7.2. Cyclic decomposition and rational forms

Cyclic decomposition
Generalized Cayley-Hamilton
Rational forms

- We prove existence of vectors $a_{1}, . ., a_{r}$ s.t. $V=Z\left(a_{1} ; T\right) \oplus \ldots \oplus Z\left(a_{r} ; T\right)$.
- If there is a cyclic vector a, then $V=Z(a ; T)$. We are done.
- Definition: T a linear operator on V. W subspace of V . W is T -admissible if
- (i) W is T-invariant.
- (ii) If $f(T) b$ in W, then there exists c in W s.t. $f(T) b=f(T) c$.
(Or $f(T) b=f(T) c$ for all f s.t $f(T) b$ is in W)
- Proposition: If W is T -invariant and has a complementary T-invariant subspace, then W is T -admissible.
- Proof: $\mathrm{V}=\mathrm{W} \oplus \mathrm{W}^{\prime}$. $\mathrm{T}(\mathrm{W})$ in W . $\mathrm{T}\left(\mathrm{W}^{\prime}\right)$ in W^{\prime}. $b=c+c$ ', c in W, c^{\prime} in W^{\prime}.
$-\mathrm{f}(\mathrm{T}) \mathrm{b}=\mathrm{f}(\mathrm{T}) \mathrm{c}+\mathrm{f}(\mathrm{T}) \mathrm{c}^{\prime}$.
- If $f(T) b$ is in W, then $f(T) c^{\prime}=0$ and $f(T) c$ is in W.
$-f(T) b=f(T) c$ for c in W.
- To prove $V=Z\left(a_{1} ; T\right) \oplus \ldots \oplus\left(a_{r} ; T\right)$, we use induction:
- Suppose we have $W_{j}=Z\left(a_{1} ; T\right)+\ldots+Z\left(a_{j} ; T\right)$ in V.
- Find a_{j+1} s.t. $W_{j} \cap Z\left(a_{j+1} ; T\right)=\{0\}$.
- Let W be a T-admissible, proper Tinvariant subspace of V . Let us try to find a s.t. $W \cap Z(a ; T)=\{0\}$.
- Choose b not in W.
- T-conductor ideal is $s(b ; W)=\{g$ in $F[x] \mid g(T) b$ in $W\}$
- Let f be the monic generator.
- $f(T) b$ is in W.
- If W is T-admissible, there exists c in W s.t. $f(T) b=f(T) c$ whenever $f(T) b$ in W.---(*).
- Let $a=b-c . b-a$ is in W.
- Any g in $F[x], g(T) b$ in $W<->g(T) a$ is in W :
$-g(T) a=g(T)(b-c)=g(T) b-g(T) c, g(T) b=g(T) a+g(T) c$.
- Thus, $S(a ; W)=S(b ; W)$.
- $f(T) a=0$ by $\left(^{*}\right)$ for f the above T conductor of b in W.
- $g(T) a=0<->g(T) a$ in W for any g in $F[x]$.
- (->) clear.
- (<-) g has to be in $\mathrm{S}(\mathrm{a} ; \mathrm{W})$. Thus $\mathrm{g}=\mathrm{hf}$ for h in $F[x] . g(T) a=h(T) f(T) a=0$.
- Therefore, $Z(a ; T) \cap W=\{0\}$. We found our vector a.

Cyclic decomposition theorem

- Theorem 3. T in $\mathrm{L}(\mathrm{V}, \mathrm{V})$, V n-dim v.s. W_{0} proper T-admissible subspace. Then
- there exist nonzero a_{1}, \ldots, a_{r} in V and
- respective T -annihilators $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{r}}$
- such that (i) $V=W_{0} \oplus Z\left(a_{1} ; T\right) \oplus \ldots \oplus Z\left(a_{r} ; T\right)$
- (ii) p_{k} divides $p_{k-1}, k=2, . ., r$.
- Furthermore, r, $p_{1}, . ., p_{r}$ uniquely determined by (i), (ii) and $\mathrm{a}_{\mathrm{i}} \neq 0$. (a_{i} are not nec. unique).
- The proof will be not given here. But uses the Fact.
- One should try to follow it at least once.
- We will learn how to find $a_{i} s$ by examples.
- After a year or so, the proof might not seem so hard.
- Corollary. If T is a linear operator on V^{n}, then every T-admissible subspace has a complementary subspace which is invariant under T .
- Proof: W_{0} T-inv. T-admissible. Assume W_{0} is proper.
- Let W_{0}^{\prime} be $Z\left(a_{1} ; T\right) \oplus \ldots \oplus Z\left(a_{r} ; T\right)$ from

Theorem 3.

- Then W_{0} ' is T-invariant and is complementary to W_{0}.
- Corollary. T linear operator V.
- (a) There exists a in V s.t. T-annihilator of a =minpoly T .
- (b) T has a cyclic vector <-> minpoly for T agrees with charpoly T .
- Proof:
- (a) Let $W_{0}=\{0\}$. Then $V=Z\left(a_{1} ; T\right) \oplus \ldots \oplus Z\left(a_{r} ; T\right)$.
- Since p_{i} all divides $p_{1}, p_{1}(T)\left(a_{i}\right)=0$ for all i and $p_{1}(T)=0 . p_{1}$ is in Ann(T).
$-p_{1}$ is the minimal degree monic poly killing a_{1}. Elements of Ann(T) also kill a_{1}.
- p_{1} is the minimal degree monic polynomial of $\operatorname{Ann}(T)$.
$-p_{1}$ is the minimal polynomial of T.
- (b) (->) done before
- (<-) charpolyT=minpolyT= p_{1} for a_{1}.
- degree minpoly $T=n=\operatorname{dim} V$.
$-n=\operatorname{dim} Z\left(a_{1} ; T\right)=$ degree p_{1}.
$-Z\left(a_{1} ; T\right)=V$ and a_{1} is a cyclic vector.
- Generalized Cayley-Hamilton theorem. T in $L(V, V)$. Minimal poly p, charpoly f.
- (i) p divides f.
- (ii) p and f has the same factors.
- (iii) If $p=f_{1}{ }^{\mathrm{r}}-1 \ldots . \mathrm{f}_{\mathrm{k}}{ }^{\mathrm{r}}$ k, then $\mathrm{f}=\mathrm{f}_{1} \mathrm{~d}^{\mathrm{d}} \mathrm{l}^{1} \ldots . \mathrm{f}_{\mathrm{k}} \mathrm{d}^{\mathrm{k}}$. $d_{i}=$ nullity $f_{i}(T) r^{r}-1 / d e g f_{i}$.
- proof: omit.
- This tells you how to compute $r_{i} s$
- And hence let you compute the minimal polynomial.

Rational forms

- Let $B_{i}=\left\{a_{i}, T a_{i}, \ldots, T^{k}{ }^{\mathrm{i}-1} a_{i}\right\}$ basis for $Z\left(a_{i} ; T\right)$.
- $k_{-} i=\operatorname{dim} Z\left(a_{i} ; T\right)=\operatorname{deg} p_{i}=\operatorname{deg}$ Annihilator of a_{i}.
- Let $B=\left\{B_{1}, \ldots, B_{r}\right\}$.
- $[\mathrm{T}]_{\mathrm{B}}=\mathrm{A}=\left[\begin{array}{cccc}A_{1} & 0 & \cdots & 0 \\ 0 & A_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{r}\end{array}\right]$
- A_{i} is a $k_{i} x k_{i}$-companion matrix of B_{i}.

$$
A_{i}=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & \ldots & \ldots & 0 & -c_{0} \\
1 & 0 & 0 & 0 & \ldots & \ldots & 0 & -c_{1} \\
0 & 1 & 0 & 0 & \ldots & \ldots & 0 & -c_{2} \\
0 & 0 & 1 & 0 & \ldots & \ldots & 0 & -c_{3} \\
0 & 0 & 0 & 1 & \ldots & \ldots & 0 & -c_{4} \\
\vdots & \vdots & \vdots & \vdots & \ddots & & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & \ldots & 1 & -c_{k-1}
\end{array}\right]
$$

- Theorem 5. B nxn matrix over F. Then B is similar to one and only one matrix in a rational form.
- Proof: Omit.
- The char.polyT $=$ char.polyA $A_{1} \ldots$..char.polyA ${ }_{r}$ $=p_{1} \ldots p_{\mathrm{r}}$:
- char.polyA $\mathrm{i}_{\mathrm{i}}=\mathrm{p}_{\mathrm{i}}$.
- This follows since on $Z\left(a_{i} ; T\right)$, there is a cyclic vector a_{i}, and thus char. poly $\mathrm{T}_{\mathrm{i}}=$ minpoly $\mathrm{T}_{\mathrm{i}}=\mathrm{p}_{\mathrm{i}}$.
- p_{i} is said to be an invariant factor.
- Note charpolyT/minpolyT=p ${ }_{2} \ldots \mathrm{p}_{\mathrm{r}}$.
- The computations of the invariant factors will be the subject of Section 7.4 .

Examples

- Example 2: V 2-dim.v.s. over F. T:V->V linear operator. The possible cyclic subspace decompositions:
- Case (i) minpoly p for T has degree 2.
- Minpoly $p=c h a r p o l y f$ and T has a cyclic vector.
- If $p=x^{2}+c_{1} x+c_{0}$. Then the companion matrix is of the form:

$$
\left[\begin{array}{ll}
0 & -c_{0} \\
1 & -c_{1}
\end{array}\right]
$$

- (ii) minpoly p for T has degree 1. i.e., $\mathrm{T}=\mathrm{cl}$. for ca constant.
- Then there exists a1 and a2 in V s.t.
$\mathrm{V}=\mathrm{Z}\left(\mathrm{a}_{1} ; \mathrm{T}\right) \oplus \mathrm{Z}\left(\mathrm{a}_{2} ; \mathrm{T}\right)$. 1-dimensional spaces.
$-p_{1}, p_{2} T$-annihilators of a_{1} and a_{2} of degree 1.
- Since p_{2} divides the minimal poly $p_{1}=(x-c)$, $p_{2}=x-c$ also.
- This is a diagonalizable case.

$$
\left[\begin{array}{ll}
c & 0 \\
0 & c
\end{array}\right]
$$

- Example 3: $\mathrm{T}: \mathrm{R}^{3}->\mathrm{R}^{3}$ linear operator given by $\left[\begin{array}{ccc}5 & -6 & -6 \\ -1 & 4 & 2\end{array}\right]$ in the standard basis. $\quad A=\left[\begin{array}{ccc}-1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right]$
- charpoly $T=f=(x-1)(x-2)^{2}$
- minpolyT=p=(x-1)(x-2) (computed earlier)
- Since $f=p_{2}, p_{2}=(x-2)$.
- There exists a_{1} in V s.t. T-annihilator of a_{1} is p and generate a cyclic space of dim 2 and there exists a_{2} s.t. T-annihilator of a_{2} is $(x-2)$ and has a cyclic space of dim 1.
- The matrix A is similar to $B=\left[\begin{array}{ccc}0 & -2 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2\end{array}\right]$
- Question? How to find a_{1} and a_{2} ?
- In general, almost all vector will be a_{1}. (actually choose s.t deg $\mathrm{s}\left(\mathrm{a}_{1} ; \mathrm{W}\right)$ is maximal.)
- Let $\mathrm{e}_{1}=(1,0,0)$. Then $\mathrm{Te}_{1}=(5,-1,3)$ is not in the span $<e_{1}>$.
- Thus, $Z\left(\mathrm{e}_{1} ; \mathrm{T}\right)$ has dim 2 $=\{a(1,0,0)+b(5,-1,3) \mid a, b$ in $R\}=\{(a+5 b,-b, 3 b) \mid a, b$, in $R\}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{3}=-3 x_{2}\right\}$.
$-Z\left(a_{2}: T\right)$ is null(T-2I) since $p_{2}=(x-2)$ and has dim 1 .
- Let $a_{2}=(2,1,0)$ an eigenvector.
- Now we use basis $\left(\mathrm{e}_{1}, \mathrm{Te}_{1}, \mathrm{a}_{2}\right)$. Then the change of basis matrix is $S=\left[\begin{array}{ccc}1 & 5 & 2 \\ 0 & -1 & 1 \\ 0 & 3 & 0\end{array}\right]$
Then $B=S^{-1} A S$.
- Example 4: T diagonalizable V -> V with char.values $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3} . \mathrm{V}=\mathrm{V}_{1} \oplus \mathrm{~V}_{2} \oplus \mathrm{~V}_{3}$. Suppose $\operatorname{dim} V_{1}=1$, $\operatorname{dim} V_{2}=2, \operatorname{dim} V_{3}=3$. Then char $\mathrm{f}=\left(\mathrm{x}-\mathrm{c}_{1}\right)\left(\mathrm{x}-\mathrm{c}_{2}\right)^{2}\left(\mathrm{x}-\mathrm{c}_{3}\right)^{3}$. Let us find a cyclic decomposition for T.
- Let a in V. Then $a=b_{1}+b_{2}+b_{3} . T b_{i}=c_{i} b_{i}$.
- $\mathrm{f}(\mathrm{T}) \mathrm{a}=\mathrm{f}\left(\mathrm{c}_{1}\right) \mathrm{b}_{1}+\mathrm{f}\left(\mathrm{c}_{2}\right) \mathrm{b}_{2}+\mathrm{f}\left(\mathrm{c}_{3}\right) \mathrm{b}_{3}$.
- By Lagrange theorem for any $\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}\right)$, There is a polynomial f s.t. $\mathrm{f}\left(\mathrm{c}_{\mathrm{i}}\right)=\mathrm{t}_{\mathrm{i}}, \mathrm{i}=1,2,3$.
- Thus $Z(a ; T)=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$.
- $f(T) a=0<->f\left(c_{i}\right) b_{i}=0$ for $i=1,2,3$.
- <-> $f\left(c_{i}\right)=0$ for all i s.t. $b_{i} \neq 0$.
- Thus, $\operatorname{Ann}(\mathrm{a})=\prod_{b_{i} w 0}\left(x-c_{i}\right)$
- Let $\mathrm{B}=\left\{\mathrm{b}^{1}{ }_{1}, \mathrm{~b}^{2}{ }_{1}, \mathrm{~b}^{\mathrm{b}_{2}{ }_{2}, \mathrm{~b}^{0}} \mathrm{~b}_{1}{ }_{1}, \mathrm{~b}^{3}{ }_{2}, \mathrm{~b}^{3}{ }_{3}\right\}$.
- Define $\mathrm{a}_{1}=\mathrm{b}^{1}{ }_{1}+\mathrm{b}^{2}{ }_{1}+\mathrm{b}^{3}{ }_{1} \cdot \mathrm{a}_{2}=\mathrm{b}^{2}{ }_{2}+\mathrm{b}^{3}{ }_{2}$, $a_{3}=b_{3}^{3}$.
- $\mathrm{Z}\left(\mathrm{a}_{1} ; \mathrm{T}\right)=<\mathrm{b}^{1}{ }_{1}, \mathrm{~b}^{2}{ }_{1}, \mathrm{~b}^{3}{ }_{1}>$ $p_{1}=\left(x-c_{1}\right)\left(x-c_{2}\right)\left(x-c_{3}\right)$.
- $Z\left(a_{2} ; T\right)=<b^{2}{ }_{2}, b^{3}{ }_{2}>, p_{2}=\left(x-c_{2}\right)\left(x-c_{3}\right)$.
- $Z\left(a_{3} ; T\right)=<b_{3}^{3}>, p_{3}=\left(x-C_{3}\right)$.
- $V=Z\left(a_{1} ; T\right) \oplus Z\left(a_{2} ; T\right) \oplus Z\left(a_{3} ; T\right)$
- Another example T diagonalizable.
- $\mathrm{F}=(\mathrm{x}-1)^{3}(\mathrm{x}-2)^{4}(\mathrm{x}-3)^{5} . \mathrm{d}_{1}=3, \mathrm{~d}_{2}=4, \mathrm{~d}_{3}=5$.
- Basis

$$
\left\{b_{1}^{1}, b_{2}^{1}, b_{3}^{1}, b_{1}^{2}, b_{2}^{2}, b_{3}^{2} b_{4}^{2}, b_{1}^{3}, b_{2}^{3}, b_{3}^{3}, b_{4}^{3}, b_{5}^{3}\right\}
$$

- Define

$$
a_{j}:=\sum_{d_{i} \geq j} b_{j}^{i}
$$

- Then $Z\left(a_{j} ; T\right)=<b_{j}{ }^{i}>d_{i} \geq j$. and
- T-ann $\left(\mathrm{a}_{\mathrm{j}}\right)=\mathrm{p}_{\mathrm{j}}=\quad \prod\left(x-c_{\mathrm{i}}\right)$
- $V=Z\left(a_{1} ; T\right) \oplus Z\left(a_{2}^{d_{1} ;} ; T\right) \oplus \ldots \oplus Z\left(a_{5} ; T\right)$

$$
\begin{aligned}
& a_{1}=b_{1}^{1}+b_{1}^{2}+b_{1}^{3} \\
& a_{2}=b_{2}^{1}+b_{2}^{2}+b_{2}^{3} \\
& a_{3}=b_{3}^{1}+b_{3}^{2}+b_{3}^{3} \\
& a_{4}=b_{4}^{2}+b_{5}^{3} \\
& a_{5}=b_{5}^{3}
\end{aligned}
$$

