### 7.4. Computations of Invariant factors

- Let A be nxn matrix with entries in $\mathrm{F}[\mathrm{x}]$.
- Goal: Find a method to compute the invariant factors $p_{1}, \ldots, p_{r}$.
- Suppose A is the companion matrix of a monic polynomial

$$
p=x^{n}+c_{n-1} x^{n-1}+\ldots+c_{1} x+c_{0} .
$$

$$
x I-A=\left[\begin{array}{cccccc}
x & 0 & 0 & \ldots & 0 & c_{0} \\
-1 & x & 0 & \ldots & 0 & c_{1} \\
0 & -1 & x & \ldots & 0 & c_{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & x & c_{n-2} \\
0 & 0 & 0 & \ldots & -1 & x+c_{n-1}
\end{array}\right]
$$

$$
\left.\begin{array}{c}
{\left[\begin{array}{cccccc}
x & 0 & 0 & \ldots & 0 & c_{0} \\
-1 & x & 0 & \ldots & 0 & c_{1} \\
0 & -1 & x & \ldots & 0 & c_{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & x^{2}+c_{n-1} x+c_{n-2} \\
0 & 0 & 0 & \ldots & -1 & x+c_{n-1}
\end{array}\right]}
\end{array}\left[\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & x^{n}+\ldots+c_{1} x+c_{0} \\
-1 & 0 & 0 & \ldots & 0 & x^{n-1}+\ldots+c_{2} x+c_{1} \\
0 & -1 & 0 & \ldots & 0 & x^{n-2}+\ldots+c_{3} x+c_{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & x^{2}+c_{n-1} x+c_{n-2} \\
0 & 0 & 0 & \ldots & -1 & x+c_{n-1}
\end{array}\right] \text { [ } \begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & p=x^{n}+\ldots+c_{1} x+c_{0} \\
-1 & 0 & 0 & \ldots & 0 & 0 \\
0 & -1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & -1 & 0 \\
0 & 0 & 0 & \ldots & 0 & p=x^{n}+\ldots+c_{1} x+c_{0} \\
-1 & 0 & 0 & \ldots & 0 & 0 \\
0 & -1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & -1 & 0 \\
{\left[\begin{array}{cccccc}
p & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right]}
\end{array}\right]
$$

- Thus $\operatorname{det}(x l-A)=p$.

Elementary row operations in $\mathrm{F}[\mathrm{x}]^{\mathrm{nxn}}$.

1. Multiplication of one row of M by a nonzero scalar in F .
2. Replacement of row $r$ by row $r$ plus $f$ times row s. ( $\mathrm{r} \neq \mathrm{s}$ )
3. Interchange of two rows in M.

- nxn-elementrary matrix is one obtained from Identity marix by a single row operation.
- Given an elementary operation e.
$-e(M)=e(I) M$.
$-M=M_{0}->M_{1}->\ldots->M_{k}=N$ row equivalences $N=P M$ where $P=E_{1} \ldots E_{k}$.
$-P$ is invertible and $P^{-1}=E_{k}^{-1} \ldots . \mathrm{E}^{-1} 1$ where the inverse of an elementary matrix is elementary and in $F[x]^{n x n}$.
- Lemma. M in $\mathrm{F}[x]^{m \times n}$.
- A nonzero entry in its first column.
- Let $\mathrm{p}=\mathrm{g} . \mathrm{c} . \mathrm{d}($ column 1 entries).
- Then M is row-equivalent to N with $(p, 0, \ldots, 0)$ as the first column.
- Proof: omit. Use Euclidean algorithms.
- Theorem 6. P in $\mathrm{F}[x]^{m x m}$. TFAE

1. P is invertible.
2. $\operatorname{det} P$ is a nonzero scalar in $F$.
3. $P$ is row equivalent to $m \times m$ identity matrix.
4. P is a product of elementary matrix.

- Proof: 1->2 done. 2->1 also done.
- We show 1->2->3->4->1.
- 3->4,4->1 clear.
- (2->3) Let $p_{1}, . ., p_{m}$ be the entries of the first column of $P$.
- Then $\operatorname{gcd}\left(\mathrm{p}_{1}, . ., \mathrm{p}_{\mathrm{m}}\right)=1$ since any common divisor of them also divides det P. (By determinant formula).
- Now use the lemma to put 1 on the ( 1,1 )position and (i,1)-entries are all zero for $i>1$.
- Take (m-1)x(m-1)-matrix $M(1 \mid 1)$.
- Make the (1,1)-entry of $M(1 \mid 1)$ equal to 1 and make ( $\mathrm{i}, 1$ )-entry be 0 for $\mathrm{i}>1$.
- By induction, we obtain an upper triangular matrix $R$ with diagonal entries equal to 1.
-R is equivalent to I by row-operations-clear.
- Corollary: $\mathrm{M}, \mathrm{N}$ in $\mathrm{F}[\mathrm{x}]^{\mathrm{nxn}}$. N is rowequivalent to M <-> $\mathrm{N}=\mathrm{PM}$ for invertible P.
- Definition: N is equivalent to M if N can be obtained from M by a series of elementary row-operations or elementary column-operations.
- Theorem 7. N=PMQ, P, Q invertible <-> $\mathrm{M}, \mathrm{N}$ are equivalent.
- Proof: omit.
- Theorem 8. A nxn-matrix with entry in F. $\mathrm{p}_{1}$, $\ldots, p_{r}$ invariant factors of $A$. Then matrix xl-A is equivalent to nxn-diagonal matrix with entries $p_{1}, . ., p_{r}, 1, \ldots, 1$.
- Proof: There is invertible $P$ with entries in $F$ s.t. $\mathrm{PAP}^{-1}$ is in rational form with companion matrices $A_{1}, . ., A_{r}$ in block-diagonals.
$-P(x l-A) P^{-1}$ is a matrix with block diagonals $x l-A_{1}$, $\ldots, x \mathrm{l}-\mathrm{A}$.
$-x l-A_{i}$ is equivalent to a diagonal matrix with entries $\mathrm{p}_{\mathrm{i}}, 1, \ldots, 1$.
- Rearrange to get the desired diagonal matrix.
- This is not algorithmic. We need an algorithm. We do it by obtaining Smith normal form and showing that it is unique.
- Definition: N in $\mathrm{F}[\mathrm{x}]^{\mathrm{mxn}}$. N is in Smith normal form if

1. Every entry off diagonal is 0 .
2. Diaonal entries are $f_{1}, \ldots, f_{l}$ s.t. $f_{k}$ divides $f_{k+1}$ for $k=1, . ., l-1$ where $l$ is $\min \{m, n\}$.

- Theorem 9. M in $\mathrm{F}[x]^{\mathrm{mxn}}$. Then M is equivalent to a matrix in normal form.
- Proof: If $M=0$, done. We show that if $M$ is not zero, then M is equivalent to $\mathrm{M}^{\prime}$ of form:

$$
\left[\begin{array}{cccc}
f_{1} & 0 & \ldots & 0 \\
0 & & & \\
\vdots & & R & \\
0 & & &
\end{array}\right]
$$

- where $f_{1}$ divides every entries of $R$.
- This will prove our theorem.
- Steps: (1) Find the nonzero entry with lowest degree. Move to the first column.
- (2) Make the first column of form ( $p, 0, . ., 0$ ).
$-(3)$ The first row is of form ( $p, a, \ldots, b$ ).
- (3' ) If $p$ divides $a, . ., b$, then we can make the first row ( $p, 0, \ldots, 0$ ) and be done.
- (4) Do column operations to make the first row into $(g, 0, \ldots, 0)$ where $g$ is the $\operatorname{gcd}(p, a$, $\ldots, b)$. Now deg g < deg p.
- (5) Now go to (1)->(4). deg of M strictly decreases. Thus, the process stops and ends at (3') at some point.
- If $g$ divide every entry of $S$, then done.
- If not, we find the first column with an entry not divisible by g . Then add that column to the first column.
- Do the process all over again. Deg of $M$ strictly decreases.
- So finally, the steps stop and we have the desired matrix.
- The uniqueness of the Smith normal form. (To be sure we found the invariant factors.)
- Define $\delta_{k}(M)=$ g.c.d. $\{d e t$ of all kxksubmatrices of M$\}$.
- Theorem 10. M,N in F[x] ${ }^{m \times n}$. If $\mathrm{M}, \mathrm{N}$ are equivalent, then $\delta_{k}(\mathrm{M})=\delta_{k}(\mathrm{~N})$.
- Proof: elementary row or column operations do not change $\delta_{k}$.
- Corollary. Each matrix M in $\mathrm{F}[\mathrm{x}]^{m \times n}$ is equivalent to precisely one matrix N which is in normal form.
- The polynomials $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{k}}$ occuring in the normal form are

$$
f_{k}=\frac{\delta_{k}(M)}{\delta_{k-1}(M)}, 1 \leq k \leq \min \{m, n\}
$$

where $\delta_{0}(M):=1$.

- Proof: $\delta_{k}(N)=f_{1} f_{2} \ldots f_{k}$ if $N$ is in normal form and by the invariance.

