Chapter 7

Section 1: Rational Forms

7.1. Rational forms

- Definition: T in $\mathrm{L}(\mathrm{V}, \mathrm{V})$, a vector a. T-cyclic subspace generated by a is $Z(a ; T)=\{v=g(T) a \mid g$ in $F[x]\}$.
- $Z(a ; T)=<a, T a, T^{2} a, \ldots .>$
- If $Z(a: T)=V$, then a is said to be a cyclic vector for T .
- Recall T-annihilator of a is the ideal $M(a: T)=<g$ in $F[x] \mid g(T) a=0>=p_{a} F[x]$.
- p_{a} is the T-annihilator of a.
- Theorem 1. $a \neq 0 . p_{a} T$-annihilator of a.
- (i) $\operatorname{deg} p_{a}=\operatorname{dim} Z(a ; T)$.
- (ii) If deg $p_{a}=k, a, T a, \ldots, T^{k-1} a$ is a basis of
- (iii) Let U:=T|Z(a;T):Z(a:T)->Z(a;T). Minpoly U= p_{a}.
- Proof: Let g in $F[x] . g=p_{a} q+r . \operatorname{deg}(r)<$ $\operatorname{deg}\left(p_{a}\right) . g(T) a=r(T) a$.
$-r(T) a$ is a linear combinations of $a, T a, \ldots, T^{k-1} a$.
- Thus, this k vectors span $Z(a ; T)$.
- They are linearly independent. Otherwise, we get another g of lower than k degree s.t. $g(T) a=0$.
- (i),(ii) are proved.
- U:=T|Z(a;T):Z(a:T)->Z(a;T).
-g in $\mathrm{F}[\mathrm{x}]$.
$-p_{a}(U) g(T) a=p_{a}(T) g(T) a$ (since $g(T) a$ is in $Z(a ; T)$.)
$=g(T) p_{a}(T) a=g(T) 0=0$.
$-p_{a}(U)=0$ on $Z(a ; T)$ and p_{a} is monic.
- If h is a polynomial of lower-degree than p_{a}, then $h(U) \neq 0$. (since $h(U) a=h(T) a \neq 0)$.
- Thus, p_{a} is the minimal polynomial of U.
- Suppose T has a cyclic vector a.
- deg minpolyU=dimZ(a;T)=dim V=n.
- minpoly U=minpoly T . (minpoly T is in $S(a ;\{0\})$ and divisible by p_{a}.)
- Thus, minpoly T = char.poly T.
- We obtain:

T has a cyclic vector <-> minpoly T=char.polyT.

- Proof: (->) done above.
- (<-) Later, we show for any T , there is a vector v s.t. minpolyT=annihilator v. (p.237. Corollary).
- So if minpolyT=charpolyT. Then $\operatorname{dim} Z(v ; T)=n$ and v is a cyclic vector.
- Study T by cyclic vector.
- U on W with a cyclic vector v. (W=Z(v:T) for example and U the restriction of T.)
- $v, U v, U^{2} v, \ldots, U^{k-1} v$ is a basis of W.
- U-annihiltor of $v=$ minpoly U by Theorem 1 .
- Let $v_{i}=U^{i-1} v . i=1, \ldots, k$.
- Let $B=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}$.
- $U v_{i}=v_{i+1} . i=1, \ldots, k-1$.
- $U v_{k}=-\mathrm{C}_{0} \mathrm{v}_{1}-\mathrm{C}_{1} \mathrm{~V}_{2}-\ldots-\mathrm{C}_{\mathrm{k}-1} \mathrm{v}_{\mathrm{k}}$ where minpolyU $=c_{0}+c_{1} x+\ldots+c_{k-1} x^{k-1}+x^{k}$.
- $\left(\mathrm{c}_{0} \mathrm{v}+\mathrm{c}_{1} U v+\ldots+\mathrm{c}_{\mathrm{k}-1} \mathrm{U}^{\mathrm{k}-1} \mathrm{v}+\mathrm{U}^{\mathrm{k}} \mathrm{v}=0.\right)$

$$
[U]_{B}=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & \ldots & \ldots & 0 & -c_{0} \\
1 & 0 & 0 & 0 & \ldots & \ldots & 0 & -c_{1} \\
0 & 1 & 0 & 0 & \ldots & \ldots & 0 & -c_{2} \\
0 & 0 & 1 & 0 & \ldots & \ldots & 0 & -c_{3} \\
0 & 0 & 0 & 1 & \ldots & \ldots & 0 & -c_{4} \\
\vdots & \vdots & \vdots & \vdots & \ddots & & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & \ldots & 1 & -c_{k-1}
\end{array}\right]
$$

- This is called the companion matrix of p_{a}. (defined for any monic polynomial.)
- Theorem 2. If U is a linear operator on a f.d.v.s.W, then U has a cyclic vector iff there is some ordered basis where U is represented by a companion matrix.
- Proof: (->) Done above.
- (<-) If we have a basis $\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}$,
- then v_{1} is the cyclic vector.
- Corollary. If A is the companion matrix of a monic polynomial p, then p is both the minimal and the characteristic polynomial of A.
- Proof: Let $a=(1,0, \ldots 0)$. Then a is a cyclic vector and $Z(a ; A)=V$.
- The annihilator of a is p. deg $p=n$ also.
- By Theorem 1(iii), the minimal poly for T is p.
- Since p divides char.polyA. And p has degree $n . p=c h a r . p o l y A$.

