7.3. Jordan form

Canonical form for matrices and transformations.

- N nilpotent on V^{n}.
- Cyclic decomposition
$\mathrm{V}=\mathrm{Z}\left(\mathrm{a}_{1} ; \mathrm{N}\right) \oplus \ldots \oplus \mathrm{Z}\left(\mathrm{a}_{\mathrm{r}} ; \mathrm{N}\right)$.
$\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{r}} \mathrm{N}$-annihilators,
$p_{i+1} \mid p_{i}, i=1, \ldots, r-1$.
- minpoly $N=x^{k}, k \leq n$:
$-\mathrm{N}^{r}=0$ for some r . Thus x^{r} is in $\operatorname{Ann(N).~}$
- minpoly N divides x^{r} and hence minpoly $\mathrm{N}=\mathrm{x}^{\mathrm{k}}$ for some k .
- minpoly N divides charpoly N of deg $\leq \mathrm{n}$.
- $p_{i}=x^{k}-i$, $->k=k_{1} \geq k_{2} \geq \ldots \geq k_{r} \geq 1$.
- We now have a rational form for N :
- Companion matrix of $x^{k}-i$: $k_{i} x k_{i}$-matrix

$$
A_{i}=\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 0 \\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0
\end{array}\right]
$$

- Thus the rational form of N is 1 s at one below the diagonal that skips one space after $k_{1}-1, k_{2}-1, \ldots$, so on.
- N is a direct sum of elementary nilpotent matrices
- A nilpotent nxn-matrix up to similarity <-> positive integers r, k_{1}, \ldots, k_{r}, such that $\mathrm{k}_{1}+\ldots+\mathrm{k}_{\mathrm{r}}=\mathrm{n}, \mathrm{k}_{\mathrm{i}} \geq \mathrm{k}_{\mathrm{i}+1}$
- Proof is omitted.
- r=nullity N. In fact null $N=<N^{k}-1-1 a_{i} \cdot i=1, \ldots, r>$. a_{i} cyclic vectors.

Proof: a in V ->

$-a=f_{1}(N) a_{1}+\ldots+f_{r}(N) a_{r}, f_{i}$ in $F[x]$, deg $f_{i} \leq k_{i}$.
$-N a=0$ implies $N\left(f_{i}(N) a_{i}\right)=0$ for each i.

- (N -invariant direct sum property)
$-x_{i}(N) a_{i}=0$.
$-x f_{i}$ is in N-annihilator of a_{i}
$-\mathrm{xf}_{\mathrm{i}}$ is divisible by $\mathrm{x}^{\mathrm{k}} \mathrm{i}^{\mathrm{i}}$.
- Thus, $f_{i}=c_{i} x^{k}{ }^{i-1}, c_{i}$ in F and $a=c_{1}\left(x^{k}-1-1\right)(N) a_{1}+\ldots .+c_{r}\left(x^{k}-r-1\right)(N) a_{r}$.
- Therefore $\left\{N^{k}{ }^{1-1} a_{1}, \ldots, N^{k}-r-1 a_{r}\right\}$ is a basis of null N, and $\operatorname{dim}=r$.
- Jordan form construction:
- Let T be a linear operator where charpoly $\mathrm{f}=\left(\mathrm{x}-\mathrm{c}_{1}\right)^{\mathrm{d}} _1 \ldots\left(\mathrm{x}-\mathrm{c}_{\mathrm{k}}\right)^{\mathrm{d}}-\mathrm{k}$. For example when $\mathrm{F}=\mathrm{C}$.
- minpoly $f=\left(x-c_{1}\right)^{r}-1 \ldots\left(x-c_{k}\right)^{r}-k$.
- Let $W_{i}=$ null $\left.\left(T-c_{i}\right)\right)^{r}-{ }^{i}$.
- $\mathrm{V}=\mathrm{W}_{1} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{r}}$.
- Let $\mathrm{T}_{\mathrm{i}}=\mathrm{T} \mid \mathrm{W}_{\mathrm{i}} \cdot \mathrm{W}_{\mathrm{i}}->\mathrm{W}_{\mathrm{i}}$.
- $\mathrm{N}_{\mathrm{i}}=\mathrm{T}_{\mathrm{i}}-\mathrm{c}_{\mathrm{i}} \mathrm{I}$ is nilpotent.
- Choose a basis B_{i} of W_{i} s.t. N_{i} is in rational form.
- Then $\mathrm{T}_{\mathrm{i}}=\mathrm{N}_{\mathrm{i}}+\mathrm{c}_{\mathrm{i}} \mathrm{l}$.

$$
\text { - }\left[\mathrm{T}_{\mathrm{i}}\right]_{\mathrm{B}_{-} \mathrm{i}}=\left[\begin{array}{ccccc}
c_{i} & 0 & \ldots & 0 & 0 \\
1 & c_{i} & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & c_{i}
\end{array}\right]
$$

- There are some gaps of 1 s here.
- If there are no gaps, then it is called the elementary Jordan matrix with char value c_{i}.

$$
\begin{aligned}
& \text { - } \mathrm{A}=\left[\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
0 & A_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_{k}
\end{array}\right] \text { Jordan form } \\
& \text { - } \mathrm{A}_{\mathrm{i}}=\left[\begin{array}{ccccc}
J_{1}^{i} & 0 & \cdots & 0 \\
0 & J_{2}^{i} & \cdots & 0 \\
\vdots & \vdots & . & \vdots
\end{array}\right] \text { elementary }
\end{aligned}
$$

The size of elementary Jordan matrices decreases.

- Uniquenss of Jordan form:
- Suppose T is represented by a Jordan matrix. $\mathrm{V}=\mathrm{W}_{1} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{k}}$.
$-A_{i}$ is $d_{i} x d_{i}$-matrix. A_{i} on W_{i}.
- Then charpolyT=(x-c, $)^{\text {d }}-1 \ldots . .\left(x-c_{k}\right)^{d}-k$.
$-\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{k}}, \mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{k}}$ are determined unique up to order.
$-W_{i}=$ null $\left.\left(T-c_{i}\right)\right)^{d i}-$ clearly.
$-A_{i}$ is uniquely determined by the rational form for ($\mathrm{T}-\mathrm{c}_{\mathrm{i}} \mathrm{I}$). (Recall rational form is uniquely determined.)
- Properties of Jordan matrix:
- (1) $\mathrm{c}_{1}, . ., \mathrm{c}_{\mathrm{k}}$ distinct char.values. c_{i} is repeated $d_{i}=\operatorname{dimW}_{i}=$ multiplicity in char poly of A.
- (2) A_{i} direct sum of n_{i} elementrary Jordan matrices. $\mathrm{n}_{\mathrm{i}} \leq \mathrm{d}_{\mathrm{i}}$.
- (3) J_{i} of A_{i} is $r_{i} x r_{i}$-matrix. r_{i} is multiplicity of the minimal polynomial of T. (So we can read the minimal polynomial from the Jordan form)
- Proof of (3):

- $\mathrm{T} \mid \mathrm{W}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}}$ and $\left.\left(\mathrm{A}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}\right)\right)^{-\mathrm{r}} \mathrm{i}=0$ on W_{i}.
$-\left(x-c_{1}\right)^{r-1} \ldots .\left(x-c_{k}\right)^{r^{r}}$ is the least degree.
- This can be seen from the largest elementary Jordan matrix $\mathrm{J}_{\mathrm{i}}^{1}$.
- $\left(J_{i}^{1}-c_{i} I\right)^{q} \neq 0$ for $q<r_{i}$.
- This completes the proof.

