8.4. Quadratic Forms

Quadratic forms generalize norm, lengths, inner-products,..

Definition of a quadratic forms

- Sum of a_ijx_ix_j fori.j=1,2,.., n (i<j written usually)
- Example: $f\left(x _1, x _2, x _3\right)=$ a_11x_12+2a_12x_1x_2+2a_13x_1x_3+a_22x_22 $+2 a _23 x _2 x _3+a _33 x-3^{2}$
- In matrix form $\mathrm{q}(\mathrm{x})=\mathrm{x}^{\top} \mathrm{Ax}$ for A symmetric nxn -matrix.
- Note that A_ij=a_ij=a_ji... here
- If $A=I$, then $q(x)=x .\left|x=x \cdot x=||x||^{2}\right.$.
- If $A=D$, diagonal, then $q(x)=l _1 x _1^{2}+l _2 x _2^{2}+. . .+\operatorname{l} n x _n^{2}$.

Change of variables in a quadratic form.

- We can use substitution $x=$ Py to simplify $q(x)$.
- This will help us the solve many problems...
- Since A is symmetric, we can find P s.t. $\mathrm{P}^{\top} A P$ is D.
- Then $x^{\top} A x=y^{\top} P^{\top} A P y=y^{\top} D y$.

Theorem 8.4.1 (The Principal Axes Theorem) If A is a symmetric $n \times n$ matrix, then there is an orthogonal change of variable that transforms the quadratic form $\mathbf{x}^{T} A \mathbf{x}$ into a quadratic form $\mathbf{y}^{T} D \mathbf{y}$ with no cross product terms. Specifically, if P orthogonally diagonalizes A, then making the change of variable $\mathbf{x}=P \mathbf{y}$ in the quadratic form $\mathbf{x}^{T} A \mathbf{x}$ yields the quadratic form

$$
\mathbf{x}^{T} A \mathbf{x}=\mathbf{y}^{T} D \mathbf{y}=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\cdots+\lambda_{n} y_{n}^{2}
$$

in which $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of A corresponding to the eigenvectors that form the successive columns of P.

- Example 2. $Q(x)=-23 / 25 x _1^{2}-2 / 25 x _2^{2}+72 / 25 x _1 x _2$

$$
q(x)=x^{T} A x=\left[x_{1}, x_{2}\left[\begin{array}{ll}
-23 / 25 & 36 / 25 \\
36 / 25 & -2 / 25]
\end{array}\right] x_{1}\right]\left[x_{2}\right]
$$

- We find the eigenvectors to diagonalize it.
- Then make it into an orthonormal set.
- Use $\mathrm{P}=\left[\mathrm{v} _1, \mathrm{v} _2\right]$ eigenvectors. (One may need to orthogonalize it)

Quadratic forms in geometry

- $a x^{2}+2 b x y+c y^{2}+d x+e y+f=0$.
- Set d,e=0.
- We wish to solve $a x^{2}+2 b x y+c y^{2}+f=0$.
- We wish to turn it into $a x^{2}+c y^{2}+f=0$ by coordinate change.
- By dividing by $-f$, we obtain $a^{\prime} x^{2}+b^{\prime} y^{2}=1$.
- If $a, b>0$, then we obtain an ellipse or a circle.
- If $a>0, b<0$, or $a<0, b>0$ then we obtain a hyperbola
- If $a<0, b<0$, then an empty set.

Indentifying conic sections

- We identify minor and major axis. Thus, basically, we have to rotate.
- This amounts to finding P.
- For R^{2}, P is always a rotation. Find the rotation angle.
- Example 3.
- Remark: $a x^{2}+2 b x y+c y^{2}=k$. Rotate by the angle t s.t $\cos 2 \mathrm{t}=(\mathrm{a}-\mathrm{c}) / 2 \mathrm{~b}$. Solution: Find eigenvectors for all a,b,c..

Positive definite quadratic forms

Definition 8.4.2 A quadratic form $\mathbf{x}^{T} A \mathbf{x}$ is said to be
positive definite if $\mathbf{x}^{T} A \mathbf{x}>0$ for $\mathbf{x} \neq \mathbf{0}$
negative definite if $\mathbf{x}^{T} A \mathbf{x}<0$ for $\mathbf{x} \neq 0$
indefinite if $\mathbf{x}^{T} A \mathbf{x}$ has both positive and negative values

Theorem 8.4.3 If A is a symmetric matrix, then:
(a) $\mathbf{x}^{T} A \mathbf{x}$ is positive definite if and only if all eigenvalues of A are positive.
(b) $\mathbf{x}^{T} A \mathbf{x}$ is negative definite if and only if all eigenvalues of A are negative.
(c) $\mathbf{x}^{T} A \mathbf{x}$ is indefinite if and only if A has at least one positive eigenvalue and at least one negative eigenvalue.

- Positive semindefinite $x^{\top} A x \geq 0$ only if x is not 0 .
- Negative semidefinite $x^{\top} A x \leq 0$ only if x is not 0 .
- In higher dimensions, this is classified by the number of positive eigenvalues and negative eigenvalues and the multiplicity of O in the characteristic polynomial.

Classifying conics

- $x^{\top} A x=1$
- A diagonalizes to [[L_1,0],[0,1_2]]
- If $\lfloor 1>0$ and $\lfloor 2>0$, then ellipse.
- If l 1<0 and $\mathrm{l} _2<0$, then no graph
- If $\operatorname{l} 1.1 _2<0$, then a hyperbola.

Theorem 8.4.4 If A is a symmetric 2×2 matrix, then:
(a) $\mathbf{x}^{T} A \mathbf{x}=1$ represents an ellipse if A is positive definite.
(b) $\mathbf{x}^{T} A \mathbf{x}=1$ has no graph if A is negative definite.
(c) $\mathbf{x}^{T} A \mathbf{x}=1$ represents a hyperbola if A is indefinite.

- Positive semidefinite case: two lines L union -L
- Negative semidefinite case: empty set.

Identifying positive definite matrices.

- k-th principal submatrix of an nxn-matrix consists of the first k-rows intersected with first k-columns of A.

Theorem 8.4.5 A symmetric matrix A is positive definite if and only if the determinant of every principal submatrix is positive.

Theorem 8.4.6 If A is a symmetric matrix, then the following statements are equivalent.
(a) A is positive definite.
(b) There is a symmetric positive definite matrix B such that $A=B^{2}$.
(c) There is an invertible matrix C such that $A=C^{T} C$.

- Proof: (a)->(b): A is positive definite. D has only positive eigenvalues. $D=D_{-} 1^{2}$. A=PD_12PT $=$ PD_1 ${ }^{\top}{ }^{\top} P D_{1}$ P $^{\top}$.
- Let $\mathrm{B}=\mathrm{PD}$ _1 P^{T}. B is symmetric.
- Since D_1 has positive diagonals, B is positive definite.
- (b)->(c): $A=B^{2}$. B symmetric positive definite. B is invertible. Take C=B.
- (c)->(a): A=C ${ }^{\top} C$.
- $x^{\top} A x=x^{\top} C^{\top} C x=(C x)^{\top} C x=C x$. $C x=||C x||^{2}>0$ for x nonzero.
- Example 6.

Cholesky factorization

- $A=R^{T} R . R$ is upper triangular and has positive entries in the diagonal.

