
7.9. Orthonormal basis
and the Gram-Schmidt

Process
We can find an orthonormal basis for any vector space using

Gram-Schmidt process. Such bases are very useful.

Orthogonal projections can be computed using dot products

Fourier series, wavelets, and so on from these.



Orthogonal basis. Orthonormal
basis

 Orthogonal basis: A basis that is an orthogonal set.

 Orthonormal basis: A basis that is an orthonrmal set.

 Example 1: {(0,1,0), (1,0,1), (-1,0,1)}

 Example 2: {(3/7,-6/7,2/7),(2/7,3/7,6/7), (6/7,2/7,-
3/7)}

 Example 3: The standard basis of Rn.



 Proof: v_1,v_2,..,v_k Orthogonal set.
 Suppose c_1v_1+c_2v_2+…+c_kv_k=0.
 Dot with v_1. c_1v_1.v_1=0. Since v_1 has nonzero length,

c_1=0.
 Do for each v_js. Thus all c_j=0.

 Thus an orthogonal (orthonormal) set of n nonzero
vectors is a basis always.

How to find these?



Orthogonal projections using
orthonormal projections

 Proj_W x = M(MTM)-1MT(x).

 Recall M has columns that form a basis of W.

 Suppose we chose the orthonormal basis of W.

 MTM=I by orthonormality.

 Thus Proj_w(x)=MMTx.

 P=MMT.

 Example 4.



 Proof: (a) M=[v_1,v_2,..,v_k].
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 Proof(b): Divide by the lengths to obtain an orthonormal
basis of W. Apply (a).

 Note: Even if W=Rn, one can use the same formula.

 Proof: P=MMT=v_1v_1T+…+v_kv_kT.
 trP=tr(v_1v_1T)+…+tr(v_kv_kT)=v_1.v_1+…+v_k.v_k=k
 This by Formula 27 in Sec 3.1.

 Example 7: 13/49+45/49+40/49=2 (Example 4)



Linear combinations of
orthonormal basis vectors.

 If w is in W, then proj_W(w)=w. In particular, if W=Rn,
and w any vector, we have



 The above formula is very useful to find “coordinates”
given an orthonormal basis.

 Example 8:



Gram-Schmidt orthogonalization
process

 W a nonzero subspace {w_1,w_2,..,w_k} Any basis

 We will produce orthogonal basis {v_1,v_2,..,v_k}

 Let v_1=w_1.

 v_2 = w_2 – proj_w_1(w_2) = w_1 –v_1(w_2.v_1)/||v_1||2.
 v_2 is not zero. (Otherwise, w_2=proj_w_1(w_2). w_1//w_2).
 {v_1,v_2} orthogonal set. Let W_2=Span{v_1,v_2}

 v_3 = w_3 – proj_W_2(w_3)=w_3-v_1(w_3.v_1)/||v_1||2

-v_2(w_3.v_2)/||v_2||2.

 v_3 is nonzero since w_3 is not in W_2 by independence of
{w_1,w_2,w_3}. v_3 is orthogonal to v_1 and v_2.



 We obtained orthogonal set of v_1,v_2,…,v_l. Let
W_l=Span{v_1,…,v_l}.

 v_l+1 = w_l+1 – proj_W_l(w_l+1)=
w_l+1 – v_1(w_l+1.v_1)/||v_1||2-…-
v_l(w_l+1.v_l)/||v_l||2

 Then v_l+1 is not 0 since w_l+1 is not in W_l.

 v_l+1 is orthogonal to v_1,..,v_l.
 v_i.(w_l+1 -– v_1(w_l+1.v_1)/||v_1||2-…

-v_l(w_l+1.v_l)/||v_l||2

= v_i.w_l+1 – v_i.v_i (w_l+1.v_i)/||v_i||2=0 for i=1,..,l.

 Finally, we achieve v_1,v_2,..,v_k.

 We can normalize to obtain an orthonormal basis.



 Example 9: (0,0,0,1),(0,0,1,1),(0,1,1,1),(1,1,1,1).

 Example 10: x+y+z+2t = 0, 2x+y+z+t=0.

  Properties:



Extending the orthonormal set to
orthonormal basis.

 Proof (a): Given v_1,..,v_k. Add v_k+1 orthogonal to
Span{v_1,..,v_k}. Add v_k+2 orthogonal to
Span{v_1,v_2,..,v_k,v_k+1}. By induction….

 Proof (b): see book


