# 6.8. The primary decomposition theorem 

Decompose into elementary parts using the minimal polynomials.

- Theorem 12. T in $L(\mathrm{~V}, \mathrm{~V})$. V f.d.v.s. over F. p minimal polynomial. $P=p_{1}{ }^{r}-1 . \ldots p_{k}{ }^{r}-{ }^{k} . r_{i}>0$. Let $\mathrm{W}_{\mathrm{i}}=$ null $\mathrm{p}_{\mathrm{i}}(\mathrm{T})^{r_{-}}{ }^{\mathrm{i}}$.
- Then
- (i) $\mathrm{V}=\mathrm{W}_{1} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{k}}$.
- (ii) Each $\mathrm{W}_{\mathrm{i}}$ is T-invariant.
- (iii) Let $\mathrm{T}_{\mathrm{i}}=\mathrm{T} \mid \mathrm{W}_{\mathrm{i}}: \mathrm{W}_{\mathrm{i}}->\mathrm{W}_{\mathrm{i}}$. Then minpoly $\mathrm{T}_{\mathrm{i}}=$ $\left.p_{i}(T)\right)^{r}-i$
- Example:

$$
T=\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

- Char.polyT=(x-1 $)^{2}(x-2)^{2}=$ min.polyT:
- Check this by any lower degree does not kill T by computations.
$-\operatorname{null}(T-I)^{2}=\operatorname{null}\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]^{2}=\operatorname{null}\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1\end{array}\right]=\left\{\left.\left[\begin{array}{l}x \\ y \\ 0 \\ 0\end{array}\right] \right\rvert\, x, y \in R\right\}$
- Similarly null(T-2I) ${ }^{2}=$

$$
\left\{\left.\left[\begin{array}{l}
0 \\
0 \\
x \\
y
\end{array}\right] \right\rvert\, x, y \in R\right\}
$$

$$
T_{1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad T_{2}=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]
$$

- Proof: idea is to get $\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{k}}$.
- Let $f_{i}=p / p_{i}{ }^{r^{i}}=p_{1}{ }^{r_{-} 1} \ldots p_{i-1}{ }^{r_{-}-1} p_{i+1}{ }^{r^{i}+1} \ldots p_{k}{ }^{r^{-}-k}$.
$-f_{1}, \ldots, f_{k}$ are relatively prime since there are no common factors.
- That is, $\left\langle\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{k}}>=F[x]\right.$.
- There exists $g_{1}, \ldots, g_{k}$ in $F[x]$ s.t. $g_{1} \mathrm{f}_{1}+\ldots .+\mathrm{g}_{\mathrm{k}} \mathrm{f}_{\mathrm{k}}=1$.
- $p$ divides $f_{i f} f_{j}$ for $i \neq j$ since $f_{i} f_{j}$ contains all factors.
- Let $E_{i}=h_{i}(T)=f_{i}(T) g_{i}(T), h_{i}=f_{i} g_{i}$.
- Since $h_{1}+\ldots+h_{k}=1, E_{1}+\ldots+E_{k}=l$.
$-E_{i} E_{j}=0$ for $i \neq j$.
$-E_{i}=E_{i}\left(E_{1}+\ldots+E_{k}\right)=E_{i}^{2} \cdot$ Projections.
- Let $\operatorname{lm} \mathrm{E}_{\mathrm{i}}=\mathrm{W}_{\mathrm{i}}$. Then $\mathrm{V}=\mathrm{W}_{1} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{k}}$.
- (i) is proved.
$-T E_{i}=E_{i} T$. Thus $\operatorname{Im} E_{i}=W_{i}$ is T-invariant.
- (ii) is proved.
- We show that $\operatorname{lm} E_{i}=$ null $p_{i}(T)^{r}-i$.
- (C) $p_{i}(T) r_{-} E_{i} a=p_{i}(T) r_{-i} f_{i}(T) g_{i}(T) a=p(T) g_{i}(T) a$ $=0$.
- ( $\supset$ ) a in null $p_{i}(T)^{r} r^{i}$.
- If $\mathrm{j} \neq \mathrm{i}$, then $\mathrm{f}_{\mathrm{j}}(\mathrm{T}) \mathrm{g}_{\mathrm{j}}(\mathrm{T}) \mathrm{a}=0$ since $\mathrm{p}_{\mathrm{i}}{ }^{{ }^{-}-}$divides $\mathrm{f}_{\mathrm{j}}$ and hence $\mathrm{f}_{\mathrm{j}} \mathrm{g}_{\mathrm{j}}$.
- $\mathrm{E}_{\mathrm{j}} \mathrm{a}=0$ for $\mathrm{j} \neq 1$. Since $\mathrm{a}=\mathrm{E}_{1} \mathrm{a}+\ldots+\mathrm{E}_{\mathrm{k}} \mathrm{a}$, it follows that $a=E_{i} a$. Hence a in $\operatorname{Im} \mathrm{E}_{\mathrm{i}}$.
- (i),(ii) is completely proved.
- (iii) $\mathrm{T}_{\mathrm{i}}=\mathrm{T} \mid \mathrm{W}_{\mathrm{i}} \cdot \mathrm{W}_{\mathrm{i}}->\mathrm{W}_{\mathrm{i}}$.
$-P_{i}\left(T_{i}\right)^{r}{ }^{i}=0$ since $W_{i}$ is the null space of $P_{i}(T)^{r_{-}}$.
- minpoly $T_{i}$ divides $P_{i}{ }^{r}-{ }^{i}$.
- Suppose $g$ is s.t. $g\left(T_{i}\right)=0$.
$-g(T) f_{i}(T)=0:$
- $f_{i}=p_{1}{ }^{r_{-}-1} \ldots p_{i-1}{ }^{r_{i}-1} p_{i+1}{ }^{r_{-}+1} \ldots p_{k}^{r_{-}-k}$.
- Im $E_{i}=$ null $p_{i}-{ }^{-}{ }^{-i}$.
- Thus $\operatorname{Im} f_{i}(T)$ is in $\operatorname{Im} E_{i}$ since $V$ is a direct sum of $\operatorname{Im} E_{j} \mathrm{~s}$.
- $p$ divides $\mathrm{gf}_{\mathrm{i}}$.
$-p=p_{i}^{r}-f_{i}$ by definition.
- Thus $p_{i}{ }^{r}-{ }^{i}$ divides $g$.
- Thus, minpoly $T_{i}=p_{i}^{r}{ }^{r}{ }^{i}$.
- Corollary: $\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{k}}$ projections ass. with the primary decomposition of T. Then each $E_{i}$ is a polynomial in $T$. If a linear operator $U$ commutes with $T$, then $U$ commutes with each of $E_{i}$ and $W_{i}$ is invariant under $U$.
- Proof: $\mathrm{E}_{\mathrm{i}}=\mathrm{f}_{\mathrm{i}}(\mathrm{T}) \mathrm{g}_{\mathrm{i}}(\mathrm{T})$. Polynomials in T . Hence commutes with $U$.
$-W_{i}=\operatorname{Im} E_{i} U\left(W_{i}\right)=\operatorname{Im} U E_{i}=\operatorname{Im} E_{i} U$ in $\operatorname{Im} E_{i}=W_{i}$.
- Suppose that minpoly $(T)$ is a product of linear polynomials. $p=\left(x-c_{1}\right)^{r-1} \ldots\left(x-c_{k}\right)^{r}-k$. (For example $\mathrm{F}=\mathrm{C}$ ).
- Let $D=c_{1} E_{1}+\ldots+c_{k} E_{k}$. Diagonalizable one.
$-\mathrm{T}=\mathrm{TE}_{1}+\ldots+\mathrm{TE}_{\mathrm{k}}$
$-\mathrm{N}:=\mathrm{T}-\mathrm{D}=\left(\mathrm{T}-\mathrm{c}_{1} \mathrm{l}\right) \mathrm{E} 1+\ldots+\left(\mathrm{T}-\mathrm{c}_{\mathrm{k}} \mathrm{I}\right) \mathrm{E}_{\mathrm{k}}$
$-\mathrm{N}^{2}=\left(\mathrm{T}-\mathrm{c}_{1} \mathrm{I}\right)^{2} \mathrm{E} 1+\ldots+\left(\mathrm{T}-\mathrm{c}_{\mathrm{k}} \mathrm{I}\right)^{2} \mathrm{E}_{\mathrm{k}}$
- $N^{2}=\sum_{i, j}\left(T-c_{l}\right) E_{i}\left(T-c_{j} I\right) E_{j}=\sum_{i}\left(T-c_{l}\right) E_{i}\left(T-c_{i}\right) E_{i}$
$=\sum_{i}\left(T-c_{i}\right)\left(T-c_{i}\right) E_{i} E_{i}=\sum_{i}\left(T-c_{i}\right)^{2} E_{i}$
$-N r=(T-c 1 I){ }^{r} E 1+\ldots+\left(T-c_{k}\right)^{r}{ }^{r} E_{k}$
- If $r \geq r_{i}$ for each I , (T-cil)r ${ }^{r}=0$ on $\operatorname{Im} \mathrm{E}_{\mathrm{i}}$.
- Therefore, $\mathrm{N}^{\mathrm{r}}=0 . \mathrm{N}=\mathrm{T}-\mathrm{D}$ is nilpotent.
- Definition. N in $\mathrm{L}(\mathrm{V}, \mathrm{V})$. N is nilpotent if there is some integer r s.t. $\mathrm{N}^{r}=0$.
- Theorem 13. T in $\mathrm{L}(\mathrm{V}, \mathrm{V})$. Minpoly $\mathrm{T}=$ prod.of 1st order polynomials. Then there exists a diagonalizable D and a nilpotent operator N s.t.
- (i) $\mathrm{T}=\mathrm{D}+\mathrm{N}$.
- (ii) DN=ND.
- $\mathrm{D}, \mathrm{N}$ are uniquely determined by (i)(ii) and are polynomials of $T$.
- Proof: $T=D+N . E_{i}=h_{i}(T)=f_{i}(T) g_{i}(T)$.
$-D=c_{1} E_{1}+\ldots+c_{k} E_{k}$ is a polynomial in $T$.
- N=T-D a polynomial in T.
- Hence, D,N commute.
- (Uniquenss) Suppose T=D' +N', D' N' commutes, $\mathrm{D}^{\prime}$ diagonalizable, N nilpotent.
- D' commutes T=D' +N' . D' commutes with any polynomials of T .
- D' commutes with D and N .
$-D^{\prime}+N^{\prime}=D+N$.
- D-D' =N' $-N$. They commutes with each other.
- Since D and D' commutes, they are simultaneously diagonalizable. (Section. 6.5 Theorem 8.)
$-N^{\prime}-N$ is nilpotent:

$$
\left(N^{\prime}-N\right)^{r}=\sum_{j=0}^{r}\binom{r}{j}\left(N^{\prime}\right)^{r-j}(-N)^{j}
$$

- $r$ is suff. large. (larger $2 m a x$ of the degrees of $\mathrm{N}, \mathrm{N}^{\prime}$ ) -> r-j or j is suff large.
- Thus the above is zero.
$-D^{\prime}-D^{\prime}=-N$ is a nilpotent operator which has a diagonal matrix. Thus, $D-D^{\prime}=0$ and $N^{\prime}-N=0$.
$-D^{\prime}=D$ and $N^{\prime}=N$.
- Application to differential equations.
- Primary decompostion theorem holds when V is infinite dimensional and when $p$ is only that $p(T)=0$. Then (i),(ii) hold.
- This follows since the same argument will work.
- A positive integer n.
- $\mathrm{V}=\{\mathrm{f} \mid \mathrm{n}$ times continuously differentiable complex valued functions which satisfy ODE
$\} \frac{d^{n} f}{d^{n} t}+a_{n-1} \frac{d^{n-1} f}{d^{n-1} t}+\ldots+a_{1} \frac{d f}{d t}+a_{o} f=0, a_{0}, \ldots, a_{n-1} \in R$
- $\mathrm{C}^{\mathrm{n}}=\{\mathrm{n}$ times continuously differentiable complex valued functions\}
- Let $p=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$.
- Let $D$ differential operator,
- Then $V$ is a subspace of $C^{n}$ where $p(D) f=0$.
- $V=n u l l p(D)$.
- Factor $p=\left(x-c_{1}\right)^{r_{-} 1} \ldots\left(x-c_{k}\right)^{r}-k . c_{1}, . ., c_{k}$ in the complex number field $C$.
- Define $\left.W_{j}:=\operatorname{null}\left(D-c_{j}\right)\right)^{r}$. .
- Then Theorem 12 says that $\mathrm{V}=\mathrm{W}_{1} \oplus \ldots \oplus \mathrm{~W}_{\mathrm{k}}$
- In other words, if $f$ satisfies the given differential operator, then $f$ is expressed as $\mathrm{f}=\mathrm{f}_{1}+\ldots+\mathrm{f}_{\mathrm{k}}, \mathrm{f}_{\mathrm{i}}$ in $\mathrm{W}_{\mathrm{i}}$.
- What are $W_{i} s$ ? Solve (D-cl) ${ }^{r} f=0$.
- Fact: (D-cl) $)^{r} f=e^{c t} D^{r}\left(e^{-c t} f\right)$ :
$-(D-c l) f=e^{c t} D\left(e^{-c t} f\right)$.
$-(D-c l)^{2 f}=e^{c t} D\left(e^{-c t} e^{c t} D\left(e^{-c t} f\right)\right) \ldots$
- (D-cl) $)^{r} f=0<->D^{r}\left(e^{-c t} f\right)=0$ :
- Solution: $\mathrm{e}^{-\mathrm{ct}} \mathrm{f}$ is a polynomial of deg $<\mathrm{r}$.
$-f=e^{c t}\left(b_{0}+b_{1} t+\ldots+b_{r-1} t^{r-1}\right)$.
- Here $e^{c t}, t e^{c t}, t^{2} e^{c t}, \ldots, t^{r-1} e^{c t}$ are linearly independent.
- Thus $\left\{t^{m} e^{c}-j t \mid m=0, \ldots, r_{j}-1, j=1, \ldots, k\right\}$ form $a$ basis for $V$.
- Thus V is finite-dimensional and has dim equal to deg. p .


### 7.1. Rational forms

- Definition: T in $\mathrm{L}(\mathrm{V}, \mathrm{V})$, a vector a. T-cyclic subspace generated by $a$ is $Z(a ; T)=\{v=g(T) a \mid g$ in $F[x]\}$.
- $Z(a ; T)=<a, T a, T^{2} a, \ldots .>$
- If $\mathrm{Z}(a: T)=\mathrm{V}$, then $a$ is said to be a cyclic vector for T .
- Recall T-annihilator of $a$ is the ideal $M(a: T)=<g$ in $F[x] \mid g(T) a=0>=p_{a} F[x]$.
- $p_{a}$ is the $T$-annihilator of $a$.
- Theorem 1. $a \neq 0 . p_{a} T$-annihilator of $a$.
- (i) $\operatorname{deg} p_{a}=\operatorname{dim} Z(a ; T)$.
- (ii) If deg $p_{a}=k, a, T a, \ldots, T^{k-1} a$ is a basis of
- (iii) Let U:=T|Z(a;T):Z(a:T)->Z(a;T). Minpoly U= $\mathrm{p}_{\mathrm{a}}$.
- Proof: Let $g$ in $F[x] . g=p_{a} q+r . \operatorname{deg}(r)<$ $\operatorname{deg}\left(p_{a}\right) . g(T) a=r(T) a$.
$-r(T) a$ is a linear combination of $a, T a, \ldots, T^{k-1} a$.
- Thus, this $k$ vectors span $Z(a ; T)$.
- They are linearly independent. Otherwise, we get another g of lower than k degree s.t. $\mathrm{g}(\mathrm{T}) a=0$.
- (i),(ii) are proved.
$-U:=T \mid Z(a ; T): Z(a: T)->Z(a ; T)$.
-g in $\mathrm{F}[\mathrm{x}]$.
$-p_{a}(U) g(T) a=p_{a}(T) g(T) a$ (since $g(T) a$ is in $Z(a ; T)$.)
$=g(T) p_{a}(T) a=g(T) 0=0$.
$-p_{a}(U)=0$ on $Z(a ; T)$ and $p_{a}$ is monic.
- If $h$ is a polynomial of lower-degree than $p_{a}$, then $h(U) \neq 0$. (since $h(U) a=h(T) a \neq 0)$.
- Thus, $p_{a}$ is the minimal polynomial of $U$.
- Suppose T:V->V has a cyclic vector $a$.
- deg minpolyU=dimZ(a;T)=dim V=n.
- minpoly U=minpoly T .
- Thus, minpoly T = char.poly T.
- We obtain:

T has a cyclic vector <-> minpoly T=char.polyT.

- Proof: (->) done above.
- (<-) Later, we show for any T , there is a vector v s.t. minpoly $\mathrm{T}=$ annihilator v. (p.237. Corollary).
- So if minpoly $\mathrm{T}=$ charpoly T . Then $\operatorname{dimZ}(\mathrm{v} ; \mathrm{T})=\mathrm{n}$ and v is a cyclic vector.
- Study T by cyclic vector.
- $U$ on $W$ with a cyclic vector $v$. ( $\mathrm{W}=\mathrm{Z}(\mathrm{v}: \mathrm{T})$ for example and $U$ the restriction of $T$.)
- $v, U v, U^{2} v, \ldots, U^{k-1} v$ is a basis of $W$.
- U-annihiltor of $v=$ minpoly $U$ by Theorem 1 .
- Let $v_{i}=U^{i-1} v . i=1, \ldots, k$.
- Let $B=\left\{v_{1}, \ldots, v_{k}\right\}$.
- $U v_{i}=v_{i+1} . i=1, \ldots, k-1$.
- $U v_{k}=-\mathrm{C}_{0} \mathrm{v}_{1}-\mathrm{C}_{1} \mathrm{v}_{2}-\ldots-\mathrm{C}_{\mathrm{k}-1} \mathrm{v}_{\mathrm{k}}$ where minpolyU $=c_{0}+c_{1} x+\ldots+c_{k-1} x^{k-1}+x^{k}$.
- $\left(\mathrm{c}_{0} \mathrm{v}+\mathrm{c}_{1} \mathrm{Uv}+\ldots+\mathrm{c}_{\mathrm{k}-1} \mathrm{U}^{\mathrm{k}-1} \mathrm{v}+\mathrm{U}^{k} \mathrm{v}=0.\right)$

$$
[U]_{B}=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & \ldots & \ldots & 0 & -c_{0} \\
1 & 0 & 0 & 0 & \ldots & \ldots & 0 & -c_{1} \\
0 & 1 & 0 & 0 & \ldots & \ldots & 0 & -c_{2} \\
0 & 0 & 1 & 0 & \ldots & \ldots & 0 & -c_{3} \\
0 & 0 & 0 & 1 & \ldots & \ldots & 0 & -c_{4} \\
\vdots & \vdots & \vdots & \vdots & \ddots & & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & \ldots & 1 & -c_{k-1}
\end{array}\right]
$$

- This is called the companion matrix of pa. (defined for any monic polynomial.)
- Theorem 2. If $U$ is a linear operator on a f.d.v.s.W, then $U$ has a cyclic vector iff there is some ordered basis where $U$ is represented by a companion matrix.
- Proof: (->) Done above.
- (<-) If we have a basis $\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}$,
- then $v_{1}$ is the cyclic vector.
- Corollary. If A is the companion matrix of a monic polynomial $p$, then $p$ is both the minimal and the characteristic polynomial of A.
- Proof: Let $a=(1,0, \ldots 0)$. Then $a$ is a cyclic vector and $Z(a ; A)=V$.
- The annihilator of $a$ is $p$. deg $p=n$ also.
- By Theorem 1 (iii), the minimal poly for T is p.
- Since p divides char.polyA. And phas degree $n . p=c h a r . p o l y A$.

