Linear Algebra: Midterm Exam (2007 Spring)

Justify your answers fully.

1. Let Q be the field of rational numbers.
(a) (15pts.) Show that

$$
Q+Q \sqrt{2}=\{a+b \sqrt{2} \mid a, b \in Q\}
$$

is a vector space over Q. Find a basis and the dimension.
(b) (15pts.) Show that $Q+Q \sqrt{2}$ is a field and a vector space over itself $Q+Q \sqrt{2}$.
(c) (15pts.) Show that the set G of 2×2-complex Hermitian matrices is a vector space over R. Find a basis and a dimension.
(d) (15pts.) Is G a field when the multiplication is given by a matrix multiplication?
2. (25pts.) Prove: Let W be a subspace of a finite-dimensional vector space V over a field F and if $\left\{g_{1}, \ldots, g_{r}\right\}$ is a basis for W^{0}, then

$$
W=\bigcap_{i=1}^{r} N_{g_{i}} .
$$

3. Prove or disprove whether each of the following sets is an ideal in $\mathbf{C}[x]$.
(a) (10 pts.)

$$
M=\{f \mid f \in \mathbf{C}[x] \text { is a polynomial of odd degrees. }\}
$$

(b) (10 pts.)

$$
M=\{f \mid f \in \mathbf{C}[x] \text { is a polynomial of degrees } \geq 3 \text { or is zero. }\}
$$

(c) (10 pts.)

$$
M=\{f \in \mathbf{C}[x] \mid f(2)+f(4)=0\}
$$

(d) (10 pts.)

$$
M=\{f \in \mathbf{C}[x] \mid f(2) f(4)=0\}
$$

4. Let F be a field of characteristic 0 .
(a) (10pts.) State the Taylor's formular for $f \in F[x]$.
(b) (15pts.) Prove that if $f \in F[x]$ and $D^{k} f(c)=0$ for $k=0,1,2, \ldots, r-1$ and $D^{r} f(c) \neq 0$.

Then c is a root of multiplicity r.

