8.1. Inner Product Spaces

Inner product
Linear functional
Adjoint

- Assume F is a subfield of R or C.
- Let V be a v.s. over F .
- An inner product on V is a function VxV -> F i.e., a, b in V-> (a|b) in F s.t.
- (a) (a+b|r)=(a|r)+(b|r)
- (b) (ca|r)=c(a|r)
- (c) $(\mathrm{b} \mid \mathrm{a})=(\mathrm{a} \mid \mathrm{b})^{-}$
- (d) (a|a) >0 if $a \neq 0$.
- Bilinear (nondegenerate) positive.
- A ways to measure angles and lengths.

- Examples:

- F^{n} has a standard inner product.
$-\left(\left(\mathrm{x}_{1}, . ., \mathrm{x}_{\mathrm{n}}\right) \mid\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right)=\sum_{i} x_{i} \bar{y}_{i}$
- If F is a subfield of R, then $=x_{1} y_{1}+\ldots+x_{n} y_{n}$.
- A, B in $F^{n x n}$.
- $(A \mid B)=\operatorname{tr}\left(A B^{*}\right)=\operatorname{tr}\left(B^{*} A\right)$
- Bilinear property: easy to see.
- $\operatorname{tr}\left(\mathrm{AB}^{*}\right)=\sum_{j}\left(A B^{*}\right)_{j}=\sum_{j} \sum_{k} A_{j k} B_{k j}{ }^{*}=\sum_{j} \sum_{k} A_{j k} \bar{B}_{j k}$

$$
\operatorname{tr}\left(A A^{*}\right)=\sum \sum\left|A_{j k}\right|^{2}
$$

- $(X \mid Y)=Y^{*} Q^{*} Q X$, where X, Y in $F^{n x 1}, Q$ nxn invertible matrix.
- Bilinearity follows easily
$-(X \mid X)=X^{*} Q^{*} Q X=(Q X \mid Q X)_{\text {std }} \geq 0$.
- In fact almost all inner products are of this form.
- Linear T:V->W and W has an inner product, then V has "induced" inner product.
$-p_{T}(a \mid b):=(T a \mid T b)$.
- (a) For any basis $B=\left\{a_{1}, \ldots, a_{n}\right\}$, there is an inner-product s.t. $\left(a_{i} \mid a_{j}\right)=\delta_{i j}$.
- Define T:V->Fn s.t. $a_{i}->e_{i}$.
- Then $p_{T}\left(a_{i} \mid a_{j}\right)=\left(e_{i} \mid e_{j}\right)=\delta_{i j}$.
- (b) $V=\{f:[0,1]->C \mid f$ is continuous $\}$.
$-(f \mid g)=\int_{0}{ }^{1} \mathrm{fg}$ - dt for f, g in V is an inner product.
-T:V->V defined by $f(t)->t(t)$ is linear.
$-\mathrm{p}_{\mathrm{T}}(\mathrm{f}, \mathrm{g})=\int_{0}{ }^{1} \mathrm{fftg}-\mathrm{dt}=\int_{0}{ }^{1} \mathrm{t}^{2} \mathrm{fg}-\mathrm{dt}$ is an inner product.
- Polarization identity: Let F be an imaginary field in C.
- $(a \mid b)=\operatorname{Re}(a \mid b)+i \operatorname{Re}(a \mid i b)\left(^{*}\right):$
$-(a \mid b)=\operatorname{Re}(a \mid b)+i l m(a \mid b)$.
- Use the identity $\operatorname{Im}(z)=\operatorname{Re}(-i z)$.
$-\operatorname{Im}(a \mid b)=\operatorname{Re}(-i(a \mid b))=\operatorname{Re}(a \mid i b)$
- Define ||a|| := (a|a $)^{1 / 2}$ norm
- $\|a \pm b\|^{2}=\|a\|^{2} \pm 2 \operatorname{Re}(a \mid b)+| | b \|^{2(* *)}$.
- (a|b)=||a+b||2/4-||a-b||2/4+i||a+ib||²/4 -i\||a-ib|| ${ }^{2 / 4}$. (proof by (*) and (**).)
- $(a \mid b)=\|a+b\|^{2} / 4-\|a-b\|^{2} / 4$ if F is a real field.
- When V is finite-dimensional, inner products can be classified.
- Given a basis $B=\left\{a_{1}, \ldots, a_{n}\right\}$ and any inner product (|):
$(a \mid b)=Y^{*} G X$ for $X=[a]_{B}, Y=[b]_{B}$
$-G$ is an nxn-matrix and $G=G^{*}, X^{*} G X>0$ for any $\mathrm{X}, \mathrm{X} \neq 0$.
- Proof: ($->$) Let $\mathrm{G}_{\mathrm{jk}}=\left(\mathrm{a}_{\mathrm{k}} \mid \mathrm{a}_{\mathrm{j}}\right)$.

$$
\begin{aligned}
& a=\sum_{k} x_{k} a_{k}, b=\sum_{j} y_{j} a_{j} \\
& (a \mid b)=\left(\sum_{k} x_{k} a_{k}, b\right)=\sum_{k} x_{k} \sum_{j} \bar{y}_{j}\left(a_{k} \mid a_{j}\right)=Y^{*} G X
\end{aligned}
$$

$-G=G^{*}:\left(a_{j} \mid a_{k}\right)=\left(a_{k} \mid a_{j}\right)^{-} . G_{k j}=G_{j k}^{-}$.
$-X^{*} G X=(a \mid a)>0$ if $X \neq 0$.
$-(G$ is invertible. $G X \neq 0$ by above for $X \neq 0$.)
$-(<-) X^{*} G Y$ is an inner-product on $F^{n \times 1}$.

- (alb) is an induced inner product by a linear transformation T sending a_{i} to e_{i}.
- Recall Cholesky decomposition: Hermitian positive definite matrix $A=L L^{*}$. L lower triangular with real positive diagonal. (all these are useful in appl. Math.)

8.2. Inner product spaces

- Definition: An inner product space (V, (|))
- $F \subset R$-> Euclidean space
- $F \subset C$-> Unitary space.
- Theorem 1. V, (|). Inner product space.

1. $\| c a| |=|c||a| \mid$.
2. $\|a\|>0$ for $a \neq 0$.
3. $|(a \mid b)| \leq||a||| | b| |$ (Cauchy-Schwarz)
4. $\|a+b\| \leq\|a\|+| | b \|$

- Proof (ii) $a=0$ trivial

$$
\begin{aligned}
& a \neq 0, \quad r=b-\frac{(b \mid a)}{\|a\|^{2}} a,(r \mid a)=0 \\
& 0 \leq\|r\|^{2}=\left(\left.b-\frac{(b \mid a)}{\|a\|^{2}} a \right\rvert\, b-\frac{(b \mid a)}{\|a\|^{2}} a\right)=(b \mid b)-\frac{(b \mid a)(b \mid a)}{\|a\|^{2}} \\
& =\|b\|^{2}-\frac{\|\left.(a \mid b)\right|^{2}}{\|a\|^{2}}
\end{aligned}
$$

- Proof (iii)
$\|a+b\|^{2}=\|a\|^{2}+(a \mid b)+(b \mid a)+\|b\|^{2}$
$=\|a\|^{2}+2 \operatorname{Re}(a \mid b)+\|b\|^{2}$
$\leq\|a\|^{2}+2\|a\|\|b\|+\|b\|^{2}=\left(\|a\|^{2}+\|b\|^{2}\right)^{2}$
- In fact many inequalities follows from Cauchy-Schwarz inequality.
- The triangle inequality also follows.
- See Example 7.
- Example 7 (d) is useful in defining Hilbert spaces. Similar inequalities are used much in analysis, PDE, and so on.
- Note Example 7, no computations are involved in proving these.
- On inner product spaces one can use the inner product to simplify many things occurring in vector spaces.
- Basis -> orthogonal basis.
- Projections -> orthogonal projections
- Complement -> orthogonal complement.
- Linear functions have adjoints
- Linear functionals become vector
- Operators -> orthogonal operators and self adjoint operators (we restrict to)

Orthogonal basis

- Definition:
$-a, b$ in $V, a \perp b$ if $(a \mid b)=0$.
- The zero vector is orthogonal to every vector.
- An orthogonal set S is a set s.t. all pairs of distinct vectors are orthogonal.
- An orthonormal set S is an orthogonal set of unit vectors.
- Theorem 2. An orthogonal set of nonzero-vectors is linearly independent.
- Proof: Let $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}$ be the set.
- Let $0=b=c_{1} a_{1}+\ldots+c_{m} a_{m}$.
$-0=\left(b, a_{k}\right)=\left(c_{1} a_{1}+\ldots+c_{m} a_{m}, a_{k}\right)=c_{k}\left(a_{k} \mid a_{k}\right)$ $-c_{k}=0$.
- Corollary. If b is a linear combination of orthogonal set a_{1}, \ldots, a_{m} of nonzero vectors, then $b=\sum_{k=1}^{m}\left(\left(b \mid a_{k}\right) /\left\|a_{k}\right\|^{2}\right) a_{k}$
- Proof: See above equations for $b \neq 0$.
- Gram-Schmidt orthogonalization:
- Theorem 3. b_{1}, \ldots, b_{n} in V independent. Then one may construct orthogonal basis a_{1}, \ldots, a_{n} s.t. $\left\{a_{1}, \ldots, a_{k}\right\}$ is a basis for $<b_{1}, \ldots, b_{k}>$ for each $k=1, . ., n$.
- Proof: $a_{1}:=b_{1} \cdot a_{2}=b_{2}-\left(\left(b_{2} \mid a_{1}\right) / / \mid a_{1} \|^{2}\right) a_{1}, \ldots$,
- Induction: $\left\{a_{1}, ., a_{m}\right\}$ constructed and is a basis for $\left\langle b_{1}, \ldots, b_{m}\right\rangle$.
- Define

$$
a_{m+1}=b_{m+1}-\sum_{k=1}^{m} \frac{\left(b_{m+1} \mid a_{k}\right)}{\left\|a_{k}\right\|^{2}} a_{k}
$$

- Then

$$
\begin{aligned}
& \left(a_{m+1} \mid a_{j}\right)=\left(b_{m+1} \mid a_{j}\right)-\sum_{k=1}^{m} \frac{\left(b_{m+1} \mid a_{k}\right)}{\left\|a_{k}\right\|^{2}}\left(a_{k} \mid a_{j}\right) \\
& =\left(b_{m+1} \mid a_{j}\right)-\left(b_{m+1} \mid a_{j}\right)=0
\end{aligned}
$$

- Use Theorem 2 to show that the result $\left\{a_{1}\right.$, $\left.\ldots, a_{m+1}\right\}$ is independent and hence is a basis of $<\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{m}+1}>$.
- See p.281, equation (8-10) for some examples.
- See examples 12 and 13.

Best approximation, Orthogonal complement, Orthogonal projections

- This is often used in applied mathematics needing approximations in many cases.
- Definition: W a subspace of V. b in W. Then the best approximation of b by a vector in W is a in W s.t. $\| b-a| | \leq||b-c||$ for all c in W.
- Existence and Uniqueness. (finitedimensional case)

Theorem 4: W a subspace of V . b in V .
(i). a is a best appr to b <-> $\mathrm{b}-\mathrm{a} \perp \mathrm{c}$ for all c in W .

- (ii). A best appr is unique (if it exists)
- (iii). W finite dimensional. $\left\{\mathrm{a}_{1}, ., \mathrm{a}_{\mathrm{k}}\right\}$ any orthonormal basis.

$$
a=\sum_{k} \frac{\left(b \mid a_{k}\right)}{\left\|a_{k}\right\|^{2}} a_{k}
$$

is the best approx. to b by vectors in W .

- Proof: (i)
- Fact: Let c in W. b-c =(b-a)+(a-c).
$||b-c||^{2}=\left||b-a|^{2}+2 \operatorname{Re}(b-a \mid a-c)+||a-c||^{2}\left({ }^{*}\right)\right.$
$-(<-) b-a \perp W$. If $c \neq a$, then
$\left\|b-c| |^{2}=\right\||b-a|++\left||a-c|\left\|^{2}>| | b-a\right\|^{2}\right.$.
Hence a is the best appr.
$-(->)| | b-c| | \geq||b-a||$ for every c in W.
- By (*) $2 \operatorname{Re}(b-a \mid a-c)+| | a-c \|^{2} \geq 0$
- <-> $2 \operatorname{Re}(b-a \mid t)+||t||^{2} \geq 0$ for every t in W.
- If $a \neq c$, take $t=$

$$
-\frac{(b-a \mid a-c)}{\|a-c\|^{2}}(a-c)
$$

$$
\begin{aligned}
& 2 \operatorname{Re}\left(b-a \left\lvert\,-\frac{(b-a \mid a-c)}{\|a-c\|^{2}}(a-c)\right.\right)+\frac{|(b-a \mid a-c)|^{2}}{\|a-c\|^{4}}\|a-c\|^{2} \geq 0 \\
& -2 \operatorname{Re}\left(\frac{\overline{(b-a \mid a-c)}}{\|a-c\|^{2}}(b-a \mid a-c)\right)+\frac{|(b-a \mid a-c)|^{2}}{\|a-c\|^{2}} \geq 0 \\
& -2 \operatorname{Re} \frac{|(b-a \mid a-c)|^{2}}{\|a-c\|^{2}}+\frac{|(b-a \mid a-c)|^{2}}{\|a-c\|^{2}} \geq 0 \\
& \frac{|(b-a \mid a-c)|^{2}}{\|a-c\|^{2}} \leq 0
\end{aligned}
$$

$$
-2 \frac{|(b-a \mid a-c)|^{2}}{\|a-c\|^{2}}+\frac{|(b-a \mid a-c)|^{2}}{\|a-c\|^{2}} \geq 0
$$

- This holds <-> (b-a|a-c)=0 for any c in W .
- Thus, $b-a$ is \perp every vector in W .
- (ii) a,a' best appr. to b in W.
- b-a \perp every v in W. b-a’ \perp every v in W.
- If $a \neq a$, then by (*)
||b-a' || ${ }^{2}=\left||b-a|^{2}+2 \operatorname{Re}\left(b-a \mid a-a^{\prime}\right)+\left|\left|a-a^{\prime}\right|^{2}\right.\right.$. Hence, ||b-a' ||>||b-a||.
- Conversely, ||b-a||>||b-a’||.
- This is a contradiction and $a=a$.
- (iii) Take inner product of a_{k} with

$$
b-a=b-\sum_{k} \frac{\left(b \mid a_{k}\right)}{\left\|a_{k}\right\|^{2}} a_{k}
$$

- This is zero. Thus b-a \perp every vector in W.

Orthogonal projection

- Orthogonal complement. S a set in V.
- $S^{\perp}:=\{v$ in $V \mid v \perp w$ for all win $S\}$.
- S^{\perp} is a subspace. $V^{\perp}=\{0\}$.
- If S is a subspace, then $\mathrm{V}=\mathrm{S} \oplus \mathrm{S}^{\perp}$ and $\left(S^{\perp}\right){ }^{\perp}=S$.
- Proof: Use Gram-Schmidt orthogonalization to a basis $\left\{a_{1}, \ldots, a_{r}, a_{r+1}, \ldots, a_{n}\right\}$ of V where $\left\{a_{1}\right.$, $\left.\ldots, a_{r}\right\}$ is a basis of V.
- Orthogonal projection: $\mathrm{E}_{\mathrm{w}}: \mathrm{V}->\mathrm{W}$. a in V -> b the best approximation in W .
- By Theorem 4, this is well-defined for any subspace W .
- E_{w} is linear by Theorem 5.
- E_{w} is a projection since $\mathrm{E}_{\mathrm{w}} \mathrm{E}_{\mathrm{w}}(\mathrm{v})=$ $E_{w}(v)$.
- Theorem 5: W subspace in V. E orthogonal projection $\mathrm{V}->\mathrm{W}$. Then E is an projection and $\mathrm{W}^{\perp}=$ nullE and $\mathrm{V}=\mathrm{W} \oplus \mathrm{W}^{\perp}$.
- Proof:
- Linearity:
- a, b in V, c in F. $a-E a, b-E b \perp$ all v in W.
- c(a-Ea)+(b-Eb)=(ca+b)-(cE(a)+E(b)) \perp all vin W.
- Thus by uniqueness $E(c a+b)=c E a+E b$.
- null $E \subset W^{\perp}:$ If b is in nulle, then $b=b-E b$ is in W^{\perp}.
$-W^{\perp} \subset$ null E : If b is in W^{\perp}, then $b-0$ is in W^{\perp} and 0 is the best appr to b by Theorem 4(i) and so $E b=0$.
- Since $\mathrm{V}=\mathrm{ImE} \oplus$ nulle, we are done.
- Corollary: b-> b-E ${ }_{w}$ b is an orthogonal projection to W^{\perp}. $\mathrm{I}-\mathrm{E}_{\mathrm{w}}$ is an idempotent linear transformation; i.e., projection.
- Proof: $b->b-E_{w} b$ is in W^{\perp} by Theorem 4 (i).
- Let c be in W^{\perp}. $b-c=E b+(b-E b-c)$.
- Eb in W, (b-Eb-c) in W^{\perp}.
$-\|b-c\|^{2}=\|E b\|^{2}+\|b-E b-c\|^{2} \geq\|b-(b-E b)\|^{2}$ and $>$ if $c \neq b-E b$.
- Thus, $b-E b$ is the best appr to b in W^{\perp}.

Bessel's inequality

- $\left\{a_{1}, \ldots, a_{n}\right\}$ orthogonal set of nonzero vectors. Then

$$
\sum_{k=1}^{n} \frac{\left|\left(b \mid a_{k}\right)\right|^{2}}{\left\|a_{k}\right\|^{2}} \leq\|b\|^{2}
$$

$$
\cdot=<->\quad b=\sum_{k=1}^{n} \frac{\left(b \mid a_{k}\right)}{\left\|a_{k}\right\|^{2}} a_{k}
$$

