
8.1. Inner Product Spaces 

Inner product 
Linear functional 

Adjoint 



•  Assume F is a subfield of R or C. 
•  Let V be a v.s. over F.  
•  An inner product on V is a function 

VxV -> F i.e., a,b in V -> (a|b) in F s.t.  
–  (a) (a+b|r)=(a|r)+(b|r) 
–  (b)( ca|r)=c(a|r)  
–  (c ) (b|a)=(a|b)- 
–  (d) (a|a) >0 if a ≠0.  
– Bilinear (nondegenerate) positive.  
– A ways to measure angles and lengths.  



•  Examples:  
•  Fn has a standard inner product. 

–  ((x1,..,xn)|(y1,…,yn)) = 
–  If F is a subfield of R, then = x1y1+…+xnyn. 

•  A,B in Fnxn.  
–   (A|B) = tr(AB*)=tr(B*A) 

•  Bilinear property: easy to see. 
•  tr(AB*)=  
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•  (X|Y)=Y*Q*QX, where X,Y in Fnx1, Q 
nxn invertible matrix.  
– Bilinearity follows easily 
–  (X|X)=X*Q*QX=(QX|QX)std ≥0.  
–  In fact almost all inner products are of this 

form.  
•  Linear T:V->W and W has an inner 

product, then V has “induced” inner 
product.  
– pT(a|b):= (Ta|Tb).  



•  (a) For any basis B={a1,…,an}, there is 
an inner-product s.t. (ai|aj)=δij.  
– Define T:V->Fn s.t. ai -> ei.  
– Then pT(ai|aj)=(ei|ej)= δij. 

•  (b) V={f:[0,1]->C| f is continuous }.  
–  (f|g)= ∫01 fg- dt for f,g in V is an inner 

product.  
– T:V->V defined by f(t) -> tf(t) is linear. 
– pT(f,g)=  ∫01tftg- dt=∫01t2fg- dt is an inner 

product.  



•  Polarization identity: Let F be an imaginary 
field in C.  

•  (a|b)=Re(a|b)+iRe(a|ib) (*): 
–  (a|b)=Re(a|b)+iIm(a|b).  
–  Use the identity Im(z)=Re(-iz) .  
–  Im(a|b)=Re(-i(a|b))=Re(a|ib) 

•  Define ||a|| := (a|a)1/2 norm  
•  ||a±b||2=||a||2±2Re(a|b)+||b||2 (**). 
•  (a|b)=||a+b||2/4-||a-b||2/4+i||a+ib||2/4 

-i||a-ib||2/4. (proof by  (*) and (**).)  
•  (a|b)= ||a+b||2/4-||a-b||2/4 if F is a real field.  



•  When V is finite-dimensional, inner 
products can be classified.  

•  Given a basis B={a1,…,an}  and any 
inner product ( | ):  
(a|b) = Y*GX for X=[a]B, Y=[b]B 
– G is an nxn-matrix and G=G*, X*GX>0 for 

any X, X≠0. 
•  Proof: (->) Let Gjk=(ak|aj).  
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– G=G*: (aj|ak)=(ak|aj)-. Gkj=Gjk
-.  

– X*GX =(a|a) > 0 if X≠0. 
–  (G is invertible. GX≠0 by above for X≠0.) 
–  (<-) X*GY is an inner-product on Fnx1.  

•  (a|b) is an induced inner product by a linear 
transformation T sending ai to ei.  

– Recall Cholesky decomposition: Hermitian 
positive definite matrix A = L L*. L lower 
triangular with real positive diagonal. (all 
these are useful in appl. Math.) 



8.2. Inner product spaces 

•  Definition: An inner product space  
(V, ( | )) 

•  F⊂R -> Euclidean space  
•  F⊂C -> Unitary space. 
•  Theorem 1. V, ( | ). Inner product space. 

1.  ||ca||=|c|||a||.  
2.  ||a|| > 0 for a≠0.  
3.  |(a|b)| ≤||a||||b|| (Cauchy-Schwarz) 
4.  ||a+b|| ≤||a||+||b|| 



•  Proof (ii) 

•  Proof (iii) 

a = 0 trivial 

a ≠ 0,    r = b− (b | a)
|| a ||2

a, (r | a) = 0

0 ≤|| r ||2= (b− (b | a)
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a) = (b | b)− (b | a)(b | a)
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|| a+ b ||2=|| a ||2 +(a | b)+ (b | a)+ || b ||2

=|| a ||2 +2Re(a | b)+ || b ||2

≤|| a ||2 +2 || a |||| b ||+ || b ||2= (|| a ||2 + || b ||2 )2



•  In fact many inequalities follows from 
Cauchy-Schwarz inequality.  

•  The triangle inequality also follows.  
•  See Example 7.  
•  Example 7 (d) is useful in defining 

Hilbert spaces. Similar inequalities are 
used much in analysis, PDE, and so on.  

•  Note Example 7, no computations are 
involved in proving these.  



•  On inner product spaces one can use 
the inner product to simplify many 
things occurring in vector spaces.  
– Basis -> orthogonal basis.  
– Projections -> orthogonal projections  
– Complement -> orthogonal complement.  
– Linear functions have adjoints 
– Linear functionals become vector 
– Operators -> orthogonal operators and self 

adjoint operators (we restrict to ) 



Orthogonal basis 

•  Definition:  
– a,b in V, a⊥b if (a|b)=0.  
–  The zero vector is orthogonal to every vector.  
– An orthogonal set S is a set s.t. all pairs of 

distinct vectors are orthogonal.  
– An orthonormal set S is an orthogonal set 

of unit vectors.  



•  Theorem 2. An orthogonal set of 
nonzero-vectors is linearly independent.  

•  Proof: Let a1,…,am be the set. 
– Let 0=b=c1a1+…+cmam. 

– 0=(b,ak)=(c1a1+…+cmam, ak )=ck(ak |ak )   
– ck=0. 

•  Corollary. If b is a linear combination of 
orthogonal set a1,…,am of nonzero 
vectors, then b=∑k=1

m ((b|ak)/||ak||2) ak 

•  Proof: See above equations for b≠0. 



•  Gram-Schmidt orthogonalization:  
•  Theorem 3. b1,…,bn in V independent. 

Then one may construct orthogonal 
basis a1,…,an s.t. {a1,…,ak} is a basis for 
<b1,…,bk> for each k=1,..,n.  

•  Proof: a1 := b1. a2=b2-((b2|a1)/||a1||2)a1,…,  
–  Induction: {a1,..,am} constructed and is a 

basis for < b1,…,bm>.  
– Define  
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– Then 

– Use Theorem 2 to show that the result {a1,
…,am+1} is independent and hence is a 
basis of <b1,…,bm+1>. 

•  See p.281, equation (8-10) for some 
examples.  

•  See examples 12 and 13.  
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Best approximation, Orthogonal 
complement, Orthogonal projections 

•  This is often used in applied mathematics 
needing approximations in many cases.  

•  Definition: W a subspace of V. b in W. 
Then the best approximation of b by a 
vector in W is a in W s.t.  
||b-a|| ≤ ||b-c|| for all c in W.  

•  Existence and Uniqueness. (finite-
dimensional case) 



•  Theorem 4: W a subspace of V. b in V.  
•  (i). a is a best appr to b <-> b-a ⊥ c for all 

c in W.  
•  (ii). A best appr is unique (if it exists)  
•  (iii). W finite dimensional. 

{a1,..,ak} any orthonormal basis.  
 
 
 
is the best approx. to b by vectors in W.   
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•  Proof: (i)  
– Fact: Let c in W. b-c =(b-a)+(a-c).  

||b-c||2=||b-a||2+2Re(b-a|a-c)+||a-c||2(*) 
–  (<-) b-a ⊥W. If c ≠a, then  

||b-c||2=||b-a||+||a-c||2 > ||b-a||2.  
Hence a is the best appr.  

–  (->) ||b-c||≥||b-a|| for every c in W.  
•  By (*) 2Re(b-a|a-c)+||a-c||2  ≥0 
•  <-> 2Re(b-a|t)+||t||2 ≥0 for every t in W.  
•   If a≠c,  take t =  
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•  This holds <-> (b-a|a-c)=0 for any c in W. 
•  Thus, b-a is ⊥ every vector in W.  

–  (ii) a,a’ best appr. to b in W.  
•  b-a ⊥ every v in W. b-a’ ⊥ every v in W.  
•  If a≠a’, then by (*) 

||b-a’||2=||b-a||2+2Re(b-a|a-a’)+||a-a’||2. 
Hence, ||b-a’||>||b-a||.  

•  Conversely, ||b-a||>||b-a’||.  
•  This is a contradiction and a=a’. 

€ 

−2 | (b − a | a − c) |
2

|| a − c ||2
+
| (b − a | a − c) |2

|| a − c ||2
≥ 0



–  (iii) Take inner product of ak with 

– This is zero. Thus b-a ⊥ every vector in W.  
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Orthogonal projection 

•  Orthogonal complement. S a set in V.  
•  S⊥ :={v in V| v⊥w for all w in S}.  
•  S⊥ is a subspace. V⊥={0}. 
•  If S is a subspace, then V=S⊕ S⊥ and 

(S⊥) ⊥=S. 
•  Proof: Use Gram-Schmidt orthogonalization 

to a basis {a1,…,ar,ar+1,…,an} of V where {a1,
…,ar} is a basis of V.  



•  Orthogonal projection: EW:V->W.  
a in V -> b the best approximation in W.  

•  By Theorem 4, this is well-defined for 
any subspace W.  

•  EW is linear by Theorem 5.   
•  EW is a projection since EW °EW(v)= 

EW(v). 



•  Theorem 5: W subspace in V. E orthogonal 
projection V->W. Then E is an projection and  
W⊥=nullE and V=W⊕W⊥. 

•  Proof:  
–  Linearity:   

•  a,b in V, c in F. a-Ea, b-Eb ⊥ all v in W.  
•  c(a-Ea)+(b-Eb)=(ca+b)-(cE(a)+E(b)) ⊥ all v in W.  
•  Thus by uniqueness E(ca+b)=cEa+Eb.  

–  null E ⊂ W⊥ :  If b is in nullE, then b=b-Eb is in W⊥.  
–  W⊥ ⊂ null E: If b is in W⊥, then b-0 is in W⊥ and 0 is 

the best appr to b by Theorem 4(i) and so Eb=0.  
–  Since V=ImE⊕nullE, we are done.  



•  Corollary: b-> b-Ewb is an orthogonal 
projection to W⊥. I-Ew is an idempotent 
linear transformation; i.e., projection.  

•  Proof: b-> b-Ewb is in W⊥ by Theorem 4 (i). 
–  Let c be in W⊥. b-c=Eb+(b-Eb-c).  
–  Eb in W, (b-Eb-c) in W⊥.  
–  ||b-c||2=||Eb||2+||b-Eb-c||2≥||b-(b-Eb)||2 and 

> if c ≠b-Eb.  
–  Thus, b-Eb is the best appr to b in W⊥.  



Bessel’s inequality 

•  {a1,…,an} orthogonal set of nonzero 
vectors. Then  
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