7.2. Cyclic decomposition and rational forms

Cyclic decomposition

Generalized Cayley-Hamilton

Rational forms

- We prove existence of vectors a₁,..,a₂ s.t. $V=Z(a_1;T)\oplus \ldots \oplus Z(a_r;T)$.
- If there is a cyclic vector a, then V=Z(a;T). We are done.
- Definition: T a linear operator on V. W subspace of V. W is T-admissible if
 - (i) W is T-invariant.
 - (ii) If f(T)b in W, then there exists c in W s.t. f(T)b=f(T)c.

(Or f(T)b=f(T)c for all f s.t f(T)b is in W)

- Proposition: If W is T-invariant and has a complementary T-invariant subspace, then W is T-admissible.
- Proof: V=W ⊕W'. T(W) in W. T(W') in W'. b=c+c', c in W, c' in W'.
 - -f(T)b=f(T)c+f(T)c'.
 - If f(T)b is in W, then f(T)c'=0 and f(T)c is in W.
 - -f(T)b=f(T)c for c in W.

- To prove V=Z(a₁;T)⊕.... ⊕Z(aӷ;T), we use induction:
- Suppose we have
 W_j=Z(a₁;T)+...+Z(a_j;T) in V.
 Find a_{j+1} s.t. W_j∩Z(a_{j+1};T)={0}.
- Let W be a T-admissible, proper Tinvariant subspace of V. Let us try to find a s.t. W∩Z(a;T)={0}.

- Choose b not in W.
- T-conductor ideal is s(b;W)={g in F[x]|g(T)b in W}
- Let f be the monic generator.
- f(T)b is in W.
- If W is T-admissible, there exists c in W s.t. f(T)b=f(T)c whenever f(T)b in W.---(*).
- Let a = b-c. b-a is in W.
- Any g in F[x], g(T)b in W <-> g(T)a is in W:
 - -g(T)a=g(T)(b-c)=g(T)b-g(T)c, g(T)b=g(T)a+g(T)c.

- Thus, S(a;W)=S(b;W).
- f(T)a = 0 by (*) for f the above Tconductor of b in W.
- g(T)a=0 <-> g(T)a in W for any g in F[x].
 - (->) clear.
 - (<-) g has to be in S(a;W). Thus g=hf for h in F[x]. g(T)a=h(T)f(T)a=0.
- Therefore, Z(a;T) ∩ W={0}. We found our vector a.

Cyclic decomposition theorem

- Theorem 3. T in L(V,V), V n-dim v.s. W₀
 proper T-admissible subspace. Then
 - there exist nonzero $a_1, ..., a_r$ in V and
 - respective T-annihilators p₁,...,p_r
 - such that (i) $V=W_0 \oplus Z(a_1;T) \oplus ... \oplus Z(a_r;T)$
 - (ii) p_k divides p_{k-1} , k=2,...,r.
 - Furthermore, r, $p_1,...,p_r$ uniquely determined by (i),(ii) and $a_i \ne 0$. (a_i are not nec. unique).

- The proof will be not given here. But uses the Fact.
- One should try to follow it at least once.
- We will learn how to find a_is by examples.
- After a year or so, the proof might not seem so hard.

- Corollary. If T is a linear operator on Vⁿ, then every T-admissible subspace has a complementary subspace which is invariant under T.
- Proof: W₀ T-inv. T-admissible. Assume
 W₀ is proper.
 - Let W_0 ' be $Z(a_1;T) \oplus ... \oplus Z(a_r;T)$ from Theorem 3.
 - Then W₀' is T-invariant and is complementary to W₀.

- Corollary. T linear operator V.
 - (a) There exists a in V s.t. T-annihilator of a =minpoly T.
 - (b) T has a cyclic vector <-> minpoly for T agrees with charpoly T.

Proof:

- (a) Let W_0 ={0}. Then V=Z(a₁;T) ⊕... ⊕Z(a̞;T).
- Since p_i all divides p_1 , $p_1(T)(a_i)=0$ for all i and $p_1(T)=0$. p_1 is in Ann(T).
- p₁ is the minimal degree monic poly killing a₁. Elements of Ann(T) also kill a₁.
- p₁ is the minimal degree monic polynomial of Ann(T).
- p_1 is the minimal polynomial of T.

- (b) (->) done before
- (<-) charpolyT=minpolyT= p_1 for a_1 .
- degree minpoly T = n = dim V.
- $n = dim Z(a_1;T) = degree p_1.$
- $-Z(a_1;T)=V$ and a_1 is a cyclic vector.

- Generalized Cayley-Hamilton theorem.
 T in L(V,V). Minimal poly p, charpoly f.
 - (i) p divides f.
 - (ii) p and f has the same factors.
 - (iii) If $p=f_1^{r-1}....f_k^{r-k}$, then $f=f_1^{d-1}....f_k^{d-k}$. $d_i=\text{nullity } f_i(T)^{r-i}/\text{deg } f_i$.
- proof: omit.
- This tells you how to compute r_is
- And hence let you compute the minimal polynomial.

Rational forms

- Let $B_i = \{a_i, Ta_i, \dots, T^{k_i-1}a_i\}$ basis for $Z(a_i; T)$.
- k_i = dim Z(a_i;T)=deg p_i=deg Annihilator of a_i.
- Let $B = \{B_1, ..., B_r\}$.

•
$$[T]_B = A = \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_r \end{bmatrix}$$

A_i is a k_ixk_i-companion matrix of B_i.

$$A_i = \begin{bmatrix} 0 & 0 & 0 & 0 & \dots & \dots & 0 & -c_0 \\ 1 & 0 & 0 & 0 & \dots & \dots & 0 & -c_1 \\ 0 & 1 & 0 & 0 & \dots & \dots & 0 & -c_2 \\ 0 & 0 & 1 & 0 & \dots & \dots & 0 & -c_3 \\ 0 & 0 & 0 & 1 & \dots & \dots & 0 & -c_4 \\ \vdots & \vdots & \vdots & \vdots & \ddots & & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \dots & 1 & -c_{k-1} \end{bmatrix}$$

- Theorem 5. B nxn matrix over F. Then B is similar to one and only one matrix in a rational form.
- Proof: Omit.

- The char.polyT
 =char.polyA₁....char.polyA_r
 =p₁...p_r.:
 - char.polyA_i=p_i.
 - This follows since on $Z(a_i;T)$, there is a cyclic vector a_i , and thus char.poly T_i =minpoly T_i = p_i .
- p_i is said to be an invariant factor.
- Note charpolyT/minpolyT=p₂...p_r.
- The computations of the invariant factors will be the subject of Section 7.4.

Examples

- Example 2: V 2-dim.v.s. over F. T:V->V linear operator. The possible cyclic subspace decompositions:
 - Case (i) minpoly p for T has degree 2.
 - Minpoly p=charpoly f and T has a cyclic vector.
 - If $p=x^2+c_1x+c_0$. Then the companion matrix is of the form:

$$\begin{bmatrix} 0 & -c_0 \\ 1 & -c_1 \end{bmatrix}$$

- (ii) minpoly p for T has degree 1. i.e., T=cl. for c a constant.
- Then there exists a1 and a2 in V s.t.
 V=Z(a₁;T)⊕Z(a₂;T). 1-dimensional spaces.
- p₁, p₂ T-annihilators of a₁ and a₂ of degree
 1.
- Since p_2 divides the minimal poly p_1 =(x-c), p_2 =x-c also.
- This is a diagonalizable case.

$$\begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix}$$

- Example 3: T:R³->R³ linear operator given by $A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$ in the standard
 - charpolyT= $f=(x-1)(x-2)^2$
 - minpolyT=p=(x-1)(x-2) (computed earlier)
 - Since $f=pp_2$, $p_2=(x-2)$.
 - There exists a₁ in V s.t. T-annihilator of a₁ is p and generate a cyclic space of dim 2 and there exists a₂ s.t. T-annihilator of a₂ is (x-2) and has a cyclic space of dim 1.

• The matrix A is similar to B= $\begin{bmatrix} 0 & -2 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$

Question? How to find a₁ and a₂?

- In general, almost all vector will be a₁. (actually choose s.t deg s(a₁;W) is maximal.)
- Let e_1 =(1,0,0). Then Te_1 =(5,-1,3) is not in the span < e_1 >.
- Thus, $Z(e_1;T)$ has dim 2 = $\{a(1,0,0)+b(5,-1,3)|a,b \text{ in }R\}=\{(a+5b,-b,3b)|a,b, \text{ in }R\}=\{(x_1,x_2,x_3)|x_3=-3x_2\}.$
- $Z(a_2:T)$ is null(T-2I) since $p_2=(x-2)$ and has dim 1.
- Let a_2 =(2,1,0) an eigenvector.

• Now we use basis (e_1 , Te_1 , a_2). Then the change of basis matrix is $S = \begin{bmatrix} 1 & 5 & 2 \\ 0 & -1 & 1 \\ 0 & 3 & 0 \end{bmatrix}$

Then B=S⁻¹AS.

Example 4: T diagonalizable V->V with char.values c₁,c₂,c₃. V=V₁⊕V₂⊕V₃. Suppose dim V₁=1, dimV₂=2, dimV₃=3. Then char f=(x-c₁)(x-c₂)²(x-c₃)³.
 Let us find a cyclic decomposition for T.

- Let a in V. Then $a = b_1 + b_2 + b_3$. $Tb_i = c_i b_i$.
- $f(T)a=f(c_1)b_1+f(c_2)b_2+f(c_3)b_3$.
- By Lagrange theorem for any (t₁,t₂,t₃), There is a polynomial f s.t. f(c_i)=t_i,i=1,2,3.
- Thus $Z(a;T) = \langle b_1, b_2, b_3 \rangle$.
- $f(T)a=0 <-> f(c_i)b_i=0$ for i=1,2,3.
- <-> $f(c_i)=0$ for all i s.t. $b_i\neq 0$.
- Thus, Ann(a)= $\prod_{i=1}^{n} (x-c_i)$
- Let $B = \{b_1^1, b_1^2, b_2^{b_i \neq 0}, b_1^3, b_2^3, b_3^3\}.$

- Define $a_1 = b_1^1 + b_1^2 + b_1^3$. $a_2 = b_2^2 + b_2^3$, $a_3 = b_3^3$.
- $Z(a_1;T)=< b_1^1, b_1^2, b_1^3>$ $p_1=(x-c_1)(x-c_2)(x-c_3).$
- $Z(a_2;T)=< b_2^2, b_2^3>, p_2=(x-c_2)(x-c_3).$
- $Z(a_3;T) = \langle b_3^3 \rangle$, $p_3 = (x-c_3)$.
- $V = Z(a_1;T) \oplus Z(a_2;T) \oplus Z(a_3;T)$

- Another example T diagonalizable.
- $F=(x-1)^3(x-2)^4(x-3)^5$. $d_1=3,d_2=4,d_3=5$.
- Basis $\{b_1^1, b_2^1, b_3^1, b_1^2, b_2^2, b_3^2, b_4^2, b_1^3, b_2^3, b_3^3, b_4^3, b_5^3\}$
- Define $a_j := \sum_{d_i \ge j} b_j^i$
- Then $Z(a_i;T)=\langle b_i^i \rangle d_i \geq j$. and
- T-ann(a_j)=p_j= $\prod_{(x-c_i)}$
- $V = Z(a_1;T) \oplus Z(a_2;T) \oplus ... \oplus Z(a_5;T)$

$$a_{1} = b_{1}^{1} + b_{1}^{2} + b_{1}^{3}$$

$$a_{2} = b_{2}^{1} + b_{2}^{2} + b_{2}^{3}$$

$$a_{3} = b_{3}^{1} + b_{3}^{2} + b_{3}^{3}$$

$$a_{4} = b_{4}^{2} + b_{5}^{3}$$

$$a_{5} = b_{5}^{3}$$