8.1. Inner Product Spaces

Inner product
Linear functional
Adjoint



« Assume F is a subfield of R or C.
e LetV beav.s. overF.

* An inner product on V is a function
VXV ->Fie.,abinV->(alb)inF s.t.
— (a) (a+b]r)=(a|r)+(b]r)
— (b)( calr)=c(a]r)
— (¢ ) (bla)=(alb)y
—(d) (ala) >0 if a =0.
— Bilinear (nondegenerate) positive.
— A ways to measure angles and lengths.



 Examples:
* F" has a standard inner product.

- ((X1""Xn)|(y11--',yn)) - iny_i
— If F is a subfield of R, then = x,y,+...+X V..

 ABiIn Fmn,
_ (A|B) = tr(AB*)=tr(B*A)

* Bilinear property: easy to see.

. tr(AB*)= E(AB) —EEAJkBk] =Y Y A, B
(A% = 3 3|4l



« (X]Y)=Y*Q*QX, where XY in F*x1, Q
nxn invertible matrix.
— Bilinearity follows easily
— (X|X)=X*Q*QX=(QX|QX)y =0.
— In fact almost all inner products are of this
form.

 Linear T:V->W and W has an inner
product, then V has “induced” inner
product.

— p+(alb):= (Ta|Tb).




* (a) For any basis B={a,,...,a }, there is
an inner-product s.t. (a;|a;,)=0;.
— Define T:V->F"s.t. a -> e,
— Then p(aja;)=(e||e;)= o
* (b) V={f:[0,1]->C]| f is continuous }.
— (flg)=J,' fg- dt for f,g in V is an inner
product.
— T:V->V defined by f(t) -> tf(t) is linear.
— p+(f,9)= [, 'tftg-dt=[,"t*fg-dt is an inner
product.



Polarization identity: Let F be an imaginary
field in C.

(a|lb)=Re(alb)+iRe(alib) (*):

— (a|b)=Re(a|b)+ilm(a|b).

— Use the identity Im(z)=Re(-iz) .

— Im(a|b)=Re(-i(a|b))=Re(alib)

Define ||a|| := (a]a)'? norm
la<b||*=|[a||*=2Re(alb)+||b|[* .
(a|b)=||a+bl|%/4-||a-b||?/4+i||a+ib||%/4
-i||a-ib]|4/4. (proof by (*) and (**).)

(a|b)= ||a+b||?/4-||a-b||?/4 if F is a real field.




 When V is finite-dimensional, inner
products can be classified.

» Given a basis B={a,,...,a,} and any
inner product ( | ):
(alb) = Y*GX for X=[a]g, Y=[b];s

— G is an nxn-matrix and G=G*, X*GX>0 for
any X, X=0.

a=2xkak,b=2yjaj

(alb)=(Y x,a,.b)= Y x, ¥y (a,1a)=Y'GX



— X*GX =(ala) > 0 if X=O0.
— (G is invertible. GX=0 by above for X=0.)

— (<-) X*GY is an inner-product on F™1.

* (alb) is an induced inner product by a linear
transformation T sending a, to e;.

— Recall Cholesky decomposition: Hermitian
positive definite matrix A =L L*. L lower
triangular with real positive diagonal. (all
these are useful in appl. Math.)



BN =

8.2. Inner product spaces

Definition: An inner product space

V., (1))

FCR -> Euclidean space

FCC -> Unitary space.

Theorem 1.V, (| ). Inner product space.
|cal[=[c]|[all.

|al| > O for a=O0.

(alb)| <||all||b|| (Cauchy-Schwarz)

|a+b]| <[|a|+|[b]]




Proof (ii)

* Proof (iii)

la+bIP=llal? +(alb)+Dla)+ b

a =0 trivial
_ (bla)

a=0, r= ~a,(rla)y=0
Hall
0s||r||2=(b_(b'az)a|b_(blaz)
Hall Hall
2
Hall

—lla I +2Re(a | b)+ b IP
<lalP+20alllbl+1bIE=lal? +1bIP)

a)=(b1b)—

bla)ybla)

2
Il all



In fact many inequalities follows from
Cauchy-Schwarz inequality.

The triangle inequality also follows.
See Example 7.

Example 7 (d) is useful in defining
Hilbert spaces. Similar inequalities are
used much in analysis, PDE, and so on.

Note Example 7, no computations are
iInvolved in proving these.



* On inner product spaces one can use
the inner product to simplify many
things occurring in vector spaces.

— Basis -> orthogonal basis.

— Projections -> orthogonal projections

— Complement -> orthogonal complement.
— Linear functions have adjoints

— Linear functionals become vector

— Operators -> orthogonal operators and self
adjoint operators (we restrict to )



Orthogonal basis

 Definition:
—a,binV, alb if (a|b)=0.
— The zero vector is orthogonal to every vector.

— An orthogonal set S is a set s.t. all pairs of
distinct vectors are orthogonal.

— An orthonormal set S is an orthogonal set
of unit vectors.



Theorem 2. An orthogonal set of
nonzero-vectors is linearly independent.
Proof: Let a,,...,a,, be the set.

— Let O=b=c,a,+...+ca.,
—0=(b,ay)=(csas+...+Can, a, )=Cy(a |ay )

— ¢, =0.

Corollary. If b is a linear combination of

orthogonal set a,,...,a,, of nonzero
vectors, then b=>,_,m ((bla,)/||a.||?) a,

Proof: See above equations for b=0.



» Gram-Schmidt orthogonalization:

* Theorem 3. b,,...,b, In V independent.
Then one may construct orthogonal
basis a,,...,a, s.t. {a,,...,a,} is a basis for
<b,,...,b,> for each k=1,..,n.

* Proof: a, := b,. a,=b,-((b,]a,)||a4]|?)a,-.-,

— Induction: {a,,..,a,} constructed and is a
basis for < b,,...,b>.

— Define .
b,
am+1 — Ym+1 E “2 ak

k=1




— Then .
(@ 1a)) = by 1a)= 3
k=1

= (b

b .la
m+1 zk)(ak |aj)
la,

la;)- (b, 1a;)=0

m+1 m+1

— Use Theorem 2 to show that the result {a,,
...,an.1t IS Independent and hence is a
basis of <b,,...,b.1>.

« See p.281, equation (8-10) for some
examples.

« See examples 12 and 13.



Best approximation, Orthogonal
complement, Orthogonal projections

* This is often used in applied mathematics
needing approximations in many cases.

* Definition: W a subspace of V. b in W.
Then the best approximation of b by a
vectorin Wis ain W s.t.

||b-al| = ||b-c|| for all cin W.

» Existence and Uniqueness. (finite-
dimensional case)



Theorem 4: W a subspace of V. b in V.

(). a is a best appr to b <-> b-a L c for all
cinW.

(ii). A best appr is unique (if it exists)

(iif). W finite dimensional.
{a,,..,a,} any orthonormal basis.

IS the best approx. to b by vectors in W.



* Proof: (i)
— Fact: Let c in W. b-c =(b-a)+(a-c).
||b-c||*=|[b-a||*+2Re(b-ala-c)+|[a-c||*(*)
—(<-) b-a LW. If ¢ =a, then
|Ib-c|[*=||b-a]|+|[a-c||*> [|b-al[*.
Hence a is the best appr.
— (->) ||b-c||=]|b-al| for every c in W.
* By (*) 2Re(b-ala-c)+||a-c||? =0
« <-> 2Re(b-a|t)+||t||? =0 for every tin W.
» |fa=c, take t = (b-ala-c)
— (a-c)

2
la—-cll
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Re(b-al-C=4 )4 02O g
la-cl la-cl
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2 2
_zl(b—ala—c)l +|(b—a|a—c)| =0

la-cIP la—-cIF
 This holds <-> (b-ala-c)=0 for any cin W.
* Thus, b-ais 1 every vector in W.
— (i) a,a’ best appr.tobin W.
« b-a Leveryvin W.b-a L everyvinW.
* If a=a’, then by (*)
Ib-a’ ||>=||b-a||*+2Re(b-ala-a’ )+|[a-a’ ||*.
Hence, ||b-a’ ||>||b-al|.
« Conversely, ||b-a||>||b-a’ ||.
* This is a contradiction and a=a’.



— (iif) Take inner product of a, with

— This is zero. Thus b-a L every vector in W.



Orthogonal projection

Orthogonal complement. Sasetin V.
L:={vin V| vLlw for all w in S}.

Stis a subspace. V+={0}.

If S is a subspace, then V=S@® S+ and

(St) +=S.

Proof. Use Gram-Schmidt orthogonalization

to a basis {a,,...,a,,a,,4,...,a,} of V where {a,,
...,a } is a basis of V.



Orthogonal projection: E,y:V->W.
a in V -> b the best approximation in W.

By Theorem 4, this is well-defined for
any subspace W.

E,, IS linear by Theorem 5.

E,, IS a projection since Ey, -E\y (V)=
Ew(V).



 Theorem 5: W subspace in V. E orthogonal
projection V->W. Then E is an projection and
W-=nullE and V=Wo®W-.

* Proof:
— Linearity:
- abinV,cinF.a-Ea,b-Eb LallvinW.
» c(a-Ea)+(b-Eb)=(ca+b)-(cE(a)+E(b)) L all vin W,
» Thus by uniqueness E(ca+b)=cEa+Eb.

— null ECWH: If bis in nullE, then b=b-Eb is in W+,

—WLCnullE: Ifbisin W', then b-Oisin Wtand O is
the best appr to b by Theorem 4(i) and so Eb=0.

— Since V=ImE®nullE, we are done.



 Corollary: b-> b-E, b is an orthogonal
projection to W+. I-E, is an idempotent
linear transformation; i.e., projection.

* Proof: b->b-E b is in W+ by Theorem 4 (i).
— Let c be in Wi, b-c=Eb+(b-Eb-c).
— Ebin W, (b-Eb-c) in W-.

— ||b-c|[*=||Eb][*+||b-Eb-c|[*=||b-(b-Eb)||* and
> if ¢ =b-ED.

— Thus, b-Eb is the best appr to b in W+



Bessel's inequality

» {a,,...,a.} orthogonal set of nonzero
vectors. Then

i'(b'“k)' <llbIP

2
& g, |

¢ = <> b=i(b|a")a

2 Tk
la, |

k=1



