
7.2. Cyclic decomposition and 
rational forms 

Cyclic decomposition 
Generalized Cayley-Hamilton 

Rational forms 



•  We prove existence of vectors a1,..,ar 
s.t. V=Z(a1;T)⊕…. ⊕Z(ar;T). 

•  If there is a cyclic vector a, then 
V=Z(a;T). We are done.  

•  Definition: T a linear operator on V. W 
subspace of V. W is T-admissible if  
–  (i) W is T-invariant. 
–  (ii) If f(T)b in W, then there exists c in W s.t. 

f(T)b=f(T)c.  



•  Proposition: If W is T-invariant and has 
a complementary T-invariant subspace, 
then W is T-admissible.  

•  Proof: V=W ⊕W’. T(W) in W. T(W’) in 
W’. b=c+c’, c in W, c’ in W’.  
–  f(T)b=f(T)c+f(T)c’.  
–  If f(T)b is in W, then f(T)c’=0 and f(T)c is in 

W.  
–  f(T)b=f(T)c for c in W.  



•  To prove V=Z(a1;T)⊕…. ⊕Z(ar;T), we 
use induction:  

•  Suppose we have Wj=Z(a1;T)+…
+Z(aj;T) in V.  
– Find aj+1 s.t. Wj∩Z(aj+1;T)={0}.  

•   Let W be a T-admissible, proper T-
invariant subspace of V. Let us try to 
find a s.t. W∩Z(a;T)={0}.  



•  Choose b not in W.  
•  T-conductor ideal is s(b;W)={g in F[x]|g(b) in 

W} 
•  Let f be the monic generator.  
•  f(T)b is in W.  
•  If W is T-admissible, there exists c in W s.t. 

f(T)b=f(T)c. ---(*). 
•  Let a = b-c. b-a is in W.  
•  Any g in F[x], g(T)b in W <-> g(T)a is in W: 

–  g(T)(b-c)=g(T)b-g(T)c., g(T)b=g(T)a+g(T)c.   



•  Thus, S(a;W)=S(b;W). 
•  f(T)a = 0 by (*) for f the above T-

conductor of b in W. 
•  g(T)a=0 <-> g(T)a in W for any g in F[x].  

–  (->) clear. 
–  (<-) g has to be in S(a;W). Thus g=hf for h 

in F[x]. g(T)a=h(T)f(T)a=0. 
•  Therefore, Z(a;T) ∩ W={0}. We found 

our vector a.  



Cyclic decomposition theorem 

•  Theorem 3. T in L(V,V), V n-dim v.s. W0 
proper T-admissible subspace. Then  
–  there exists nonzero a1,…,ar in V and  
–  respective T-annihilators p1,…,pr  
– such that (i) V=W0 ⊕Z(a1;T) ⊕… ⊕Z(ar;T) 
–  (ii) pk divides pk-1, k=2,..,r.  
– Furthermore, r, p1,..,pr uniquely determined 

by (I),(ii) and ai≠0. (ai are not nec. unique). 



•  The proof will be not given here. But 
uses the Fact.  

•  One should try to follow it at least once.  
•  We will learn how to find ais by 

examples.  
•  After a year or so, the proof might not 

seem so hard.  
•  Learning everything as if one prepares 

for exam is not the best way to learn. 
•  One needs to expand one’s capabilities 

by forcing one self to do difficult tasks.  



•  Corollary. If T is a linear operator on Vn, 
then every T-admissible subspace has 
a complementary subspace which is 
invariant under T.  

•  Proof: W0 T-inv. T-admissible. Assume 
W0 is proper.  
– Let W0’ be Z(a1;T) ⊕… ⊕Z(ar;T) from 

Theorem 3.  
– Then W0’ is T-invariant and is 

complementary to W0. 



•  Corollary. T linear operator V.  
–  (a) There exists a in V s.t. T-annihilator of a 

=minpoly T.  
–  (b) T has a cyclic vector <-> minpoly for T agrees 

with charpoly T.  
•  Proof:  

–  (a) Let W0={0}. Then V=Z(a1;T) ⊕… ⊕Z(ar;T).  
–  Since pi all divides p1, p1(T)(ai)=0 for all i and p1(T)=0. p1 is in 

Ann(T).  
–  p1 is the minimal degree monic poly killing a1. Elements of 

Ann(T) also kills a1.  
–  p1 is the minimal degree monic polynomial of Ann(T).  
–  p1 is the minimal polynomial of T.  



–  (b) (->) done before 
–  (<-) charpolyT=minpolyT= p1 for a1.  
– degree minpoly T = n=dim V.  
– n= dim Z(a1;T)=degree p1. 
– Z(a1;T)=V and a1 is a cyclic vector.  



•  Generalized Cayley-Hamilton theorem. 
T in L(V,V). Minimal poly p, charpoly f.  
–  (i) p divides f. 
–  (ii) p and f have the same factors.  
–  (iii) If p=f1r_1….fkr_k, then f= f1d_1….fkd_k.  

di= nullity fi(T)r_i/deg fi.  
•   proof: omit.  
•  This tells you how to compute ris 
•  And hence let you compute the minimal 

polynomial.  



Rational forms 

•  Let Bi={ai,Tai,…,Tk_i-1ai} basis for Z(ai;T). 
•  k_i = dim Z(ai;T)=deg pi=deg Annihilator 

of ai.  
•  Let B={B1,…,Br}.  
•  [T]B=A= 
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•  Ai is a kixki-companion matrix of Bi.  

•  Theorem 5. B nxn  matrix over F. Then 
B is similar to one and only one matrix 
in a rational form.  

•  Proof: Omit. 
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•  The char.polyT 
=char.polyA1….char.polyAr 
=p1…pr.: 
– char.polyAi=pi.  

•  This follows since on Z(ai;T), there is a cyclic 
vector ai, and thus char.polyTi=minpolyTi=pi. 

•  pi is said to be an invariant factor. 
•  Note charpolyT/minpolyT=p2…pr. 
•  The computations of the invariant 

factors will be the subject of Section 7.4.  



Examples 

•  Example 2: V 2-dim.v.s. over F. T:V->V 
linear operator. The possible cyclic 
subspace decompositions:  
– Case (i) minpoly p for T has degree 2.  

•  Minpoly p=charpoly f and T has a cyclic vector. 
•  If p=x2+c1x+c0. Then the companion matrix is of 

the form:  
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–  (ii) minpoly p for T has degree 1.  i.e., T=cI. 
for c a constant.  

– Then there exists a1 and a2 in V s.t. 
V=Z(a1;T)⊕Z(a2;T). 1-dimensional spaces.  

– p1, p2 T-annihilators of a1 and a2 of degree 
1.  

– Since p2 divides the minimal poly p1=(x-c), 
p2=x-c also.  

– This is a diagonalizable case.  
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•  Example 3: T:R3->R3 linear operator 
given by                   in the standard 
basis.  
– charpolyT=f=(x-1)(x-2)2 
– minpolyT=p=(x-1)(x-2) (computed earlier)  
– Since f=pp2, p2=(x-2). 
– There exists a1 in V s.t. T-annihilator of a1 

is p and generate a cyclic space of dim 2 
and there exists a2 s.t. T-annihilator of a2 is 
(x-2) and has a cyclic space of dim 1.  
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•  The matrix A is similar to B= 
(using companion matrices)  

•  Question? How to find a1 and a2?  
–  In general, almost all vector will be a1. (actually 

choose s.t deg s(a1;W) is maximal.) 
–  Let e1=(1,0,0). Then Te1=(5,-1,3) is not in the span 

<e1>.  
–  Thus, Z(e1;T) has dim 2  

={a(1,0,0)+b(5,-1,3)|a,b in R}={(a+5b,-b,3b)|a,b, in 
R} ={(x1,x2,x3)|x3=-3x2}.   

–  Z(a2:T) is null(T-2I) since p2=(x-2) and has dim 1.  
–  Let a2=(2,1,0) an eigenvector.  

€ 

0 −2 0
1 3 0
0 0 2

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 



•  Now we use basis (e1,Te1,a2). Then the 
change of basis matrix is S=  

•  Then B=S-1AS.  

•  Example 4: T diagonalizable V->V with 
char.values c1,c2,c3. V=V1⊕V2⊕V3. 
Suppose dim V1=1, dimV2=2, dimV3=3. 
Then char f=(x-c1)(x-c2)2(x-c3)3.  

   Let us find a cyclic decomposition for T.  
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•  Let a in V. Then a = b1+b2+b3. Tbi=cibi. 
•  f(T)a=f(c1)b1+f(c2)b2+f(c3)b3 .  
•  By Lagrange theorem for any (t1,t2,t3), There 

is a polynomial f s.t. f(ci)=ti,i=1,2,3.  
•  Thus Z(a;T) = <b1,b2,b3>.  
•  f(T)a=0 <-> f(ci)bi=0 for i=1,2,3.  
•  <-> f(ci)=0 for all i s.t. bi≠0.  
•  Thus, Ann(a)= 
•  Let B={b1

1,b2
1,b2

2,b3
1,b3

2,b3
3}. 
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(x − ci)
bi ≠0
∏



•  Define a1 = b1
1+b2

1+b3
1. a2=b2

2+b3
2, 

a3=b3
3.  

•  Z(a1;T)=< b1
1,b2

1,b3
1>  

p1=(x-c1)(x-c2)(x-c3).  
•  Z(a2;T)=< b2

2,b3
2 >, p2=(x-c2)(x-c3).  

•  Z(a3;T)= <b3
3>, p3=(x-c3).  

•  V= Z(a1;T)⊕Z(a2;T)⊕Z(a3;T) 



•  Another example T diagonalizable. 
•  F=(x-1)3(x-2)4(x-3)5. d1=3,d2=4,d3=5. 
•  Basis  
•  Define 

•  Then Z(aj;T)=<bj
i>, di ≥j. and 

•  T-ann(aj) =  pj     = 
•  V= Z(a1;T)⊕Z(a2;T) ⊕…⊕Z(a5;T) 
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a1 = b1
1 + b1

2 + b1
3

a2 = b2
1 + b2

2 + b2
3

a3 = b3
1 + b3

2 + b3
3

a4 = b4
2 + b4

3

a5 = b5
3


