6.3. Annihilating polynomials

Cayley-Hamilton theorem Polynomials and transformations

- $(p+q)(T)=p(T)+q(T)$
- $(p q)(T)=p(T) \cdot q(T)$
- $A n n(T)=\{p$ in $F[x] \mid p(T)=0\}$ is an ideal.
- Proof:
- p,q in Ann(T) k in F -> p+kq(T)=0-> p+kq in Ann(T).
- p in $\operatorname{Ann}(T), q$ in $F[x]$-> $p q(T)=p(T) q(T)=0$ $->p q$ in Ann(T).
- $\operatorname{Ann}(T)$ is strictly bigger than $\{0\}$.
- Proof: We show that there exists a nonzero polynomial f in $\operatorname{Ann}(T)$ for any $\mathrm{T}: \mathrm{V}^{\mathrm{n}}->\mathrm{V}^{\mathrm{n}}$.
- $I, T, T^{2}, \ldots, T^{n^{2}} \quad: 1+\mathrm{n}^{2}$ operators in $\mathrm{L}(\mathrm{V}, \mathrm{V})$.
- $\operatorname{dimL}(\mathrm{V}, \mathrm{V})=\mathrm{n}^{2}$. Therefore, there exists a relation

$$
c_{0} I+c_{1} T+c_{2} T^{2}+\ldots+c_{n^{2}} T^{n^{2}}=0
$$

- Every polynomial ideal is of form $\mathrm{fF}[\mathrm{x}]$.
- Definition: T:V->V. V over F. (finite dim.)
The minimal polynomial of T is the unique monic generator of Ann(T).
- How to obtain the m.poly?
- Proposition: the m.poly p is characterized by

1. P is monic.
2. $P(T)=0$
3. No polynomial f s.t. $f(T)=0$ and has smaller degree than p.

- A similar operators have the same minimal polynomials: This follows from:
- $f\left(G^{-1}\right)=0<->f(T)=0$.
- Proof:

$$
\begin{aligned}
& -\left(\mathrm{GTG}^{-1}\right)^{\mathrm{i}}=\mathrm{GTG}^{-1} \mathrm{GTG}^{-1} \ldots \mathrm{GTG} \mathrm{G}^{-1}=\mathrm{GT}^{\mathrm{i}} \mathrm{G}^{-1} \\
& -0=\mathrm{c}_{0} \mathrm{I}+\mathrm{c}_{1} \mathrm{GTG}^{-1}+\mathrm{c}_{2}\left(\mathrm{GTG}^{-1}\right)^{2}+\ldots+ \\
& \mathrm{c}_{\mathrm{n}}\left(\mathrm{GTG}^{-1}\right)^{n}<-> \\
& -0=\mathrm{G}\left(\mathrm{c}_{0} 1+\mathrm{c}_{1} \mathrm{~T}+\mathrm{c}_{2} \mathrm{~T}^{2}+\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{~T}^{\mathrm{n}}\right) \mathrm{G}^{-1}
\end{aligned}
$$

- Theorem 3. T a linear operator on V^{n}. (A nxn matrix). The characteristic and minimal polynomial of T (of A) have the same roots, except for multiplicities.
- Proof: p a minimal polynomial of T
- We show that
$-p(c)=0<->c$ is a characteristic value of T.
- (->) $p(c)=0 . p=(x-c) q$.
- $\operatorname{deg} q<\operatorname{deg} p . q(T) \neq 0$ since p has minimal degree
- Choose b s.t. $q(T) b \neq 0$. Let $a=q(T) b$.
- $0=p(\mathrm{~T}) \mathrm{b}=(\mathrm{T}-\mathrm{cl}) \mathrm{q}(\mathrm{T}) \mathrm{b}=(\mathrm{T}-\mathrm{cl}) \mathrm{a}$
- c is a characteristic value.
- (<-) Ta=ca. $a \neq 0$.
- $p(T) a=p(c) a$ by a lemma.
- $a \neq 0, p(T)=0->p(c)=0$.
- T diagonalizable. (We can compute the m.poly)
$-c_{1}, \ldots, c_{k}$ distinct char. values.
- Then $p=\left(x-c_{1}\right) \ldots\left(x-c_{k}\right)$.
- Proof: If a is a char. Vector, then one of $\mathrm{T}-\mathrm{c}_{1} \mathrm{I}, \ldots, \mathrm{T}-\mathrm{c}_{\mathrm{k}} \mathrm{l}$ sends a to 0 .
- (T-c, 1)...(T-c c_{k}) $\mathrm{a}=0$ for all char. v. a.
- Characteristic vectors form a basis a_{i}.
$-\left(T-c_{1} I\right) \ldots\left(T-c_{k} I\right)=0$.
- $p=\left(x-c_{1}\right) \ldots\left(x-c_{k}\right)$ is in Ann(T).
- p has to be minimal since p has to have all these factors by Theorem 3.
- Caley-Hamilton theorem: T a linear operator V. If f is a char. poly. for T, then $f(T)=0$. i.e., f in Ann(T). The min. poly. p divides f.
- Proof: highly abstract:
- K a commutative ring of poly in T .
$-\left\{a_{1}, \ldots, a_{n}\right\}$ basis for V.
Ta ${ }{i}=\sum_{j=1}^{n} A_{j i} a_{j} \quad \sum_{j=1}^{n}\left(\delta_{i j} T-A_{j i} I\right) a_{j}=0$
for $i=1, \ldots, n$
- Let B be a matrix in $K^{n \times n}$ with entries:
$\mathrm{B}_{\mathrm{ij}}=\delta_{\mathrm{ij}} \mathrm{T}-\mathrm{A}_{\mathrm{ji}} \mathrm{I}$
- e.g. $\mathrm{n}=2 . \quad B=\left[\begin{array}{cc}T-A_{11} I & -A_{21} I \\ -A_{12} I & T-A_{221} I\end{array}\right]$
- $\operatorname{det} B=\left(T-A_{11} I\right)\left(T-A_{22} I\right)-A_{12} A_{21} I=f_{T}(T)$.
- For all n, det $B=f_{T}(T) . f_{T}$ char. poly.(omit proof)
- We show $f_{T}(T)=0$ or equiv. $f(T) a_{k}=0$ for each k.
-(6-6) $\sum_{j=1}^{n} B_{i j} a_{j}=0$ by (*).
- Let $B^{\prime}=\operatorname{adj} B$.
$\sum_{j=1}^{n} B_{k i}^{\prime} B_{i j} a_{j}=0 . \quad \sum_{i=1}^{n} \sum_{j=1}^{n} B_{k i}^{\prime} B_{i j} a_{j}=0$.
$\sum_{j=1}^{n}\left(\sum_{i=1}^{n} B_{k i}^{\prime} B_{i j}\right) a_{j}=0 . \quad \sum_{j=1}^{n}\left(\delta_{k j} \operatorname{det} B\right) a_{j}=0$.
$-\operatorname{det} B a_{k}=0$. for each k.
$-\operatorname{det} B=0 . f_{T}(T)=0$.
- Characteristic polynomial gives informations on the factors of the minimal polynomials.

