Geometry of linear operators

Orthogonal opertors

Norm preserving operators

- Orthogonal <-> dot product preserving -> angle preserving, orthogonality preserving

Theorem 6.2.1 If $T: R^{n} \rightarrow R^{n}$ is a linear operator on R^{n}, then the following statements are equivalent.
$\begin{array}{ll}\text { (a) }\|T(\mathbf{x})\|=\|\mathbf{x}\| \text { for all } \mathbf{x} \text { in } R^{n} . & \text { [T orthogonal (i.e., length preserving)] } \\ \text { (b) } T(\mathbf{x}) \cdot T(\mathbf{y})=\mathbf{x} \cdot \mathbf{y} \text { for all } \mathbf{x} \text { and } \mathbf{y} \text { in } R^{n} . & {[T \text { is dot product preserving.] }}\end{array}$

- Proof: (a)->(b). $\|x+y\|^{2}=(x+y) \cdot(x+y) .\|x-y\|^{2}=(x-y) \cdot(x-$ y).
b By adding, we obtain $1 / 4\left(\|x+y\|^{2}-\|x-y\|^{2}\right)=(x . y)$.
b $T(x) \cdot T(y)=1 / 4\left(\|T x+T y\|^{2}-\|T x-T y\|^{2}\right)=1 / 4\left(\|T(x+y)\|^{2}\right.$
$\left.-\|T(x-y)\|^{2}\right)=1 / 4\left(\|x+y\|^{2}-\|x-y\|^{2}\right)=(x . y)$.
- (b)->(a) omit

Orthogonal operators preserve angles and orthogonality

- $\Theta=\operatorname{Arccos}(x . y /(||x||| | y| |)$.
- If T is an orthogonal transformation R^{n}-> R^{n}, then angle(Tx,Ty)=Arccos(Tx.Ty/||Tx||||Ty||)
$=\operatorname{Arccos}(x \cdot y /||x||| | y| |)=a n g l e(x, y)$.
- Thus the orthogonal maps preserve angles and in particular orthogonal pair of vectors.
- Rotations and reflections are othogonal maps.
- An orthogonal projection is not an orthogonal map.
- The angle preserving means k times an orthogonal map.

Orthogonal matrices

Definition 6.2.2 A square matrix A is said to be orthogonal if $A^{-1}=A^{T}$.

- $\operatorname{Or} A A^{\top}=1$ or $A^{\top} A=1$.
- Orthogonal matrix is always nonsingular.
- Example: Rotation and reflection matrices.

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]=I
$$

- T_A is orthogonal <-> A is orthogonal: to be proved later

Theorem 6.2.3

(a) The transpose of an orthogonal matrix is orthogonal.
(b) The inverse of an orthogonal matrix is orthogonal.
(c) A product of orthogonal matrices is orthogonal.
(d) If A is orthogonal, then $\operatorname{det}(A)=1$ or $\operatorname{det}(A)=-1$.

- Proof (a) $A^{\top} A=I . A^{\top}\left(A^{\top}\right)^{\top}=I . A^{\top}$ is orthogonal.
- (b) $\left(A^{-1}\right)^{\top}=\left(A^{\top}\right)^{\top}=A=\left(A^{-1}\right)^{-1} . A^{-1}$ is orthogonal.
- (c), (d) omit.

Theorem 6.2.4 If A is an $m \times n$ matrix, then the following statements are equivalent.
(a) $A^{T} A=I$.
(b) $\|A \mathbf{x}\|=\|\mathbf{x}\|$ for all \mathbf{x} in R^{n}.
(c) $A \mathbf{x} \cdot A \mathbf{y}=\mathbf{x} \cdot \mathbf{y}$ for all \mathbf{x} and \mathbf{y} in R^{n}.
(d) The column vectors of A are orthonormal.

- Proof: (a)->(b): $\|A x\|^{2}=A x \cdot A x=x \cdot A^{\top} A x=x . \mid x=\|x\|^{2}$.
- (b)->(c): Theorem 6.2.1. with $T(x)=A x$.
- (c)->(d): e_1,e_2,...,e_n are orthonormal. Since Ae_i.Ae_j =e_i.e_j for all i and j, Ae_1,Ae_2,...,Ae_n are orthonormal (see p.22-23). These are column vectors of A.
- (d)->(a): ij -th term of $\mathrm{A}^{\top} A=a_{-} \mathrm{i}^{\top} \mathrm{a}$ - $=\mathrm{a}_{-} \mathrm{i} . \mathrm{a}_{-} \mathrm{j}$ where $\mathrm{a}_{-} \mathrm{i}$ is the ith column of A. This is 1 if $i=j$. 0 otherwise.

Theorem 6.2.5 If A is an $n \times n$ matrix, then the following statements are equivalent.
(a) A is orthogonal.
(b) $\|A \mathbf{x}\|=\|\mathbf{x}\|$ for all \mathbf{x} in R^{n}.
(c) $A \mathbf{x} \cdot A \mathbf{y}=\mathbf{x} \cdot \mathbf{y}$ for all \mathbf{x} and \mathbf{y} in R^{n}.
(d) The column vectors of A are orthonormal.
(e) The row vectors of A are orthonormal.

- Proof: This is 6.2.4. (e) Since the transpose of A is also orthogonal.
- An operator T is orthogonal if and only if $\|T(x)\|=\|x\|$ for all x .
- Thus, $\|A x\|=\|x\|$ for all x for the matrix A of T.
, Hence, we have by Theorem 6.2.5.

Theorem 6.2.6 A linear operator $T: R^{n} \rightarrow R^{n}$ is orthogonal if and only if its standard matrix is orthogonal.

Theorem 6.2.7 If $T: R^{2} \rightarrow R^{2}$ is an orthogonal linear operator, then the standard matrix for T is expressible in the form

$$
R_{\theta}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \tag{10}\\
\sin \theta & \cos \theta
\end{array}\right] \quad \text { or } \quad H_{\theta / 2}=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right]
$$

That is, T is either a rotation about the origin or a reflection about a line through the origin.

Contraction and dilations of R^{2}

- $\mathrm{T}(\mathrm{x}, \mathrm{y})=(\mathrm{kx}, \mathrm{ky})$.
- T is a contraction of $0 \leq k<1$.
- T is a dilation of $\mathrm{k}>1$.
- Horizontal compression with factor
- k : $T(x, y)=(k x, y)$ if $0 \leq k<1$.
, Horizontal expansion if $k>1$.
- Vertical compression: $\mathrm{T}(\mathrm{x}, \mathrm{y})=(\mathrm{x}, \mathrm{ky})$ if $0 \leq \mathrm{k}<1$.
- Vertical expansion if $\mathrm{k}>1$.
- Shearing in the x-direction with factor k : $T(x, y)=(x+k y, y)$. This sends (x, y) to $(x+k y, y)$.
- Thus, it preserves the y-coordinate and changes the x-coordinate by an amount proportional to y.
- This sends a vertical line to a line of slope $1 / k$.
- Shearing in the y-direction with factor k : $T(x, y)=(x, y+k x)$. This send (x, y) to $(x, y+k x)$.
- Thus it preserves the x -coorinates and changes the y-coordinates by an amount proportional to x.
- This sends a horizontal line to a line of slope k.
- Example 6.

Linear operators on R^{3}.

- A orthogonal transformations in R^{3} is classified:
- A rotation about a line through the origin.
- A reflection about a plane through the origin.
- A rotation about a line L through the origin composed with a reflection about the plane P through the origin perpendicular to L.
- The first has det =1 and the other have determinant 1.
- Examples: Table 6.2.5.
- For rotations, the axis of rotation is the line fixed by the rotation. We obtain direction by $u=w x T(w)$ for w in the perpendicular plane.
- Table 6.2.6.

General rotations

Theorem 6.2.8 If $\mathbf{u}=(a, b, c)$ is a unit vector, then the standard matrix $R_{\mathbf{u}, \theta}$ for the rotation through the angle θ about an axis through the origin with orientation \mathbf{u} is
$R_{\mathbf{u}, \theta}=\left[\begin{array}{lll}a^{2}(1-\cos \theta)+\cos \theta & a b(1-\cos \theta)-c \sin \theta & a c(1-\cos \theta)+b \sin \theta \\ a b(1-\cos \theta)+c \sin \theta & b^{2}(1-\cos \theta)+\cos \theta & b c(1-\cos \theta)-a \sin \theta \\ a c(1-\cos \theta)-b \sin \theta & b c(1-\cos \theta)+a \sin \theta & c^{2}(1-\cos \theta)+\cos \theta\end{array}\right]$

- Suppose A is a rotation matrix. To find out the axis of rotation, we need to solve (I-A)x=O.
- Once we know the line L of fixed points, we find the perpendicular plane P and a vector w in it.
- Form wxAw. That is the direction of L .
- The angle of rotation is
- $\operatorname{Angle}(w, A w)=\operatorname{ArcCos}(w . A w /||w||| | A w| |)$
- This is always less than or equal to π.
- Example 7.
- Actually, this is computable by $\cos \theta=(\operatorname{tr}(\mathrm{A})-1) / 2$ by using formula (13). Details omitted.
- We can also use $v=A x+A^{t} x+[1-\operatorname{tr}(A)] x$. x any vector, v is the axis direction.

