7.7. The projection theorem and its implications

Orthogonal projections, formula

Orthogonal projections to a line in R²

- Let us obtain a formula for projection to a line containing a nonzero vector a.
- x=x_1+x_2, x_1=ka, x_2 is orthogonal to a.
- $(x-ka).a=0. x.a-k(a.a)=0. k=x.a/||a||^2.$
- $x_1=(x.a/||a||^2)a$.
- Proj_a (x)=(x.a/||a||²)a.
- Example 1: The matrix expression.

Orthogonal projections onto a line through O in Rⁿ.

Theorem 7.7.1 If **a** is a nonzero vector in \mathbb{R}^n , then every vector **x** in \mathbb{R}^n can be expressed in exactly one way as

$$\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2 \tag{6}$$

where \mathbf{x}_1 is a scalar multiple of \mathbf{a} and \mathbf{x}_2 is orthogonal to \mathbf{a} (and hence to \mathbf{x}_1). The vectors \mathbf{x}_1 and \mathbf{x}_2 are given by the formulas

$$\mathbf{x}_1 = \frac{\mathbf{x} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a} \quad and \quad \mathbf{x}_2 = \mathbf{x} - \mathbf{x}_1 = \mathbf{x} - \frac{\mathbf{x} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a}$$
 (7)

Proof: Omit

Definition 7.7.2 If **a** is a nonzero vector in \mathbb{R}^n , and if **x** is any vector in \mathbb{R}^n , then the *orthogonal projection of* **x** *onto* span{**a**} is denoted by $\operatorname{proj}_{\mathbf{a}}\mathbf{x}$ and is defined as

$$\operatorname{proj}_{\mathbf{a}} \mathbf{x} = \frac{\mathbf{x} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a} \tag{11}$$

The vector $\operatorname{proj}_{\mathbf{a}} \mathbf{x}$ is also called the *vector component of* \mathbf{x} *along* \mathbf{a} , and $\mathbf{x} - \operatorname{proj}_{\mathbf{a}} \mathbf{x}$ is called the *vector component of* \mathbf{x} *orthogonal to* \mathbf{a} .

Projection operator in Rⁿ

- $T(x) = proj_a(x) = (x.a/||a||^2)a$
- Orthogonal projection of Rⁿ onto span{a}.

Theorem 7.7.3 If **a** is a nonzero vector in \mathbb{R}^n , and if **a** is expressed in column form, then the standard matrix for the linear operator $T(\mathbf{x}) = \operatorname{proj}_{\mathbf{a}} \mathbf{x}$ is

$$P = \frac{1}{\mathbf{a}^T \mathbf{a}} \mathbf{a} \mathbf{a}^T \tag{16}$$

This matrix is symmetric and has rank 1.

- Proof: $T(e_j)=((e_j.a)/||a||^2)a = (a_j/||a||^2)a$.
 - $P=[a_1a|a_2a|...|a_na]/||a||^2=a[a_1,a_2,...,a_n]/||a||^2=$
 - aa^T/a^Ta.

- If a is a unit vector u. Then P=uu^T.
- Example 4. P_θ again
- Example 5.

Projection theorem

Theorem 7.7.4 (*Projection Theorem for Subspaces*) If W is a subspace of \mathbb{R}^n , then every vector \mathbf{x} in \mathbb{R}^n can be expressed in exactly one way as

$$\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2 \tag{20}$$

where \mathbf{x}_1 is in W and \mathbf{x}_2 is in W^{\perp} .

- Proof: Let {w_1,...,w_k} be the basis of W. Let M be the nxk matrix with columns w_1,w_2,...,w_k. k ≤n.
 - W column space of M. W^c null space of M^T.
 - Write x=x_1+x_2, x_1 in W and x_2 in W^c.
 - $x_1=Mv$ and $M^T(x_2)=0$ or $M^T(x-x_1)=0$.
 - $M^T(x-Mv)=0$.
 - This has a unique solution <-> x_1,x_2 exist and are unique.

- Rewrite M^TMv=M^Tx·
- M^TM is kxk-matrix
- M has a full column rank as w_1,..,w_k are independent.
- M^TM is invertible by Theorem 7.5.10.
- $V = (M^T M)^{-1} M^T X$.
- $x = proj_W(x) + proj_W^c(x)$.
- Since proj_W(x)=x_1=Mv, we have

Theorem 7.7.5 If W is a nonzero subspace of \mathbb{R}^n , and if M is any matrix whose column vectors form a basis for W, then

$$\operatorname{proj}_{W} \mathbf{x} = M(M^{T}M)^{-1}M^{T}\mathbf{x}$$
(25)

for every column vector \mathbf{x} in \mathbb{R}^n .

- $T(x) = Proj_W(x) = M(M^TM)^{-1}M^T(x)$.
- Matrix is $P = M(M^TM)^{-1}M^T$
- Orthogonal projection of Rⁿ to W.
- This extends the previous formula.
- Example 6.

Condition for orthogonal projection

- $P^{T}=(M(M^{T}M)^{-1}M^{T})^{T}=M((M^{T}M)^{-1})^{T}M^{T}=M(M^{T}M)^{-1}M^{T}=P$.
- $P^2 = M(M^TM)^{-1}M^T (M(M^TM)^{-1}M^T = M(M^TM)^{-1}(M^TM)(M^TM)^{-1}M^T = M(M^TM)^{-1}M^T = P.$
- \bullet P²=P.

Theorem 7.7.6 An $n \times n$ matrix P is the standard matrix for an orthogonal projection of R^n onto a k-dimensional subspace of R^n if and only if P is symmetric, idempotent, and has rank k. The subspace W is the column space of P.

Strang diagrams

- Ax=b. A mxn matrix
- row(A), null(A) are orthogonal complements
- col(A) and null(A^T) are orthogonal complements.
- x=x_row(A)+x_null(A).
- b=b_col(A)+b_null(A^T).
- Ax=b is consistent iff b_null(A^T)=0.
- See Fig. 7.7.6.

Theorem 7.7.7 Suppose that A is an $m \times n$ matrix and **b** is in the column space of A.

- (a) If A has full column rank, then the system $A\mathbf{x} = \mathbf{b}$ has a unique solution, and that solution is in the row space of A.
- (b) If A does not have full column rank, then the system $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions, but there is a unique solution in the row space of A. Moreover, among all solutions of the system, the solution in the row space of A has the smallest norm.
 - Proof: (a) If A has a full rank, Theorem 7.5.6 implies Ax=b has a unique solution or is inconsistent. Since b is in col(A), it is consistent.
 - (b). Theorem 7.5.6 implies Ax=b has infinitely many solutions. Smallest norm -> omit.

Double perp theorem.

Theorem 7.7.8 (Double Perp Theorem) If W is a subspace of R^n , then $(W^{\perp})^{\perp} = W$.

- Proof: Show W is a subset of (W^c)^c:
 - Suppose w is in W. Then w is perp to every a in W^c. This means that w is in (W^c)^c.
- Show (W^c)^c is a subset of W.
 - Let w be in (W^c)^c.
 - Write w=w_1+w_2, w_1 in W, w_2 in W^c.
 - w_2.w=0.
 - (w_2.w_1)+(w_2.w_2)=0. w_2.w_2=0 -> w_2 =0.

Orthogonal projection to W^c

- $Proj_W^c(x) = x-proj_W(x) = Ix-Px=(I-P)x$.
- Thus the matrix of Proj_W^c is I-P=I-M(M^TM)⁻¹M^T.
- I-P is also symmetric and idempotent.
- Rank(I-P)=n-rank P.