6. Elementary Canonical Forms

How to characterize a
transformation?

6.1. Introduction

- Diagonal transformations are easiest to understand. $\left[\begin{array}{ccccc}\lambda_{1} & 0 & 0 & \cdots & 0 \\ 0 & \lambda_{2} & 0 & \cdots & 0 \\ 0 & 0 & \lambda_{3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_{n}\end{array}\right]$
- This involves the studying "dynamical properties" of the operators.

Elementary canonical forms

- T in $\mathrm{L}(\mathrm{V}, \mathrm{V})$. Classify up to conjugations.
- What is the behavior of T? (dynamical)
- Invariant subspaces
- Direct sum decompositions
- Primary decompositions
- Diagonalizable
- Jordan canonical form

Characteristic values

- Definition: V a vector space over F. T:V->V. A characteristic (eigen-) value of T is a scalar c in F s.t. there is a nonzero vector a in V with $T a=c a$.
- This measures how much T stretches or contracts objects in certain directions.
- a is said to be the characteristic (eigen-) vector of T.
- Characteristic space $\{a \operatorname{in} \mathrm{~V} \mid \mathrm{Ta}=\mathrm{ca}\}$ for a fixed c in F .
- This is a solution space of equation ($\mathrm{T}-\mathrm{cl}$)a=0. Equals null(T-cl).
- Theorem 1. V finite dim over F. TFAE:
- (i) c is a characteristic value of T .
- (ii) T-cl is singular
- (iii) $\operatorname{det}(\mathrm{T}-\mathrm{cl})=0$.
- We now consider matrix of T :
- B a basis of V. A the nxn-matrix $A=[T]_{B}$. - T-cl is invertible <-> A-cl is invertible.
- Definition: A nxn matrix over F. A characteristic value of A in F is c in F s.t. A-cl is singular.
- Define $f(x)=\operatorname{det}(x l-A)$ characteristic polynomial.
- c s.t. $\mathrm{f}(\mathrm{c})=0$ (zeros of f) <-> (one-toone) characteristic value of f.
- Lemma: Similar (conjugate) matrices have the same characteristic values.
- Proof: $B=P^{-1} A P$.
$-\operatorname{det}(x \mid-B)=\operatorname{det}\left(x \mid-P^{-1} A P\right)$
$=\operatorname{det}\left(\mathrm{P}^{-1}(\mathrm{xl}-\mathrm{A}) \mathrm{P}\right)=\operatorname{det} \mathrm{P}^{-1} \operatorname{det}(\mathrm{xl}-\mathrm{A}) \operatorname{det} \mathrm{P}$.
$=\operatorname{det}(\mathrm{xl}-\mathrm{A})$
- Remark: Thus given T, we can use any basis B and obtain the same characteristic polynomial and values.
- Diagonalizable operators:
- T is diagonalizable <-> There exist a basis of V where each vector is a characteristic vector of T.

$$
\begin{array}{ccc}
\mathcal{B} & = & \left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \\
T \alpha_{i} & = & \lambda_{i} \alpha_{i} \\
{\left[\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \cdots & 0 \\
0 & \lambda_{2} & 0 & \cdots & 0 \\
0 & 0 & \lambda_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{n}
\end{array}\right]}
\end{array}
$$

- Fact: If T is diagonalizable, then $\mathrm{f}_{\mathrm{T}}(\mathrm{x})$ factors completely.
- Proof: T=

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
c I_{f f} & & & & \\
& d I_{g r g} & & & \\
& & e I_{h x h} & & \\
& & & \ddots & \\
& & & & \ddots
\end{array}\right]}
\end{aligned}
$$

- $\operatorname{det}(x \mid-T)=\left.\left.\operatorname{det}(x-c)\right|_{f x f} \operatorname{det}(x-d)\right|_{g x g} \ldots$

$$
=(x-c)^{f}(x-d)^{g} \ldots .
$$

- Nondiagonalizable matrices exist:

$$
{ }^{-} A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \mathrm{f}(\mathrm{x})=(\mathrm{x}-1)^{2} .
$$

- 1 is the only characteristic value.
- If A is diagonalizable, then A can be written as I in some coordinate. Thus $A=1$. Contradiction.
- There are many examples like this. In fact, all nondiagonalizable matrices are similar to this example. (Always, with repeated or complex eigenvalues.
- Lemma. Ta=ca -> f(T)a =f(c)a, fin $F[x]$.
- Proof: $f=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$
$-f(T)=a_{n} T^{n}+a_{n-1} T^{n-1}+\ldots+a_{1} T+a_{0} I$
$-f(T)(a)=a_{n} T n(a)+a_{n-1} T^{n-1}(a)+\ldots+a_{1} T(a)+a_{0}(a)$
$-=a_{n} c^{n} a+a_{n-1} c^{n-1} a+\ldots+a_{1} c a+a_{0} a$
$-=\left(a_{n} c^{n}+a_{n-1} c^{n-1}+\ldots+a_{1} c+a_{0}\right) a$
- =f(c)a.
- Lemma. T linear operator on the f.d. space V.
$\mathrm{c}_{1}, \ldots \mathrm{c}_{\mathrm{k}}$ distinct characteristic values of T .
$\mathrm{W}_{1}, \ldots, \mathrm{~W}_{\mathrm{k}}$ respective characteristic spaces
If $\mathrm{W}=\mathrm{W}_{1}+\ldots+\mathrm{W}_{\mathrm{k}}$, then $\operatorname{dim} \mathrm{W}=\operatorname{dim}_{1}+\ldots+\operatorname{dim} \mathrm{W}_{\mathrm{k}}$ (i.e., independent).

If B_{i} basis, then $\left\{B_{1}, \ldots, B_{k}\right\}$ is a basis of W.

- Proof: $\mathrm{W}=\mathrm{W}_{1}+\ldots+\mathrm{W}_{\mathrm{k}}$
$-\operatorname{dim} W \leq \operatorname{dim} W_{1}+\ldots+\operatorname{dim} W_{k}$ in general
- We prove independence first:
- Suppose $b_{1}+\ldots+b_{k}=0, b_{i}$ in W_{i}. $T b_{i}=c_{i} b_{i}$.
- $0=f(T)(0)=f(T) b_{1}+\ldots+f(T) b_{k}=f\left(c_{1}\right) b_{1}+\ldots+f\left(c_{k}\right) b_{k}$
- Choose f_{i} in $F[x]$ so that $f_{i}\left(c_{j}\right)=1(i=j) 0(i \neq j)$ (from Lagrange)
- $0=f_{i}(T)(0)=f_{i}(T) b_{1}+\ldots+f_{i}(T) b_{k}=f_{i}\left(c_{1}\right) b_{1}+\ldots+f_{i}\left(c_{k}\right) b_{k}=b_{i}$.
$-B_{i}$ basis. Let $B=\left\{B_{1}, \ldots, B_{k}\right\}$
- B spans W.
- B is linearly independent:
- If

$$
\sum c_{1}^{i} B_{1}^{i}+\sum c_{2}^{i} B_{2}^{i}+\cdots+\sum c_{k}^{i} B_{k}^{i}=0
$$

- If not all $\mathrm{c}_{\mathrm{i}}=0$, then we have $\mathrm{b}_{1}+\ldots+\mathrm{b}_{\mathrm{k}}=0$ for some $\mathrm{b}_{\mathrm{i}} \mathrm{s}$. However, $b_{i}=0$ as above. This is a contradiction. Thus all $\mathrm{c}_{\mathrm{i}}=0$.
- Theorem 2. $\mathrm{T}: \mathrm{V}^{\mathrm{n}}->\mathrm{V}^{\mathrm{n}} . \mathrm{c}_{1}, \ldots \mathrm{c}_{\mathrm{k}}$ distinct characteristic values of T. $\mathrm{W}_{\mathrm{i}}=$ null $\left(\mathrm{T}-\mathrm{c}_{\mathrm{i}} \mathrm{I}\right)$.

TFAE.

1. T is diagonalizable.
2. $\mathrm{f}_{\mathrm{T}}=\left(\mathrm{x}-\mathrm{c}_{1}\right)^{\mathrm{d} 1} \ldots .\left(\mathrm{x}-\mathrm{c}_{\mathrm{k}}\right)^{\mathrm{dk}} . \operatorname{dim} \mathrm{W}_{\mathrm{i}}=\mathrm{d}_{\mathrm{i}}$.
3. $\operatorname{dim} \mathrm{V}=\operatorname{dim} \mathrm{W}_{1}+\ldots+\operatorname{dim} \mathrm{W}_{\mathrm{k}}$

- Proof: (i)->(ii) done already
- (ii) $->($ iii $) . d_{1}+\ldots+d_{k}=\operatorname{deg} f_{T}=n$.
- (iii)->(i) $W=W_{1}+\ldots+W_{k} . W$ is a subspace of V.
$-\quad \operatorname{dim} V=\operatorname{dim} W->V=W$.
- $\quad \mathrm{V}=\mathrm{W}_{1}+\ldots+\mathrm{W}_{\mathrm{k}} . \mathrm{V}$ is spanned by characteristic vectors and hence T is diagonalizable.
- Lesson here: Algorithm for diagonalizability:
- Method 1: Determine $W_{i}->\operatorname{dim} W_{i}$-> sum $d_{i} s$-> equal to $\operatorname{dim} V->$ yes: diagonalizable. no: nondiagonalizable.
- Method 2: Find characteristic polynomial of f.
- Completely factored?: -> no: not diagonalizable.
- -> yes: d_{i} factor degree-> compute W_{i}. -> $\mathrm{d}_{\mathrm{i}}=\operatorname{dim} \mathrm{W}_{\mathrm{i}}$? -> no: not diagonalizable. yes: check for all i.
- Usually, a small perturbations makes nondiagonalizable matrix into diagonalizable matrix if $\mathrm{F}=\mathrm{C}$.

