8.1. Inner Product Spaces

Inner product Linear functional Adjoint

- Assume F is a subfield of R or C.
- Let V be a v.s. over F.
- An inner product on V is a function
 VxV -> F i.e., a,b in V -> (a|b) in F s.t.

-(a)(a+b|r)=(a|r)+(b|r)

- (b)(ca|r)=c(a|r)
- (c) (b|a)=(a|b)⁻
- -(d)(a|a) > 0 if $a \neq 0$.
- Bilinear (nondegenerate) positive.
- A ways to measure angles and lengths.

- Examples:
- Fⁿ has a standard inner product.

$$-((\mathbf{x}_1,\ldots,\mathbf{x}_n)|(\mathbf{y}_1,\ldots,\mathbf{y}_n)) = \sum_i x_i \overline{y_i}$$

- If F is a subfield of R, then = $x_1y_1 + ... + x_ny_n$.

- A,B in F^{nxn}.
 - $(A|B) = tr(AB^*) = tr(B^*A)$
 - Bilinear property: easy to see.

• tr(AB*)=
$$\sum_{j} (AB^*)_j = \sum_{j} \sum_{k} A_{jk} B_{kj}^* = \sum_{j} \sum_{k} A_{jk} \overline{B}_{jk}$$

$$tr(AA^*) = \sum \sum \left|A_{jk}\right|^2$$

- (X|Y)=Y*Q*QX, where X,Y in F^{nx1}, Q nxn invertible matrix.
 - Bilinearity follows easily
 - $-(X|X)=X^{*}Q^{*}QX=(QX|QX)_{std} \ge 0.$
 - In fact almost all inner products are of this form.
- Linear T:V->W and W has an inner product, then V has "induced" inner product.

 $-p_T(a|b):=(Ta|Tb).$

 (a) For any basis B={a₁,...,a_n}, there is an inner-product s.t. (a_i|a_j)=δ_{ij}.

– Define T:V->
$$F^n$$
 s.t. $a_i \rightarrow e_i$.

- Then $p_T(a_i|a_j)=(e_i|e_j)=\delta_{ij}$.

- (b) V={f:[0,1]->C| f is continuous }.
 - (f|g)= \int_0^1 fg⁻ dt for f,g in V is an inner product.
 - $-T:V \rightarrow V$ defined by $f(t) \rightarrow tf(t)$ is linear.
 - $-p_T(f,g)= \int_0^1 tftg^- dt = \int_0^1 t^2 fg^- dt$ is an inner product.

- Polarization identity: Let F be an imaginary field in C.
- (a|b)=Re(a|b)+iRe(a|ib) (*):
 - (a|b)=Re(a|b)+iIm(a|b).
 - Use the identity Im(z)=Re(-iz) .
 - Im(a|b)=Re(-i(a|b))=Re(a|ib)
- Define ||a|| := (a|a)^{1/2} norm
- ||a±b||²=||a||²±2Re(a|b)+||b||^{2 (**)}.
- (a|b)=||a+b||²/4-||a-b||²/4+i||a+ib||²/4
 -i||a-ib||²/4. (proof by (*) and (**).)
- $(a|b) = ||a+b||^2/4 ||a-b||^2/4$ if F is a real field.

- When V is finite-dimensional, inner products can be classified.
- Given a basis B={a₁,...,a_n} and any inner product (|):
 (a|b) = Y*GX for X=[a]_B, Y=[b]_B
 - G is an nxn-matrix and G=G*, X*GX>0 for any X, X≠0.
- Proof: (->) Let $G_{jk} = (a_k | a_j)$.

$$a = \sum_{k} x_{k} a_{k}, b = \sum_{j} y_{j} a_{j}$$

(a | b) = $(\sum_{k} x_{k} a_{k}, b) = \sum_{k} x_{k} \sum_{j} \overline{y}_{j} (a_{k} | a_{j}) = Y^{*} G X$

- $-G=G^*: (a_j|a_k)=(a_k|a_j)^-. G_{kj}=G_{jk}^-.$
- $-X^{*}GX = (a|a) > 0$ if $X \neq 0$.
- (G is invertible. $GX \neq 0$ by above for $X \neq 0$.)
- -(<-) X*GY is an inner-product on F^{nx1}.
 - (a|b) is an induced inner product by a linear transformation T sending a_i to e_i.
- Recall Cholesky decomposition: Hermitian positive definite matrix A = L L*. L lower triangular with real positive diagonal. (all these are useful in appl. Math.)

8.2. Inner product spaces

- Definition: An inner product space (V, (|))
- F⊂R -> Euclidean space
- $F \subset C \rightarrow$ Unitary space.
- Theorem 1. V, (|). Inner product space.
 - 1. ||ca||=|c|||a||.
 - 2. ||a|| > 0 for $a \neq 0$.
 - 3. $|(a|b)| \leq ||a||||b||$ (Cauchy-Schwarz)
 - 4. ||a+b|| ≤||a||+||b||

• **Proof (ii)**
$$a = 0$$
 trivial
 $a \neq 0, \quad r = b - \frac{(b \mid a)}{\| a \|^2} a, (r \mid a) = 0$
 $0 \le \| r \|^2 = (b - \frac{(b \mid a)}{\| a \|^2} a \mid b - \frac{(b \mid a)}{\| a \|^2} a) = (b \mid b) - \frac{(b \mid a)(b \mid a)}{\| a \|^2}$
 $= \| b \|^2 - \frac{1(a \mid b) \|^2}{\| a \|^2}$

Proof (iii)

 $||a + b||^{2} = ||a||^{2} + (a|b) + (b|a) + ||b||^{2}$ = $||a||^{2} + 2 \operatorname{Re}(a|b) + ||b||^{2}$ $\leq ||a||^{2} + 2 ||a||||b|| + ||b||^{2} = (||a||^{2} + ||b||^{2})^{2}$

- In fact many inequalities follows from Cauchy-Schwarz inequality.
- The triangle inequality also follows.
- See Example 7.
- Example 7 (d) is useful in defining Hilbert spaces. Similar inequalities are used much in analysis, PDE, and so on.
- Note Example 7, no computations are involved in proving these.

- On inner product spaces one can use the inner product to simplify many things occurring in vector spaces.
 - Basis -> orthogonal basis.
 - Projections -> orthogonal projections
 - Complement -> orthogonal complement.
 - Linear functions have adjoints
 - Linear functionals become vector
 - Operators -> orthogonal operators and self adjoint operators (we restrict to)

Orthogonal basis

• Definition:

- a,b in V, <mark>a⊥b</mark> if (a|b)=0.
- The zero vector is orthogonal to every vector.
- An orthogonal set S is a set s.t. all pairs of distinct vectors are orthogonal.
- An orthonormal set S is an orthogonal set of unit vectors.

- Theorem 2. An orthogonal set of nonzero-vectors is linearly independent.
- Proof: Let a₁,...,a_m be the set.
 Let 0=b=c₁a₁+...+c_ma_m.
 0=(b,a_k)=(c₁a₁+...+c_ma_m, a_k)=c_k(a_k | a_k)
 c_k=0.
- Corollary. If b is a linear combination of orthogonal set a_1, \dots, a_m of nonzero vectors, then $b = \sum_{k=1}^{m} ((b|a_k)/||a_k||^2) a_k$
- Proof: See above equations for $b \neq 0$.

- Gram-Schmidt orthogonalization:
- Theorem 3. b₁,...,b_n in V independent. Then one may construct orthogonal basis a₁,...,a_n s.t. {a₁,...,a_k} is a basis for <b₁,...,b_k> for each k=1,...,n.
- Proof: $a_1 := b_1 a_2 = b_2 ((b_2|a_1)/||a_1||^2)a_1, ...,$
 - Induction: {a₁,...,a_m} constructed and is a basis for < b₁,...,b_m>.
 - Define

$$a_{m+1} = b_{m+1} - \sum_{k=1}^{m} \frac{(b_{m+1} \mid a_k)}{\|a_k\|^2} a_k$$

- Then $(a_{m+1} | a_j) = (b_{m+1} | a_j) - \sum_{k=1}^m \frac{(b_{m+1} | a_k)}{\|a_k\|^2} (a_k | a_j)$ $= (b_{m+1} | a_j) - (b_{m+1} | a_j) = 0$

- Use Theorem 2 to show that the result $\{a_1, \dots, a_{m+1}\}$ is independent and hence is a basis of $\{b_1, \dots, b_{m+1}\}$.
- See p.281, equation (8-10) for some examples.
- See examples 12 and 13.

Best approximation, Orthogonal complement, Orthogonal projections

- This is often used in applied mathematics needing approximations in many cases.
- Definition: W a subspace of V. b in W. Then the best approximation of b by a vector in W is *a* in W s.t. ||b-*a*|| ≤ ||b-c|| for all c in W.
- Existence and Uniqueness. (finitedimensional case)

- Theorem 4: W a subspace of V. b in V.
 - (i). a is a best appr to b <-> b-a ⊥ c for all c in W.
 - (ii). A best appr is unique (if it exists)
 - (iii). W finite dimensional.
 {a₁,...,a_k} any orthonormal basis.

$$a = \sum_{k} \frac{(b \mid a_k)}{\|a_k\|^2} a_k$$

is the best approx. to b by vectors in W.

- Proof: (i)
 - Fact: Let c in W. b-c =(b-a)+(a-c). $||b-c||^2 = ||b-a||^2 + 2Re(b-a|a-c)+||a-c||^2(*)$
 - (<-) b-a \perp W. If c \neq a, then ||b-c||²=||b-a||+||a-c||² > ||b-a||². Hence a is the best appr.
 - $-(->) ||b-c|| \ge ||b-a||$ for every c in W.
 - By (*) 2Re(b-a|a-c)+||a-c||² ≥0
 - <-> $2Re(b-a|t)+||t||^2 \ge 0$ for every t in W.

• If
$$a \neq c$$
, take $t = -\frac{(b-a | a-c)}{||a-c||^2}(a-c)$

$$2\operatorname{Re}(b-a|-\frac{(b-a|a-c)}{\|a-c\|^{2}}(a-c)) + \frac{|(b-a|a-c)|^{2}}{\|a-c\|^{4}} \|a-c\|^{2} \ge 0$$

-2 Re($\frac{\overline{(b-a|a-c)}}{\|a-c\|^{2}}(b-a|a-c)) + \frac{|(b-a|a-c)|^{2}}{\|a-c\|^{2}} \ge 0$
-2 Re $\frac{|(b-a|a-c)|^{2}}{\|a-c\|^{2}} + \frac{|(b-a|a-c)|^{2}}{\|a-c\|^{2}} \ge 0$
 $\frac{|(b-a|a-c)|^{2}}{\|a-c\|^{2}} \le 0$

$$-2\frac{|(b-a|a-c)|^2}{||a-c||^2} + \frac{|(b-a|a-c)|^2}{||a-c||^2} \ge 0$$

- This holds <-> (b-a|a-c)=0 for any c in W.
- Thus, b-a is \perp every vector in W.
- (ii) a,a' best appr. to b in W.
 - b-a \perp every v in W. b-a' \perp every v in W.
 - If a≠a', then by (*) ||b-a' ||²=||b-a||²+2Re(b-a|a-a')+||a-a' ||². Hence, ||b-a' ||>||b-a||.
 - Conversely, ||b-a||>||b-a'||.
 - This is a contradiction and a=a'.

- (iii) Take inner product of a_k with

$$b - a = b - \sum_{k} \frac{(b \mid a_{k})}{\|a_{k}\|^{2}} a_{k}$$

– This is zero. Thus b-a \perp every vector in W.

Orthogonal projection

- Orthogonal complement. S a set in V.
- $S^{\perp} := \{v \text{ in } V | v \perp w \text{ for all } w \text{ in } S \}.$
- S^{\perp} is a subspace. $V^{\perp}=\{0\}$.
- If S is a subspace, then V=S⊕ S[⊥] and (S[⊥]) [⊥]=S.
- Proof: Use Gram-Schmidt orthogonalization to a basis {a₁,...,a_r,a_{r+1},...,a_n} of V where {a₁, ...,a_r} is a basis of V.

- Orthogonal projection: E_W:V->W.
 a in V -> b the best approximation in W.
- By Theorem 4, this is well-defined for any subspace W.
- E_W is linear by Theorem 5.
- E_W is a projection since E_W · E_W(v)=
 E_W(v).

- Theorem 5: W subspace in V. E orthogonal projection V->W. Then E is an projection and W[⊥]=nullE and V=W⊕W[⊥].
- Proof:
 - Linearity:
 - a,b in V, c in F. a-Ea, b-Eb \perp all v in W.
 - $c(a-Ea)+(b-Eb)=(ca+b)-(cE(a)+E(b)) \perp all v in W.$
 - Thus by uniqueness E(ca+b)=cEa+Eb.
 - null $E \subset W^{\perp}$: If b is in nullE, then b=b-Eb is in W^{\perp} .
 - W[⊥] ⊂ null E: If b is in W[⊥], then b-0 is in W[⊥] and 0 is the best appr to b by Theorem 4(i) and so Eb=0.
 - Since V=ImE⊕nullE, we are done.

- Corollary: b-> b-E_wb is an orthogonal projection to W[⊥]. I-E_w is an idempotent linear transformation; i.e., projection.
- Proof: b-> b- E_w b is in W[⊥] by Theorem 4 (i).
 - Let c be in W^{\perp}. b-c=Eb+(b-Eb-c).
 - Eb in W, (b-Eb-c) in W^{\perp} .
 - ||b-c||²=||Eb||²+||b-Eb-c||²≥||b-(b-Eb)||² and
 > if c ≠b-Eb.
 - Thus, b-Eb is the best appr to b in $W^{\!\!\perp\!\cdot}$

Bessel's inequality

{a₁,...,a_n} orthogonal set of nonzero vectors. Then

$$\sum_{k=1}^{n} \frac{|(b \mid a_{k})|^{2}}{||a_{k}||^{2}} \leq ||b||^{2}$$

• = <->
$$b = \sum_{k=1}^{n} \frac{(b \mid a_k)}{\|a_k\|^2} a_k$$