8.3. Linear Functionals and adjoints

Many uses: quantum mechanics...

- T:V->V. V finite dimensional inner product space.
- (Ta|b)=(a|T*b) for all a,b in V.
 T*:V->V is an adjoint linear transformation.
- Question: existence and uniqueness of T*.

- Theorem 6. Let f be in the dual space V*. Then there exists unique b in V s.t. f(.)=(.|b) :I.e.,f(a)=(a|b) for all a in V.
- Proof: $\{a_1, \ldots, a_n\}$ orthonormal basis of V.
 - Let $b=\sum_{j=1}^{n} f(a_j)^{-}a_j$.
 - Define $f_b: V \rightarrow F$ by $f_b(a):=(a|b)$.
 - Then f=f_b: $f_b(a_k)=(a_k|\sum_{j=1}^n f(a_j)a_j)=f(a_k)(a_k,a_k)$ for all k=1,...,n. $f_b=f$.
 - Uniqueness:
 - Suppose (a|b)=(a|c).
 - Then (a|b-c)=0 for all a in V.
 - (b-c|b-c)=(b-c|b)-(b-c|c)=0. ||b-c||=0 -> b=c.

- Claim: b is in null f^{\perp} .
- Proof: Define W=null f.
 - V=W \oplus W $^{\scriptscriptstyle \perp}$. Let P be a projection to W $^{\scriptscriptstyle \perp}.$
 - Then f(a)=f(P(a)) for all a in V.
 - Dim W^{\perp}=1: (dim W=n-1 since rank f=1.)
 - Then P(a)=((a|c)/||c||²)c if $c \neq 0$ in W[⊥].
 - $f(a)=f(((a|c)/||c||^2)c)=(a|c)f(c)/||c||^2)$ $= (a|f(c)^{-}c/||c||^2).$
 - Thus b= f(c)⁻c/||c||² and is in W^{\perp}.

- Theorem 7: T in L(V,V). V f.d.v.s. Then there exists unique T* in L(V,V) s.t. (Ta|b)=(a|T*b) for all a, b in V.
- Proof: Let b be in V.
 - Define f:V->F by a-> (Ta|b).
 - There exists unique b' s.t. (Ta|b)=(a|b') for all a in V.
 - Define T*:V->V by sending b->b' as above (*).
 - Then (Ta|b)=(a|T*b) for all a,b in V.
 - We show T^* is in L(V,V):

$$(a | T^{*}(gb + c)) = (Ta | gb + c) = (Ta | gb) + (Ta | c)$$

= $\overline{g}(Ta | b) + (Ta | c) = \overline{g}(a | T^{*}b) + (a | T^{*}c)$
= $(a | gT^{*}b + T^{*}c).$

- Thus, $T^{*}(gb+c)=gT^{*}(b)+T^{*}(c)$.
 - Rem: If (a|b)=(a|b') for all a in V, then b=b':
 (a|b-b')=0 for all a. (b-b'|b-b')=0. b-b'=0.

– Uniqueness. T*b is determined by (*).

 Definition: T in L(V,V). Then T* is called an adjoint of T.

- Example: Let T:Fⁿ -> Fⁿ be defined by Y=AX where A is an nxn-matrix.
 - Let Fⁿ have the standard inner product.
 - Then $(TX|Z)=(AX|Z)=Z^*AX = (A^*Z)^*X=$ $(X|A^*Z)=(X|T^*Z)$ for all Z,X.
 - Thus T* is given by Y=A*X.
- In fact if we have an orthogonal basis, this is always true:

- Theorem 8. B={a₁,...,a_n} orthonormal basis of V. Let A=[T]_B. Then A_{ki}=(Ta_i|a_k).
- Proof: $a = \sum_{k=1}^{n} (a|a_k)a_k$. --(*).
 - $-A_{kj}$ is defined by $Ta_j = \sum_{k=1}^{n} A_{kj}a_{k.}$
 - $-Ta_{j} = \sum_{k=1}^{n} (Ta_{j}|a_{k})a_{k}$ by (*).
 - By comparing the two, we obtain the result.
- Corollary. Matrix of T* = conjugate transpose of T. [T*]_B=[T]*_B.
- Proof: $[T^*]_{B,kj} = (T^*a_j|a_k) = (a_k|T^*a_j) = (Ta_k|a_j) = (Ta_k|a_j) = [T]_{B,jk}$

- Example: E:V->W orthogonal projection. Then E*=E.
- Proof: (a|E*b)=(Ea|b)=(Ea|Eb+(I-E)b)
 =(Ea|Eb)=(Ea+(I-E)a|Eb)=(a|Eb) for all a,b in
 V. Thus, E*=E.
- If V is infinite-dimensional, an adjoint of an operator may not exist.
- Example: D:C[x]->C[x] differentiation.
 C[x]={f polynomials on [0,1] with values in C.}.
 (f|g)=∫₀¹f(t)g⁻(t)dt defines an inner product.

- Suppose D* exists and find contradiction:
- -(Df|g)=(f|D*g)
- $(Df|g) = \int_0^1 f'(t)g(t) dt = f(t)g(t)|_0^1 \int_0^1 f(t)g(t) dt = f(1)g(1) f(0)g(0) (f|Dg).$
- $\operatorname{Fix} g$, $(f|D^*g) = f(1)g(1)-f(0)g(0)-(f|Dg)$.
- $-(f|D^*g+Dg)=f(1)g(1)-f(0)g(0).$
- Define L(f) := f(1)g(1)-f(0)g(0). L is in L(V,F).
- -L(f) can't be (f|h) for some h:
 - Define f=x(x-1)h.
 - L(x(x-1)h)=x(x-1)h(1)g(1)-x(x-1)h(0)g(0)=0.
 - Then $(f|h) = \int_0^1 (x(x-1))|h|^2 dt > 0$.
 - A contradiction.

• Theorem 9. V f.d. inner product space. T,U linear operators on V, c in F.

- 2. (cT)*=c⁻T*.
- 3. (TU)*=U*T*
- 4. (T*)*=T.
- Proof: 1,2. See book.
 - 3.(a|(TU)*b)=(TU(a)|b)=(Ua|T*b)
 =(a|U*T*b) for all a,b in V. Thus (TU)*=U*T*.
 - 4. (a|(T*)*b)=(T*a|b)=(b|T*a)⁻=(Tb|a)⁻=(a|Tb) for all a,b in V. Thus, (T*)*=T.

- Let T be in L(V,V). V f.d.complex inner product space. Then T=U+iV where U*=U and V*=V.
- Proof: Define U=(T+T*)/2. V=(T-T*)/2i.
 U*=(T+T*)*/2=(T*+T)/2=U.
 V*=(T-T*)*/(-2i)=(-T*+T)/2i=V.
 (T+T*)*/2+i (T-T*)/2i=T.
- The operator s.t. $T=T^*$ is called a self-adjoint operator. $[T]_B = [T^*]_B = [T]_B^*$ for an orthogonal basis b.
- Many operators are self-adjoint and they are very useful (like real numbers.)