
Chapter 2: Vector spaces 

Vector spaces, subspaces, basis, 
dimension, coordinates, row-
equivalence, computations 



A vector space (V,F, +, .) 

•  F a field  
•  V a set (of objects called vectors)  
•  Addition of vectors (commutative, 

associative)  
 

•  Scalar multiplications  



Examples 

–  Other laws are easy to show 

–  This is just written differently 

Fmxn = {{Aij} | Aij ∈ F, i =1,...,m, j =1,...,n} =

Fmn = {(A11,A12,...,Amn−1,Amn ) | Aij ∈ F}



•  The space of functions: A a set, F a field 

–  If A is finite, this is just F|A|. Otherwise this is infinite dimensional.  

•  The space of polynomial functions 

•   The following are different. 

 



Subspaces 

•  V a vector space of a field F. A subspace W 
of V is a subset W s.t. restricted operations of vector 
addition, scalar multiplication make W into a vector 
space.  
–  +:WxW -> W, �:FxW -> W.  
–  W nonempty subset of V is a vector subspace iff  

for each pair of vectors a,b in W, and c in F, ca+b is in W.  
(iff for all a,b in W, c, d in W, ca+db is in W.) 

•  Example:  



•   
is a vector subspace with field F. 

•  Solution spaces: Given an mxn matrix A 

– Example x+y+z=0 in R3. x+y+z=1 (no)  
•  The intersection of a collection of vector 

subspaces is a vector subspace 
•                                       is not. W = {(x, y, z) | x = 0 or y = 0}

W = {X ∈ Fn | AX = 0}⊂ Fn



Span(S) 

•  Theorem 3. W= Span(S) is a vector  subspace and is 
the set of all linear combinations of vectors in S.  

•  Proof:  
α,β ∈W,c ∈ F,
α = x1α1 ++ xmαm, xi ∈ F
β = y1β1 ++ ynβn, yi ∈ F
cα +β = cx1α1 ++ cxmαm + y1β1 ++ ynβn



•  Sum of subsets S1, S2, …,Sk of V 

•  If Si are all subspaces of V, then the 
above is a subspace.  

•  Example:  y=x+z subspace: 

•  Row space of A: the span of row 
vectors of A.  

•  Column space of A: the space of 
column vectors of A. 



Linear independence 
(sensitive to the field F) 

•  A subset S of V is linearly dependent if  

•  A set which is not linearly dependent is called 
linearly independent:  
The negation of the above statement 

•                   there are no             not all zero s.t.     ∀α1,...,αn ∈ S, c1,...,cn ∈ F c1α1 ++ cnαn = 0



Basis 

•  A basis of V is a linearly independent set of 
vectors in V which spans V.  

•  Example: Fn the standard basis  

•  V is finite dimensional if there is a finite basis. 
Dimension of V is the number of elements of 
a basis. (Independent of the choice of basis.) 

•  A proper subspace W of V has dim W < dim 
V. (to be proved) 



•  Example: P invertible nxn matrix. P1,…,Pn 
columns form a basis of Fnx1. 
–  Independence: x1P1+…+xnPn=0, PX=0.  

Thus X=0.  
–  Span Fnx1: Y in Fnx1. Let X = P-1Y. Then Y = PX. 

Y= x1P1+…+xnPn.  
•  Solution space of AX=0. Change to RX=0.  

–  Basis Ej  uj =1, other uk=0 and solve above 
 



– Thus the dimension is n-r: 
 
•  Infinite dimensional example:  

V:={f| f(x) = c0+c1x+c2x2 + …+ cnxn}. 
Given any finite collection g1,…,gn there is a 
maximum degree k. Then any polynomial of 
degree larger than k can not be written as a 
linear combination. 



•  Theorem 4: V is spanned by  
Then any independent set of vectors in V is 
finite and number is ≤ m. 
–  Proof: To prove, we show every set S with more than m 

vectors is linearly dependent. Let  
be elements of S with n > m. 

–  A is mxn matrix. Theorem 6, Ch 1, we can solve for x1,x2,
…,xn not all zero for 

–  Thus   



•  Corollary. V is a finite d.v.s. Any two bases 
have the same number of elements.  
–  Proof: B,B’ basis. Then |B’|≤|B| and |B|≤|B’|. 

•  This defines dimension. 
– dim Fn=n. dim Fmxn=mn.  

•  Lemma. S a linearly independent subset of V. 
Suppose that b is a vector not in the span of 
S. Then S∪{b} is independent.  
–  Proof: 

Then k=0. Otherwise b is in the span.  
Thus, 
and ciare all zero. 



•  Theorem 5.  V is finite dim v.s. If W is a subspace 
of V, every linearly independent subset of W 
is finite and is a part of a basis of W.  

•  W a subspace of V. dim W ≤ dim V.  
•  A set of linearly independent vectors can be 

extended to a basis.  
•  A nxn-matrix. Rows (respectively columns) of 

A are independent iff A is invertible.  
(->) Rows of A are independent. Dim Rows A = n. Dim Rows 
r.r.e R of A =n. R is I -> A is inv. 
(<-) A=B.R. for r.r.e form R. B is inv. AB-1 is inv. R is inv. R=I. 
Rows of R are independent. Dim Span R = n. Dim Span A = n. 
Rows of A are independent.  



•  Theorem 6.  
  W1, W2 subspace of a f.d.v.s V. Then 
dim (W1+W2) = dim W1+dimW2-dimW1∩W2. 

•  Proof:  
–  W1∩W2 has basis a1,…,al. W1 has a basis a1,..,al,b1,…,bm.  

W2 has a basis a1,..,al,c1,…,cn.  
–  W1+W2 is spanned by a1,..,al,b1,…,bm ,c1,…,cn.  
–  There are also independent.  

•  Suppose 

•  Then 

•  By independence zk=0. xi=0,yj=0 also. 
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Coordinates  

•  Given a vector in a vector space, how 
does one name it? Think of charting 
earth. 

•  If we are given Fn, this is easy? What 
about others?  

•  We use ordered basis: 
One can write any vector uniquely 



•  Thus,we name 

      
    Coordinate (nx1)-matrix (n-tuple) of a vector. 

 For standard basis in Fn, coordinate and vector are the same. 

•  This sets up a one-to-one correspondence 
between V and Fn. 
–  Given a vector, there is unique n-tuple of 

coordinates. 
–  Given an n-tuple of coordinates, there is a unique 

vector with those coordinates.  
–  These are verified by the properties of the notion 

of bases. (See page 50) 



Coordinate change? 

•  If we choose different basis, what 
happens to the coordinates?  

•  Given two bases 
– Write 

  



•  X=0 iff X’=0 Theorem 7,Ch1, P is invertible 

•  Thus, X = PX’, X’=P-1X.  

•  Example {(1,0),(0,1)}, {(1,i), (i,1)} 
–  (1,i) = (1,0)+i(0,1) 

(i,1) = i(1,0)+(0,1) 
–  (a,b)=a(1,0)+b(1,0): (a,b)B =(a,b) 
–  (a,b)B’ = P-1(a,b) = ((a-ib)/2,(-ia+b)/2).  
– We check that (a-ib)/2x(1,i)+ 

(-ia+b)/2x(i,1)=(a,b). 


