### 2.1. Introduction to Systems of linear equations

Click to edit Master subtitle style

## Linear Systems

- Recall lines and planes
' $x+y=4, x-5 y=1$. Solve this system.
b $x+y-z=0, x+y+z=1, x-y=1$. Solve this system.
- System of linear equations:
' $\mathrm{a} \_11 \mathrm{x}$-1+a_12 x_2+...+a_1n x_n=b_1
b $a \_21$ x_1+a_22 x_2+...+a_2n x_n=b_2
a_m1 x_1+a_m2 x_2+...+a_mn x_n=b_m
- The system is homogeneous if all b_i s are zero.


## Theoretical: Do solutions exists and if so, how many and in what form?

- To see this, we play with lines first.

Two lines are parallel and are disjoint. -> no solution
Two lines are parallel and coincide. -> infinitely many solutions
Two lines are not parallel and intersect at unique point.-> unique solution
In the 3-space, see Figure 2.1.2.

- Theorem 2.1.1. Every system of linear equations have zero, one, or infinitely many solutions.
- Proof: We will see this through Gaussian eliminations.
- Examples:
- $x-y=0, x+y=1->x-y=0,2 y=1->y=1 / 2, x=-1 / 2$
- $x-y=2,2 x-2 y=0->x-y=0,0=-4->$ no solution
( $x-y=-1,3 x-3 y=-3->x-y=-1,0=0->y=t, x=t-1$.


## Augmented matrices and elementary row operations

$$
\left[\begin{array}{cccccccc}
a_{11} x_{1} & +a_{12} x_{2} & + & \ldots & + & a_{1 \mathrm{n}} x_{n} & = & b_{1} \\
a_{21} x_{1} & +a_{22} x_{2} & + & \ldots & + & a_{2 n} x_{n} & = & b_{2} \\
\vdots & + & \vdots & + & \ddots & \vdots & \vdots & \\
a_{m 1} x_{1} & + & a_{m 2} x_{2} & + & \ldots & + & a_{m n} x_{n} & \\
a_{m} & b_{m}
\end{array}\right]
$$

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & a_{1 \mathrm{n}} & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 \mathrm{n}} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{m}
\end{array}\right]
$$

## Elementary operations

- These operations can be used to solve a system of equations

1. Multiply an equation through by a nonzero constant
2. Interchange to equations
3. Add a multiple of one equation to another.

- For a matrix (an augmented one)

Multiply a row through a nonzero constant
Interchange two rows
Add a multiple of one row to another.

- Example
- See Example 6
- Example 7. Write a vector $\mathrm{w}=(4,1,3)$ as a linear combination of vectors $a=(1,1,1), b=(2,-1,2)$, $\mathrm{c}=(0,0,1)$.

Solve W=c_1a+c_2b+c_3c.
Solve (4,1,3)=c_1(1,1,1)+c_2(2,-1,2)+c_3(0,0,1)
( $4,1,3$ )=(c_1+2c_2,c_1-c_2,c_1+2c_2+c_3)

$$
\begin{array}{ll}
c_{1}+2 c_{2} & =4 \\
c_{1}-c_{2} & =1 \\
c_{1}+2 c_{2}+c_{3} & =3
\end{array}
$$

## Comments Ex.2.1

1 1-4 Linearity of equations

- 5-6 solution checking
-7-8 Graphing problems
- 9,10 solving
- 11,12 Finding equations (Eliminate t )
- 15,16 number of solutions
- 17-24 System <-> augmented matrix
- 25,26 Elementary row operations


# 2.2. Solving equations by row reduction 

Click to edit Master subtitle style

Row reduced echelon form

## Reduced row echelon form

- Recall Ex. 6.
A) If a row is not zero, the first nonzero element is 1 . (Leading 1)
B) A zero row lie below all nonzero rows.
C) The leading 1 of the lower row starts later than the leading 1 of the upper row (up to here row echelon form) D) Each column containing a leading 1 is zero elsewhere.


## Examples

- See Examples 1, 2.
- Once one obtains a reduced row echelon matrix, then what do we do?
- Example 4 (a) no solutions (contradiction always arises)
- Exampe 4 (b) OK. $x+3 z=-1, y-4 z=2$
$z$ is not associated with any leading one.
We call such $z$ a free variable.
Let assign t to z . Then $\mathrm{x}=-1-3 \mathrm{t}, \mathrm{y}=2+4 \mathrm{t}, \mathrm{z}=\mathrm{t}$
Is the solution space. (infinite case)
In the unique case there is no free variable.
- It is often desirable to write solution spaces as linear combinations of column vectors.
- For Example 4 (b)

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-1-3 \mathrm{t} \\
2+4 \mathrm{t} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-3 \\
4 \\
1
\end{array}\right]
$$

## Gauss Jordan Eliminations

- Using elementary row operations, one can make any matrix into a reduced row echelon form.
- Thus any system of equations can be solved.
- The basic step.

1. Find a first column with a nonzero entry. (The column is usually the first one.)
2. Interchange so that the nonzero entry is at the top row
3. Multiply to make it to be 1 .
4. Use 1 , to make the entries below it to become 0 .

Now take the first row out of considerations and work in (m-1)xn matrix A' below.

We work the same way:

- Find the first column A' with nonzero entry.
- Interchange to move it to the first row of A'.
- Scalar-multiply to make it 1.
- Make the entries below 1 to be zero.

We obtain row-echelon form.
Now use each leading 1 to make the other entries in the same column become zero.

This is called the Gauss-Jordan elimination.
Gaussian elimination: not do the reduction.
Pivot positions: positions of leading 1 s .
Pivot columns: columns that containing leading 1s.

## Solving equations

- A system of linear equations
- Take an augmented matrix
- Gauss-Jordan elimination
- Make it back into a system of linear equations.
- Take free variables: variables not associate with leading 1s.
- Solve
- Finally make it into a linear combinations of column vectors.
- See Board for an example.


## Back substitution

- One can use Gaussian elimination only.
- Make it back into a system of linear equations.
- In this case, we solve from the lowest equation.
- See the black board.
- Concluding Theorem: A system of linear equations have either no solution or a unique solution or infinitely many solutions.


## Homogeneous linear system

- If the system of linear equations consists of only homogeneous linear equations, we call the system homogeneous.
- This is equivalent to all constant terms being 0.
- A homogeneous linear system always have at least one solution ( $0,0, \ldots, 0$ ) a trivial solution.
- Theorem 2.2.1. A homogeneous system has either a unique trivial solution or infinitely many solutions.


## Consequences

- Theorem 2.2.2. homogeneous linear system with n unknowns. Its reduced echelon matrix has $r$ nonzero rows. Then the system has $n$-r free variables.
- This is actually the dimension of the solution space....


## Computer implementations

- We always use largest nonzero element to put in the top rows.


## Comments on Ex. 2.2.

- 1-8 recognizing forms (reduced row echelon forms, row echelon forms...)
- 9-14. Solving given reduced echelon forms.
- 17-20 Back substitution

23-42 Solving. Gauss-Jordan

- 43-46 A bit tricky....
- $52 .$.

