7.2. Cyclic decomposition and rational forms

Cyclic decomposition Generalized Cayley-Hamilton Rational forms

- We prove existence of vectors a₁,...,a_r
 s.t. V=Z(a₁;T)⊕.... ⊕Z(a_r;T).
- If there is a cyclic vector a, then V=Z(a;T). We are done.
- Definition: T a linear operator on V. W subspace of V. W is T-admissible if
 - (i) W is T-invariant.
 - (ii) If f(T)b in W, then there exists c in W s.t.
 f(T)b=f(T)c.

- Proposition: If W is T-invariant and has a complementary T-invariant subspace, then W is T-admissible.
- Proof: V=W ⊕W'. T(W) in W. T(W') in W'. b=c+c', c in W, c' in W'.
 - f(T)b=f(T)c+f(T)c'.
 - If f(T)b is in W, then f(T)c' =0 and f(T)c is in W.
 - f(T)b=f(T)c for c in W.

- To prove V=Z(a₁;T)⊕.... ⊕Z(a_r;T), we use induction:
- Suppose we have W_j=Z(a₁;T)+...
 +Z(a_j;T) in V.

- Find a_{j+1} s.t. $W_j \cap Z(a_{j+1};T) = \{0\}$.

 Let W be a T-admissible, proper Tinvariant subspace of V. Let us try to find a s.t. W∩Z(a;T)={0}.

- Choose b not in W.
- T-conductor ideal is s(b;W)={g in F[x]|g(b) in W}
- Let f be the monic generator.
- f(T)b is in W.
- If W is T-admissible, there exists c in W s.t.
 f(T)b=f(T)c. ---(*).
- Let a = b-c. b-a is in W.
- Any g in F[x], g(T)b in W <-> g(T)a is in W:
 g(T)(b-c)=g(T)b-g(T)c., g(T)b=g(T)a+g(T)c.

- Thus, S(a;W)=S(b;W).
- f(T)a = 0 by (*) for f the above Tconductor of b in W.
- g(T)a=0 <-> g(T)a in W for any g in F[x].
 (->) clear.
 - (<-) g has to be in S(a;W). Thus g=hf for h in F[x]. g(T)a=h(T)f(T)a=0.
- Therefore, Z(a;T) ∩ W={0}. We found our vector a.

Cyclic decomposition theorem

 Theorem 3. T in L(V,V), V n-dim v.s. W₀ proper T-admissible subspace. Then

– there exists nonzero a_1, \ldots, a_r in V and

- respective T-annihilators p₁,...,p_r
- such that (i) V=W₀ \oplus Z(a₁;T) \oplus ... \oplus Z(a_r;T)
- (ii) p_k divides p_{k-1} , k=2,...,r.
- Furthermore, r, p₁,...,p_r uniquely determined by (I),(ii) and a_i≠0. (a_i are not nec. unique).

- The proof will be not given here. But uses the Fact.
- One should try to follow it at least once.
- We will learn how to find a_is by examples.
- After a year or so, the proof might not seem so hard.
- Learning everything as if one prepares for exam is not the best way to learn.
- One needs to expand one's capabilities by forcing one self to do difficult tasks.

- Corollary. If T is a linear operator on Vn, then every T-admissible subspace has a complementary subspace which is invariant under T.
- Proof: W₀ T-inv. T-admissible. Assume
 W₀ is proper.
 - Let W_0 ' be $Z(a_1;T) \oplus ... \oplus Z(a_r;T)$ from Theorem 3.
 - Then W_0' is T-invariant and is complementary to W_0 .

- Corollary. T linear operator V.
 - (a) There exists a in V s.t. T-annihilator of a =minpoly T.
 - (b) T has a cyclic vector <-> minpoly for T agrees with charpoly T.
- Proof:
 - (a) Let W_0 ={0}. Then V=Z(a₁;T) ⊕... ⊕Z(a_r;T).
 - Since p_i all divides p₁, p₁(T)(a_i)=0 for all i and p₁(T)=0. p₁ is in Ann(T).
 - p₁ is the minimal degree monic poly killing a₁. Elements of Ann(T) also kills a₁.
 - p₁ is the minimal degree monic polynomial of Ann(T).
 - p₁ is the minimal polynomial of T.

- -(b)(->) done before
- -(<-) charpolyT=minpolyT= p_1 for a_1 .
- degree minpoly T = n=dim V.
- $-n = \dim Z(a_1;T) = \text{degree } p_1.$
- $-Z(a_1;T)=V$ and a_1 is a cyclic vector.

- Generalized Cayley-Hamilton theorem. T in L(V,V). Minimal poly p, charpoly f.
 - (i) p divides f.
 - (ii) p and f have the same factors.
 - (iii) If $p=f_1^{r-1}...f_k^{r-k}$, then $f=f_1^{d-1}...f_k^{d-k}$. $d_i = nullity f_i(T)^{r-i}/deg f_i$.
- proof: omit.
- This tells you how to compute r_is
- And hence let you compute the minimal polynomial.

Rational forms

- Let $B_i = \{a_i, Ta_i, \dots, T^{k_i-1}a_i\}$ basis for $Z(a_i; T)$.
- k_i = dim Z(a_i;T)=deg p_i=deg Annihilator of a_i.
- Let $B = \{B_1, ..., B_r\}$.
- $[T]_B = A = \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_r \end{bmatrix}$

• A_i is a k_ixk_i-companion matrix of B_i.

$$A_{i} = \begin{bmatrix} 0 & 0 & 0 & 0 & \dots & \dots & 0 & -c_{0} \\ 1 & 0 & 0 & 0 & \dots & \dots & 0 & -c_{1} \\ 0 & 1 & 0 & 0 & \dots & \dots & 0 & -c_{2} \\ 0 & 0 & 1 & 0 & \dots & \dots & 0 & -c_{3} \\ 0 & 0 & 0 & 1 & \dots & \dots & 0 & -c_{4} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \dots & 1 & -c_{k-1} \end{bmatrix}$$

- Theorem 5. B nxn matrix over F. Then B is similar to one and only one matrix in a rational form.
- Proof: Omit.

 The char.polyT =char.polyA₁....char.polyA_r =p₁...p_r.:

- char.polyA_i=p_i.

- This follows since on Z(a_i;T), there is a cyclic vector a_i, and thus char.polyT_i=minpolyT_i=p_i.
- p_i is said to be an invariant factor.
- Note charpolyT/minpolyT=p₂...p_r.
- The computations of the invariant factors will be the subject of Section 7.4.

Examples

- Example 2: V 2-dim.v.s. over F. T:V->V linear operator. The possible cyclic subspace decompositions:
 - Case (i) minpoly p for T has degree 2.
 - Minpoly p=charpoly f and T has a cyclic vector.
 - If $p=x^2+c_1x+c_0$. Then the companion matrix is of the form: $\begin{bmatrix} 0 & -c_0 \end{bmatrix}$

$$\begin{array}{ccc}
 0 & -c_0 \\
 1 & -c_1
 \end{array}$$

- (ii) minpoly p for T has degree 1. i.e., T=cl.
 for c a constant.
- Then there exists a1 and a2 in V s.t. V=Z(a_1 ;T) \oplus Z(a_2 ;T). 1-dimensional spaces.
- $-p_1$, p_2 T-annihilators of a_1 and a_2 of degree 1.
- Since p₂ divides the minimal poly p₁=(x-c),
 p₂=x-c also.
- This is a diagonalizable case.

$$\begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix}$$

- Example 3: T:R³->R³ linear operator given by $_{A=\begin{bmatrix}5 & -6 & -6\\-1 & 4 & 2\\3 & -6 & -4\end{bmatrix}}$ in the standard
 - $charpolyT=f=(x-1)(x-2)^2$
 - minpolyT=p=(x-1)(x-2) (computed earlier)
 - Since $f=pp_2$, $p_2=(x-2)$.
 - There exists a₁ in V s.t. T-annihilator of a₁ is p and generate a cyclic space of dim 2 and there exists a₂ s.t. T-annihilator of a₂ is (x-2) and has a cyclic space of dim 1.

- The matrix A is similar to B= $\begin{bmatrix} 0 & -2 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$
- Question? How to find a_1 and a_2 ?
 - In general, almost all vector will be a_1 . (actually choose s.t deg s(a_1 ;W) is maximal.)
 - Let $e_1 = (1,0,0)$. Then $Te_1 = (5,-1,3)$ is not in the span $< e_1 >$.
 - Thus, $Z(e_1;T)$ has dim 2 ={a(1,0,0)+b(5,-1,3)|a,b in R}={(a+5b,-b,3b)|a,b, in R} ={(x₁,x₂,x₃)|x₃=-3x₂}.
 - $Z(a_2:T)$ is null(T-2I) since $p_2=(x-2)$ and has dim 1.
 - Let $a_2 = (2,1,0)$ an eigenvector.

- Now we use basis (e_1, Te_1, a_2) . Then the change of basis matrix is $S = \begin{bmatrix} 1 & 5 & 2 \\ 0 & -1 & 1 \\ 0 & 3 & 0 \end{bmatrix}$
- Then $B=S^{-1}AS$.
- Example 4: T diagonalizable V->V with char.values c_1, c_2, c_3 . $V=V_1 \oplus V_2 \oplus V_3$. Suppose dim $V_1=1$, dim $V_2=2$, dim $V_3=3$. Then char $f=(x-c_1)(x-c_2)^2(x-c_3)^3$.

Let us find a cyclic decomposition for T.

- Let a in V. Then $a = b_1+b_2+b_3$. $Tb_i=c_ib_i$.
- $f(T)a=f(c_1)b_1+f(c_2)b_2+f(c_3)b_3$.
- By Lagrange theorem for any (t₁,t₂,t₃), There is a polynomial f s.t. f(c_i)=t_i,i=1,2,3.
- Thus $Z(a;T) = \langle b_1, b_2, b_3 \rangle$.
- f(T)a=0 <-> f(c_i)b_i=0 for i=1,2,3.
- <-> $f(c_i)=0$ for all i s.t. $b_i \neq 0$.
- Thus, Ann(a)= $\prod_{b_i \neq 0} (x c_i)$
- Let $B = \{b_1^1, b_1^2, b_2^2, b_1^3, b_2^3, b_3^3\}.$

- Define $a_1 = b_1^1 + b_1^2 + b_1^3$. $a_2 = b_2^2 + b_2^3$, $a_3 = b_3^3$.
- $Z(a_1;T) = \langle b_1^1, b_1^2, b_1^3 \rangle$ $p_1 = (x-c_1)(x-c_2)(x-c_3).$
- $Z(a_2;T) = \langle b_2^2, b_2^3 \rangle, p_2 = (x-c_2)(x-c_3).$
- $Z(a_3;T) = \langle b_3^3 \rangle, p_3 = (x-c_3).$
- $V = Z(a_1;T) \oplus Z(a_2;T) \oplus Z(a_3;T)$

Another example T diagonalizable.

•
$$F=(x-1)^3(x-2)^4(x-3)^5$$
. $d_1=3, d_2=4, d_3=5$.

- **Basis** $\{b_1^1, b_2^1, b_3^1, b_1^2, b_2^2, b_3^2, b_4^2, b_1^3, b_2^3, b_3^3, b_4^3, b_5^3\}$
- Define $a_j \coloneqq \sum_{d_i \ge j} b_j^i$
- Then $Z(a_j;T)=\langle b_j^i \rangle$, $d_i \ge j$. and
- T-ann(a_j) = p_j = $\prod_{d_i \ge j} (x c_i)$
- $V = Z(a_1;T) \oplus Z(a_2;T) \oplus ... \oplus Z(a_5;T)$

$$a_{1} = b_{1}^{1} + b_{1}^{2} + b_{1}^{3}$$

$$a_{2} = b_{2}^{1} + b_{2}^{2} + b_{2}^{3}$$

$$a_{3} = b_{3}^{1} + b_{3}^{2} + b_{3}^{3}$$

$$a_{4} = b_{4}^{2} + b_{4}^{3}$$

$$a_{5} = b_{5}^{3}$$