Linear Algebra: Final Exam (2007 Spring)

Justify your answers fully.

1. Let the field be the field of real numbers. Which of the following functions on the set of 3×3-matrices over the reals are 3 -linear and which are not?
(a) (10pts.) $D(A)=A_{11}+A_{22}+A_{33}$.
(b) (10pts.) $D(A)=\left(A_{11}\right)^{2}+A_{11} A_{22}$.
(c) (10pts.) $D(A)=A_{11} A_{12} A_{33}$.
(d) (10pts.) $D(A)=A_{13} A_{22} A_{31}+5 A_{12} A_{23} A_{31}$.
2. Let T be a linear operator on V. Suppose

$$
V=W_{1} \oplus \cdots \oplus W_{k},
$$

where each W_{i} is invariant under T. Let $T_{i}: W_{i} \rightarrow W_{i}$ be the induced map by restricting T.
(a) (15pts.) Prove that the characteristic polynomial f of T is the product of the characteristic polynomials f_{i} of T_{i}.
(b) (15pts.) Prove that the minimal polynomial p of T is the monic generator of the ideal $I=\bigcap_{i=1}^{k} I_{i}$ in $F[x]$ where I_{i} is the ideal generated by the minimal polynomials p_{i} of T_{i}.
3. Let V be the vector space of real valued polynomials of degree ≤ 3. Define the inner product

$$
(f \mid g):=\int_{0}^{1} f(t) g(t) d t
$$

for $f, g \in V$.
(a) (15pts.) Find g_{1} in V so that $\left(f \mid g_{1}\right)=f(1)+f(-1)$ for all $f \in V$.
(b) (15pts.) Let L be any linear functional on V. Show why one can find $g_{0} \in V$ such that $\left(f \mid g_{0}\right)=L(f)$ for all $f \in V$.
4. Let T be a linear map $\mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ corresponding to the matrix

$$
A=\left[\begin{array}{ccc}
1 & 3 & 3 \\
3 & 1 & 3 \\
-3 & -3 & -5
\end{array}\right]
$$

(a) (20pts.) Find vectors α_{1}, α_{2} for the cyclic decomposition $\mathbf{R}^{3}=Z\left(\alpha_{1}, T\right) \oplus Z\left(\alpha_{2}, T\right)$ of T where $Z\left(\alpha_{i}, T\right)$ are cyclic subspaces of \mathbf{R}^{3} generated by $\alpha_{i}, i=1,2$.
(b) (15pts.) Find the minimal polynomial p and the T-annhilators q_{i} for α_{i} for $i=1,2$ and verify $f=q_{1} q_{2}$ where f is the characteristic polynomial.
(c) (15pts.) Find the rational form of the matrix A.

