
7.2. Cyclic decomposition and
rational forms

Cyclic decomposition
Generalized Cayley-Hamilton

Rational forms



• We prove existence of vectors a1,..,ar
s.t. V=Z(a1;T)⊕…. ⊕Z(ar;T).

• If there is a cyclic vector a, then
V=Z(a;T). We are done.

• Definition: T a linear operator on V. W
subspace of V. W is T-admissible if
– (i) W is T-invariant.
– (ii) If f(T)b in W, then there exists c in W s.t.

f(T)b=f(T)c.
(Or f(T)b=f(T)c for all f s.t f(T)b is in W)



• Proposition: If W is T-invariant and has
a complementary T-invariant subspace,
then W is T-admissible.

• Proof: V=W ⊕W’. T(W) in W. T(W’) in
W’. b=c+c’, c in W, c’ in W’.
– f(T)b=f(T)c+f(T)c’.
– If f(T)b is in W, then f(T)c’=0 and f(T)c is in

W.
– f(T)b=f(T)c for c in W.



• To prove V=Z(a1;T)⊕…. ⊕Z(ar;T), we
use induction:

• Suppose we have
Wj=Z(a1;T)+…+Z(aj;T) in V.
– Find aj+1 s.t. Wj∩Z(aj+1;T)={0}.

•  Let W be a T-admissible, proper T-
invariant subspace of V. Let us try to
find a s.t. W∩Z(a;T)={0}.



• Choose b not in W.
• T-conductor ideal is

s(b;W)={g in F[x]|g(T)b in W}
• Let f be the monic generator.
• f(T)b is in W.
• If W is T-admissible, there exists c in W s.t.

f(T)b=f(T)c whenever f(T)b in W.---(*).
• Let a = b-c. b-a is in W.
• Any g in F[x], g(T)b in W <-> g(T)a is in W:

– g(T)a=g(T)(b-c)=g(T)b-g(T)c, g(T)b=g(T)a+g(T)c.



• Thus, S(a;W)=S(b;W).
• f(T)a = 0 by (*) for f the above T-

conductor of b in W.
• g(T)a=0 <-> g(T)a in W for any g in F[x].

– (->) clear.
– (<-) g has to be in S(a;W). Thus g=hf for h

in F[x]. g(T)a=h(T)f(T)a=0.
• Therefore, Z(a;T) ∩ W={0}. We found

our vector a.



Cyclic decomposition theorem

• Theorem 3. T in L(V,V), V n-dim v.s. W0
proper T-admissible subspace. Then
– there exist nonzero a1,…,ar in V and
– respective T-annihilators p1,…,pr

– such that (i) V=W0 ⊕Z(a1;T) ⊕… ⊕Z(ar;T)
– (ii) pk divides pk-1, k=2,..,r.
– Furthermore, r, p1,..,pr uniquely determined

by (i),(ii) and ai≠0. (ai are not nec. unique).



• The proof will be not given here. But
uses the Fact.

• One should try to follow it at least once.
• We will learn how to find ais by

examples.
• After a year or so, the proof might not

seem so hard.



• Corollary. If T is a linear operator on Vn,
then every T-admissible subspace has
a complementary subspace which is
invariant under T.

• Proof: W0 T-inv. T-admissible. Assume
W0 is proper.
– Let W0’ be Z(a1;T) ⊕… ⊕Z(ar;T) from

Theorem 3.
– Then W0’ is T-invariant and is

complementary to W0.



• Corollary. T linear operator V.
– (a) There exists a in V s.t. T-annihilator of a

=minpoly T.
– (b) T has a cyclic vector <-> minpoly for T agrees

with charpoly T.
• Proof:

– (a) Let W0={0}. Then V=Z(a1;T) ⊕… ⊕Z(ar;T).
– Since pi all divides p1, p1(T)(ai)=0 for all i and p1(T)=0. p1 is in

Ann(T).
– p1 is the minimal degree monic poly killing a1. Elements of

Ann(T) also kill a1.
– p1 is the minimal degree monic polynomial of Ann(T).
– p1 is the minimal polynomial of T.



– (b) (->) done before
– (<-) charpolyT=minpolyT= p1 for a1.
– degree minpoly T = n=dim V.
– n= dim Z(a1;T)=degree p1.
– Z(a1;T)=V and a1 is a cyclic vector.



• Generalized Cayley-Hamilton theorem.
T in L(V,V). Minimal poly p, charpoly f.
– (i) p divides f.
– (ii) p and f has the same factors.
– (iii) If p=f1r_1….fkr_k, then f= f1d_1….fkd_k.

di= nullity fi(T)r_i/deg fi.
•  proof: omit.
• This tells you how to compute ris
• And hence let you compute the minimal

polynomial.



Rational forms

• Let Bi={ai,Tai,…,Tk_i-1ai} basis for Z(ai;T).
• k_i = dim Z(ai;T)=deg pi=deg Annihilator

of ai.
• Let B={B1,…,Br}.
• [T]B=A=
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• Ai is a kixki-companion matrix of Bi.

• Theorem 5. B nxn  matrix over F. Then
B is similar to one and only one matrix
in a rational form.

• Proof: Omit.
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• The char.polyT
=char.polyA1….char.polyAr
=p1…pr.:
– char.polyAi=pi.

• This follows since on Z(ai;T), there is a cyclic
vector ai, and thus char.polyTi=minpolyTi=pi.

• pi is said to be an invariant factor.
• Note charpolyT/minpolyT=p2…pr.
• The computations of the invariant

factors will be the subject of Section
7.4.



Examples

• Example 2: V 2-dim.v.s. over F. T:V->V
linear operator. The possible cyclic
subspace decompositions:
– Case (i) minpoly p for T has degree 2.

• Minpoly p=charpoly f and T has a cyclic vector.
• If p=x2+c1x+c0. Then the companion matrix is of

the form:

! 

0 "c
0

1 "c
1

# 

$ 
% 

& 

' 
( 



– (ii) minpoly p for T has degree 1.  i.e., T=cI.
for c a constant.

– Then there exists a1 and a2 in V s.t.
V=Z(a1;T)⊕Z(a2;T). 1-dimensional spaces.

– p1, p2 T-annihilators of a1 and a2 of degree
1.

– Since p2 divides the minimal poly p1=(x-c),
p2=x-c also.

– This is a diagonalizable case.
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• Example 3: T:R3->R3 linear operator
given by                   in the standard
basis.
– charpolyT=f=(x-1)(x-2)2

– minpolyT=p=(x-1)(x-2) (computed earlier)
– Since f=pp2, p2=(x-2).
– There exists a1 in V s.t. T-annihilator of a1

is p and generate a cyclic space of dim 2
and there exists a2 s.t. T-annihilator of a2 is
(x-2) and has a cyclic space of dim 1.
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• The matrix A is similar to B=
(using companion matrices)

• Question? How to find a1 and a2?
– In general, almost all vector will be a1. (actually

choose s.t deg s(a1;W) is maximal.)
– Let e1=(1,0,0). Then Te1=(5,-1,3) is not in the span

<e1>.
– Thus, Z(e1;T) has dim 2

={a(1,0,0)+b(5,-1,3)|a,b in R}={(a+5b,-b,3b)|a,b, in
R} ={(x1,x2,x3)|x3=-3x2}.

– Z(a2:T) is null(T-2I) since p2=(x-2) and has dim 1.
– Let a2=(2,1,0) an eigenvector.
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• Now we use basis (e1,Te1,a2). Then the
change of basis matrix is S=

• Then B=S-1AS.

• Example 4: T diagonalizable V->V with
char.values c1,c2,c3. V=V1⊕V2⊕V3.
Suppose dim V1=1, dimV2=2, dimV3=3.
Then char f=(x-c1)(x-c2)2(x-c3)3.

   Let us find a cyclic decomposition for T.
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• Let a in V. Then a = b1+b2+b3. Tbi=cibi.
• f(T)a=f(c1)b1+f(c2)b2+f(c3)b3 .
• By Lagrange theorem for any (t1,t2,t3), There

is a polynomial f s.t. f(ci)=ti,i=1,2,3.
• Thus Z(a;T) = <b1,b2,b3>.
• f(T)a=0 <-> f(ci)bi=0 for i=1,2,3.
• <-> f(ci)=0 for all i s.t. bi≠0.
• Thus, Ann(a)=
• Let B={b1

1,b2
1,b2

2,b3
1,b3

2,b3
3}.
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• Define a1 = b1
1+b2

1+b3
1. a2=b2

2+b3
2,

a3=b3
3.

• Z(a1;T)=< b1
1,b2

1,b3
1>

p1=(x-c1)(x-c2)(x-c3).
• Z(a2;T)=< b2

2,b3
2 >, p2=(x-c2)(x-c3).

• Z(a3;T)= <b3
3>, p3=(x-c3).

• V= Z(a1;T)⊕Z(a2;T)⊕Z(a3;T)



• Another example T diagonalizable.
• F=(x-1)3(x-2)4(x-3)5. d1=3,d2=4,d3=5.
• Basis
• Define

• Then Z(aj;T)=<bj
i> di ≥j. and

• T-ann(aj)=pj=
• V= Z(a1;T)⊕Z(a2;T) ⊕…⊕Z(a5;T)

! 

a j := b j

i

d i " j

#

! 

{b1
1
,b2
1
,b3
1
,b1
2
,b2
2
,b3
2
b4
2
,b1
3
,b2
3
,b3
3
,b4
3
,b5
3
}

! 

(x " ci
d i # j

$ )



! 

a
1

= b
1

1
+ b

1

2
+ b

1

3

a
2

= b
2

1
+ b

2

2
+ b

2

3

a
3

= b
3

1
+ b

3

2
+ b

3

3

a
4

= b
4

2
+ b

5

3

a
5

= b
5

3


