8.4. Quadratic Forms

Quadratic forms generalize norm, lengths, inner-products,...

Definition of a quadratic forms

- Sum of a_ijx_ix_j for i.j=1,2,..,n (i <j written usually)
- Example: f(x_1,x_2,x_3)=
 a_11x_1²+2a_12x_1x_2+2a_13x_1x_3+a_22x_2²
 +2a_23x_2x_3+a_33x_3²
- In matrix form $q(x)=x^TAx$ for A symmetric nxn-matrix.
- Note that A_ij=a_ij=a_ji... here
- If A=I, then $q(x)=x.|x=x.x=||x||^2$.
- If A=D, diagonal, then q(x)=l_1x_1²+l_2x_2²+...+l_nx_n².

Change of variables in a quadratic form.

- We can use substitution x=Py to simplify q(x).
- This will help us the solve many problems...
- Since A is symmetric, we can find P s.t. P^TAP is D.
- Then $x^TAx = y^TP^TAPy=y^TDy$.

Theorem 8.4.1 (*The Principal Axes Theorem*) If A is a symmetric $n \times n$ matrix, then there is an orthogonal change of variable that transforms the quadratic form $\mathbf{x}^T A \mathbf{x}$ into a quadratic form $\mathbf{y}^T D \mathbf{y}$ with no cross product terms. Specifically, if P orthogonally diagonalizes A, then making the change of variable $\mathbf{x} = P \mathbf{y}$ in the quadratic form $\mathbf{x}^T A \mathbf{x}$ yields the quadratic form

$$\mathbf{x}^T A \mathbf{x} = \mathbf{y}^T D \mathbf{y} = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

in which $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A corresponding to the eigenvectors that form the successive columns of P.

• Example 2. $Q(x)=-23/25x_1^2-2/25x_2^2+72/25x_1x_2$

$$q(x) = x^{T} A x = [x_1, x_2] \begin{bmatrix} -23/25 & 36/25 \\ 36/25 & -2/25 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- We find the eigenvectors to diagonalize it.
- Then make it into an orthonormal set.
- Use P=[v_1,v_2] eigenvectors. (One may need to orthogonalize it)

Quadratic forms in geometry

- $ax^2+2bxy+cy^2+dx+ey+f=0$.
- Set d,e=0.
- We wish to solve $ax^2+2bxy+cy^2+f=0$.
- We wish to turn it into $ax^2+cy^2+f=0$ by coordinate change.
- By dividing by -f, we obtain $a'x^2+b'y^2=1$.
- If a,b>0, then we obtain an ellipse or a circle.
- If a>0,b<0, or a<0,b>0 then we obtain a hyperbola
- If a<0,b<0, then an empty set.

Indentifying conic sections

- We identify minor and major axis. Thus, basically, we have to rotate.
- This amounts to finding P.
- For R², P is always a rotation. Find the rotation angle.
- Example 3.
- Remark: ax²+2bxy+cy²=k. Rotate by the angle t s.t cos 2t=(a-c)/2b.
 Solution: Find eigenvectors for all a,b,c..

Positive definite quadratic forms

Definition 8.4.2 A quadratic form $\mathbf{x}^T A \mathbf{x}$ is said to be

positive definite if $\mathbf{x}^T A \mathbf{x} > 0$ for $\mathbf{x} \neq \mathbf{0}$ negative definite if $\mathbf{x}^T A \mathbf{x} < 0$ for $\mathbf{x} \neq \mathbf{0}$ indefinite if $\mathbf{x}^T A \mathbf{x}$ has both positive and negative values

Theorem 8.4.3 *If A is a symmetric matrix, then:*

- (a) $\mathbf{x}^T A \mathbf{x}$ is positive definite if and only if all eigenvalues of A are positive.
- (b) $\mathbf{x}^T A \mathbf{x}$ is negative definite if and only if all eigenvalues of A are negative.
- (c) $\mathbf{x}^T A \mathbf{x}$ is indefinite if and only if A has at least one positive eigenvalue and at least one negative eigenvalue.

- Positive semindefinite $x^TAx \ge 0$ only if x is not 0.
- Negative semidefinite $x^TAx \le 0$ only if x is not 0.
- In higher dimensions, this is classified by the number of positive eigenvalues and negative eigenvalues and the multiplicity of O in the characteristic polynomial.

Classifying conics

- $x^TAx = 1$.
- A diagonalizes to [[l_1,0],[0,l_2]]
- If l_1>0 and l_2>0, then ellipse.
- If l_1<0 and l_2<0, then no graph
- If l_1.l_2< 0, then a hyperbola.

Theorem 8.4.4 If A is a symmetric 2×2 matrix, then:

- (a) $\mathbf{x}^T A \mathbf{x} = 1$ represents an ellipse if A is positive definite.
- (b) $\mathbf{x}^T A \mathbf{x} = 1$ has no graph if A is negative definite.
- (c) $\mathbf{x}^T A \mathbf{x} = 1$ represents a hyperbola if A is indefinite.

- Positive semidefinite case: two lines L union -L
- Negative semidefinite case: empty set.

Identifying positive definite matrices.

• k-th principal submatrix of an nxn-matrix consists of the first k-rows intersected with first k-columns of A.

Theorem 8.4.5 A symmetric matrix A is positive definite if and only if the determinant of every principal submatrix is positive.

Theorem 8.4.6 If A is a symmetric matrix, then the following statements are equivalent.

- (a) A is positive definite.
- (b) There is a symmetric positive definite matrix B such that $A = B^2$.
- (c) There is an invertible matrix C such that $A = C^TC$.

- Proof: (a)->(b): A is positive definite. D has only positive eigenvalues. D=D_1². A=PD_1²P^T =PD_1P^TPD_1P^T.
 - Let B=PD_1P^T. B is symmetric.
 - Since D_1 has positive diagonals, B is positive definite.
- (b)->(c): A=B². B symmetric positive definite. B is invertible. Take C=B.
- (c)->(a): $A=C^TC$.
 - $x^TAx = x^TC^TCx = (Cx)^TCx = Cx.Cx = ||Cx||^2 > 0$ for x nonzero.
- Example 6.

Cholesky factorization

• A = R^TR. R is upper triangular and has positive entries in the diagonal.