Geometry of linear operators

Orthogonal opertors

Norm preserving operators

Orthogonal <-> dot product preserving -> angle preserving, orthogonality preserving

Theorem 6.2.1 If $T : \mathbb{R}^n \to \mathbb{R}^n$ is a linear operator on \mathbb{R}^n , then the following statements are equivalent.

(a) $||T(\mathbf{x})|| = ||\mathbf{x}||$ for all \mathbf{x} in \mathbb{R}^n .

[T orthogonal (i.e., length preserving)]

(b) $T(\mathbf{x}) \cdot T(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for all \mathbf{x} and \mathbf{y} in \mathbb{R}^n . [T is dot product preserving.]

Proof: (a)->(b). ||x+y||²=(x+y).(x+y). ||x-y||²=(x-y).(x-y)

- y).
- By adding, we obtain $\frac{1}{4}(||x+y||^2 ||x-y||^2) = (x.y)$.
- ► $T(x).T(y) = \frac{1}{4}(||Tx+Ty||^2 ||Tx-Ty||^2) = \frac{1}{4}(||T(x+y)||^2) ||T(x-y)||^2) = \frac{1}{4}(||x+y||^2 ||x-y||^2) = (x,y).$
- ▶ (b)->(a) omit

Orthogonal operators preserve angles and orthogonality

- Θ=Arccos(x.y/(||x||||y||).
- If T is an orthogonal transformation Rⁿ->Rⁿ, then angle(Tx,Ty)=Arccos(Tx.Ty/||Tx||||Ty||) = Arccos(x.y/||x||||y||)=angle(x,y).
- Thus the orthogonal maps preserve angles and in particular orthogonal pair of vectors.
- Rotations and reflections are othogonal maps.
- An orthogonal projection is not an orthogonal map.
- The angle preserving means k times an orthogonal map.

Orthogonal matrices

Definition 6.2.2 A square matrix A is said to be *orthogonal* if $A^{-1} = A^T$.

• Or $AA^T = I$ or $A^T A = I$.

- Orthogonal matrix is always nonsingular.
- Example: Rotation and reflection matrices.

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} = I$$

T_A is orthogonal <-> A is orthogonal: to be proved later

Theorem 6.2.3

- (a) The transpose of an orthogonal matrix is orthogonal.
- (b) The inverse of an orthogonal matrix is orthogonal.
- (c) A product of orthogonal matrices is orthogonal.
- (d) If A is orthogonal, then det(A) = 1 or det(A) = -1.
- ▶ Proof (a) $A^T A = I$. $A^T (A^T)^T = I$. A^T is orthogonal.
- (b) $(A^{-1})^T = (A^T)^T = A = (A^{-1})^{-1}$. A⁻¹ is orthogonal.
- (c), (d) omit.

Theorem 6.2.4 If A is an $m \times n$ matrix, then the following statements are equivalent. (a) $A^{T}A = I$.

(b) $||A\mathbf{x}|| = ||\mathbf{x}||$ for all \mathbf{x} in \mathbb{R}^n .

(c)
$$A\mathbf{x} \cdot A\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$$
 for all \mathbf{x} and \mathbf{y} in \mathbb{R}^n .

- (d) The column vectors of A are orthonormal.
- Proof: (a)->(b): ||Ax||²=Ax.Ax=x.A^TAx=x.Ix=||x||².

▶ (b)->(c): Theorem 6.2.1. with T(x)=Ax.

- (c)->(d): e_1,e_2,...,e_n are orthonormal. Since Ae_i.Ae_j =e_i.e_j for all i and j, Ae_1,Ae_2,...,Ae_n are orthonormal (see p.22-23). These are column vectors of A.
- (d)->(a): ij-th term of A^TA = a_i^T a_j = a_i.a_j where a_i is the ith column of A. This is 1 if i=j. 0 otherwise.

Theorem 6.2.5 If A is an $n \times n$ matrix, then the following statements are equivalent.

- (a) A is orthogonal.
- (b) $||A\mathbf{x}|| = ||\mathbf{x}||$ for all \mathbf{x} in \mathbb{R}^n .
- (c) $A\mathbf{x} \cdot A\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ for all \mathbf{x} and \mathbf{y} in \mathbb{R}^n .
- (d) The column vectors of A are orthonormal.
- (e) The row vectors of A are orthonormal.
- Proof: This is 6.2.4.
 - (e) Since the transpose of A is also orthogonal.

- An operator T is orthogonal if and only if ||T(x)||=||x|| for all x.
- ► Thus, ||Ax||=||x|| for all x for the matrix A of T.
- Hence, we have by Theorem 6.2.5.

Theorem 6.2.6 A linear operator $T : \mathbb{R}^n \to \mathbb{R}^n$ is orthogonal if and only if its standard matrix is orthogonal.

Theorem 6.2.7 If $T : \mathbb{R}^2 \to \mathbb{R}^2$ is an orthogonal linear operator, then the standard matrix for *T* is expressible in the form

$$R_{\theta} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \quad or \quad H_{\theta/2} = \begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}$$
(10)

That is, T is either a rotation about the origin or a reflection about a line through the origin.

Contraction and dilations of \mathbb{R}^2

- ► T(x,y)=(kx,ky).
- T is a contraction of $0 \le k < 1$.
- T is a dilation of k > 1.
- Horizontal compression with factor
- ▶ k: T(x,y) = (kx,y) if $0 \le k < 1$.
 - Horizontal expansion if k > 1.
- ▶ Vertical compression: T(x,y) = (x, ky) if $0 \le k < 1$.
 - Vertical expansion if k > 1.

- Shearing in the x-direction with factor k: T(x,y)=(x+ky,y). This sends (x,y) to (x+ky,y).
 - Thus, it preserves the y-coordinate and changes the x-coordinate by an amount proportional to y.
 - This sends a vertical line to a line of slope 1/k.
- Shearing in the y-direction with factor k: T(x,y)=(x,y+kx). This send (x,y) to (x,y+kx).
 - Thus it preserves the x-coorinates and changes the y-coordinates by an amount proportional to x.
 - > This sends a horizontal line to a line of slope k.

Example 6.

Linear operators on \mathbb{R}^3 .

- ► A orthogonal transformations in R³ is classified:
 - A rotation about a line through the origin.
 - A reflection about a plane through the origin.
 - A rotation about a line L through the origin composed with a reflection about the plane P through the origin perpendicular to L.
- The first has det =1 and the other have determinant 1.
- Examples: Table 6.2.5.
- For rotations, the axis of rotation is the line fixed by the rotation. We obtain direction by u=wxT(w) for w in the perpendicular plane.
- Table 6.2.6.

General rotations

Theorem 6.2.8 If $\mathbf{u} = (a, b, c)$ is a unit vector, then the standard matrix $R_{\mathbf{u},\theta}$ for the rotation through the angle θ about an axis through the origin with orientation \mathbf{u} is

$$R_{\mathbf{u},\theta} = \begin{bmatrix} a^2(1-\cos\theta) + \cos\theta & ab(1-\cos\theta) - c\sin\theta & ac(1-\cos\theta) + b\sin\theta\\ ab(1-\cos\theta) + c\sin\theta & b^2(1-\cos\theta) + \cos\theta & bc(1-\cos\theta) - a\sin\theta\\ ac(1-\cos\theta) - b\sin\theta & bc(1-\cos\theta) + a\sin\theta & c^2(1-\cos\theta) + \cos\theta \end{bmatrix}$$
(13)

- Suppose A is a rotation matrix. To find out the axis of rotation, we need to solve (I-A)x=O.
 - Once we know the line L of fixed points, we find the perpendicular plane P and a vector w in it.
 - Form wxAw. That is the direction of L.
 - The angle of rotation is
 - Angle(w,Aw) = ArcCos(w.Aw/||w||||Aw||)
- This is always less than or equal to π .
- Example 7.
- Actually, this is computable by cosθ=(tr(A)-1)/2 by using formula (13). Details omitted.
- We can also use v=Ax+A^tx+[1-tr(A)]x. x any vector, v is the axis direction.