} \in S$, there are no $c_{1}, \ldots, c_{n} \in F$ not all zero s.t. $c_{1} \alpha_{1}+\cdots+c_{n} \alpha_{n}=0$
$\forall \alpha_{1}, \ldots, \alpha_{n} \in S$, if $c_{1} \alpha_{1}+\cdots+c_{n} \alpha_{n}=0$, then $c_{i}=0, i=1, \ldots, n$
$(1,1),(0,1), c_{1}(1,1)+c_{2}(0,1)=\left(c_{1}, c_{1}+c_{2}\right)=(0,0) \mapsto c_{1}=0, c_{2}=0$
$c_{1}(1,1,1)+c_{2}(2,2,1)+c_{3}(3,3,2)=0$ for $c_{1}=1, c_{2}=1, c_{3}=-1$.

Basis

- A basis of V is a linearly independent set of vectors in V which spans V.
- Example: F^{n} the standard basis

$$
\epsilon_{1}=(1,0, \ldots, 0), \epsilon_{2}=(0,1, \ldots, 0), \ldots, \epsilon_{n}=(0,0, \ldots, 1)
$$

- V is finite dimensional if there is a finite basis. Dimension of V is the number of elements of a basis. (Independent of the choice of basis.)
- A proper subspace W of V has $\operatorname{dim} \mathrm{W}$ < dim
V. (to be proved)
- Example: P invertible $n \times n$ matrix. $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}$ columns form a basis of $F^{n \times 1}$.
- Independence: $\mathrm{x}_{1} \mathrm{P}_{1}+\ldots+\mathrm{x}_{\mathrm{n}} \mathrm{P}_{\mathrm{n}}=0, \mathrm{PX}=0$. Thus $\mathrm{X}=0$.
- Span $F^{n x 1}$: Y in $F^{n x 1}$. Let $X=P^{-1} Y$. Then $Y=P X$. $Y=x_{1} P_{1}+\ldots+x_{n} P_{n}$.
- Solution space of $A X=0$. Change to $R X=0$.

$$
\begin{aligned}
& \begin{array}{rll}
x_{k_{1}} & +\sum_{j=1}^{n-r} C_{1 j} u_{j}=0 \\
& x_{k_{2}} & +\sum_{j=1}^{n-r} C_{2 j} u_{j}=0
\end{array} \\
& \begin{array}{ccc}
& +c & \vdots \\
x_{k_{r}}+ & =\vdots \\
\sum_{j=1}^{n-r} C_{r j} u_{j} & =0
\end{array}
\end{aligned}
$$

- Basis $E_{j} u_{j}=1$, other $u_{k}=0$ and solve above

$$
x_{k_{i}}=-c_{i j}, \mapsto\left(-c_{1 j},-c_{2 j}, \ldots,-c_{r j}, 0, . ., 1, . .0\right)
$$

- Thus the dimension is $n-r$:
- Infinite dimensional example:
$V:=\left\{f \mid f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}\right\}$.
Given any finite collection g_{1}, \ldots, g_{n} there is a maximum degree k. Then any polynomial of degree larger than k can not be written as a linear combination.
- Theorem 4: V is spanned by $\beta_{1}, \beta_{2}, \ldots, \beta_{m}$ Then any independent set of vectors in V is finite and number is $\leq \mathrm{m}$.
- Proof: To prove, we show every set S with more than m vectors is linearly dependent. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be elements of S with $n>m$.

$$
\alpha_{j}=\sum_{n}^{m} A_{i j} \beta_{i}
$$

$$
\sum_{i=1}^{n} x_{j} \alpha_{j}=\sum_{j=1}^{n} x_{j} \sum_{i=1}^{m} A_{i j} \beta_{i}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n^{i=1}} A_{i j} x_{j}\right) \beta_{i}
$$

- A is mxn matrix. Theorem 6, Ch 1 , we can solve for $\mathrm{x}_{1}, \mathrm{x}_{2}$, ..., x_{n} not all zero for

$$
\sum_{j=1}^{n} A_{i j} x_{j}=0, i=1, \ldots, n
$$

- Thus

$$
x_{1} \alpha_{1}+\ldots+x_{n} \alpha_{n}=0
$$

- Corollary. V is a finite d.v.s. Any two bases have the same number of elements.
- Proof: B, B' basis. Then $\left|\mathrm{B}^{\prime}\right| \leq|\mathrm{B}|$ and $|\mathrm{B}| \leq\left|\mathrm{B}^{\prime}\right|$.
- This defines dimension.
$-\operatorname{dim} F^{n}=n . \operatorname{dim} F^{m \times n}=m n$.
- Lemma. S a linearly independent subset of V . Suppose that b is a vector not in the span of S. Then $S \cup\{b\}$ is independent.
- Proof: $\quad c_{1} \alpha_{1}+\cdots+c_{m} \alpha_{m}+k b=0$.

Then $\mathrm{k}=0$. Otherwise b is in the span.
Thus, $\quad c_{1} \alpha_{1}+\cdots+c_{m} \alpha_{m}=0$. and c_{i} are all zero.

- Theorem 5. V is finite dim v.s. If W is a subspace of V , every linearly independent subset of W is finite and is a part of a basis of W .
- W a subspace of V . $\operatorname{dim} \mathrm{W} \leq \operatorname{dim} \mathrm{V}$.
- A set of linearly independent vectors can be extended to a basis.
- A nxn-matrix. Rows (respectively columns) of A are independent iff A is invertible.
$(->)$ Rows of A are independent. Dim Rows $A=n$. Dim Rows
r.r.e R of $A=n$. R is $I->A$ is inv.
$(<-) A=B . R$. for r.r.e form R. B is inv. $A B^{-1}$ is inv. R is inv. $R=l$.
Rows of R are independent. Dim Span $R=n$. $\operatorname{Dim} \operatorname{Span} A=n$.
Rows of A are independent.
- Theorem 6.
W_{1}, W_{2} subspace of a f.d.v.s V. Then $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim} W_{1} \cap W_{2}$.
- Proof:
$-W_{1} \cap W_{2}$ has basis $a_{1}, \ldots, a_{1} . W_{1}$ has a basis $a_{1}, . ., a_{1}, b_{1}, \ldots, b_{m}$. W_{2} has a basis $\mathrm{a}_{1}, . ., \mathrm{a}_{1}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}$.
- $\mathrm{W}_{1}+\mathrm{W}_{2}$ is spanned by $\mathrm{a}_{1}, . ., \mathrm{a}_{1}, \mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{m}}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}$.
- There are also independent.
- Suppose
- Then

$$
\sum_{i=1}^{l} x_{i} a_{i}+\sum_{j=1}^{m} y_{j} b_{j}+\sum_{k=1}^{n} z_{k} c_{k}=0
$$

$$
\begin{aligned}
& \sum_{k=1}^{n} z_{k} c_{k}=-\sum_{i=1}^{l} x_{i} a_{i}-\sum_{j=1}^{m} y_{j} b_{j} \\
& \sum_{k=1}^{n} z_{k} c_{k} \in W_{1} \text { and } \in W_{2} \quad \sum_{k=1}^{n} z_{k} c_{k}=\sum_{i=1}^{l} d_{i} a_{i}
\end{aligned}
$$

- By independence $z_{k}=0 . x_{i}=0, y_{j}=0$ also.

Coordinates

- Given a vector in a vector space, how does one name it? Think of charting earth.
- If we are given F^{n}, this is easy? What about others?

$$
\mathcal{B}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}
$$

- We use ordered basis:

One can write any vector uniquely

$$
\alpha=x_{1} \alpha_{1}+\cdots+x_{n} \alpha_{n}
$$

- Thus,we name

$$
\begin{aligned}
& \text { nus,we name } \\
& \alpha \mapsto\left(x_{1}, \ldots, x_{n}\right) \in F^{n} \quad X=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=[\alpha]_{\mathcal{B}}
\end{aligned}
$$

Coordinate (nx1)-matrix (n-tuple) of a vector.
For standard basis in F^{n}, coordinate and vector are the same.

- This sets up a one-to-one correspondence between V and F^{n}.
- Given a vector, there is unique n-tuple of coordinates.
- Given an n-tuple of coordinates, there is a unique vector with those coordinates.
- These are verified by the properties of the notion of bases. (See page 50)

Coordinate change?

- If we choose different basis, what happens to the coordinates?
- Given two bases $\mathcal{B}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}, \mathcal{B}^{\prime}=\left\{\alpha_{1}^{\prime}, \ldots, \alpha_{n}^{\prime}\right\}$
- Write

$$
\alpha_{j}^{\prime}=\sum_{i=1}^{n} P_{i j} \alpha_{i}
$$

$$
\begin{array}{rcc}
\alpha & = & \sum_{j=1} x_{j} \alpha_{j}=x_{1} \alpha_{1}+\cdots+x_{n} \alpha_{n} \\
& = & \sum_{j=1}^{n} x_{j}^{\prime} \alpha_{j}^{\prime}=\sum_{j=1}^{n} x_{j}^{\prime} \sum_{i=1}^{n} P_{i j} \alpha_{i} \\
& = & \sum_{j=1}^{n} \sum_{i=1}^{n}\left(P_{i j} x_{j}^{\prime}\right) \alpha_{i}=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} P_{i j} x_{j}^{\prime}\right) \alpha_{i} . \\
x_{i} & = & \sum_{j=1}^{n} P_{i j} x_{j}^{\prime}
\end{array}
$$

- $X=0$ iff $X^{\prime}=0$ Theorem 7,Ch1, P is invertible
- Thus, $X=P X^{\prime}, X^{\prime}=P^{-1} X$.

$$
[\alpha]_{\mathcal{B}}=P[\alpha]_{\mathcal{B}^{\prime}},[\alpha]_{\mathcal{B}^{\prime}}=P^{-1}[\alpha]_{\mathcal{B}},
$$

- Example $\{(1,0),(0,1)\},\{(1, i),(i, 1)\}$

$$
\begin{aligned}
-(1, \mathrm{i}) & =(1,0)+\mathrm{i}(0,1) \\
(\mathrm{i} 1) & =\mathrm{i}(10)+(01)
\end{aligned} \quad P=\left(\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right), P^{-1}=\left(\begin{array}{cc}
1 / 2 & -i / 2 \\
-i / 2 & 1 / 2
\end{array}\right),
$$

$$
(i, 1)=i(1,0)+(0,1)
$$

$$
-(a, b)=a(1,0)+b(1,0):(a, b)_{B}=(a, b)
$$

$$
-(a, b)_{B^{\prime}}=P^{-1}(a, b)=((a-i b) / 2,(-i a+b) / 2) .
$$

- We check that (a-ib)/2x(1,i)+ $(-i a+b) / 2 x(i, 1)=(a, b)$.

