6. Elementary Canonical Forms

How to characterize a transformation?

6.1. Introduction

• Diagonal transformations are easiest to understand. $\begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \end{bmatrix}$

This involves the studying "dynamical properties" of the operators.

Elementary canonical forms

- T in L(V,V). Classify up to conjugations.
 - What is the behavior of T? (dynamical)
 - Invariant subspaces
 - Direct sum decompositions
 - Primary decompositions
 - Diagonalizable
 - Jordan canonical form

Characteristic values

- Definition: V a vector space over F.
 T:V->V. A characteristic (eigen-) value of T is a scalar c in F s.t. there is a nonzero vector a in V with Ta = ca.
- This measures how much T stretches or contracts objects in certain directions.
- a is said to be the characteristic (eigen-) vector of T.

- Characteristic space {a in V| Ta = ca} for a fixed c in F.
- This is a solution space of equation (T-cl)a=0. Equals null(T-cl).
- Theorem 1. V finite dim over F. TFAE:
 - (i) c is a characteristic value of T.
 - (ii) T-cl is singular
 - -(iii) det(T-cI) = 0.
- We now consider matrix of T:

- B a basis of V. A the nxn-matrix A=[T]_B.
 T-cl is invertible <-> A-cl is invertible.
- Definition: A nxn matrix over F. A characteristic value of A in F is c in F s.t. A-cl is singular.
- Define f(x) = det (xI A) characteristic polynomial.
- c s.t. f(c)=0 (zeros of f) <-> (one-toone) characteristic value of f.

- Lemma: Similar (conjugate) matrices have the same characteristic values.
- Proof: $B=P^{-1}AP$.
 - det(xI-B)=det(xI-P⁻¹AP)
 = det(P⁻¹(xI-A)P)=det P⁻¹det(xI-A)det P.
 = det(xI-A)
- Remark: Thus given T, we can use any basis B and obtain the same characteristic polynomial and values.

- Diagonalizable operators:
- T is diagonalizable <-> There exist a basis of V where each vector is a characteristic vector of T.

$$egin{array}{rcl} \mathcal{B} &=& \{lpha_1,\ldots,lpha_n\}\ arGamma &=& \lambda_ilpha_i \end{array}$$

Fact: If T is diagonalizable, then f_T(x) factors completely.

• Proof: T=
$$dI_{gxg}$$

 eI_{hxh}
 \vdots

• det(xI-T) =det(x-c)I_{fxf} det(x-d)I_{gxg}... = $(x-c)^{f}(x-d)^{g}$ • Nondiagonalizable matrices exist:

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, f(x) = (x-1)^2.$$

- 1 is the only characteristic value.
- If A is diagonalizable, then A can be written as I in some coordinate. Thus A=I. Contradiction.
- There are many examples like this. In fact, all nondiagonalizable matrices are similar to this example. (Always, with repeated or complex eigenvalues.

- Lemma. Ta=ca -> f(T)a = f(c)a, f in F[x].
- **Proof:** $f = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$
 - $f(T) = a_n T^n + a_{n-1} T^{n-1} + ... + a_1 T + a_0 I$
 - $f(T)(a) = a_n T^n(a) + a_{n-1} T^{n-1}(a) + \dots + a_1 T(a) + a_0(a)$
 - $= a_n c^n a + a_{n-1} c^{n-1} a + \dots + a_1 c a + a_0 a$
 - $= (a_n c^{n+} a_{n-1} c^{n-1} + \dots + a_1 c^{n-1} a_0)a$
 - =f(c)a.
- Lemma. T linear operator on the f.d. space V. c₁,...c_k distinct characteristic values of T. W₁,...,W_k respective characteristic spaces
 If W= W₁+...+W_k, then dim W = dimW₁+...+dimW_k (i.e., independent).

If B_i basis, then $\{B_1, \ldots, B_k\}$ is a basis of W.

- **Proof**: W= W₁+...+W_k
 - $\dim W \le \dim W_1 + \dots + \dim W_k$ in general
 - We prove independence first:
 - Suppose $b_1 + \ldots + b_k = 0$, b_i in W_i . $Tb_i = c_i b_i$.
 - $0=f(T)(0)=f(T) b_1+...+f(T)b_k=f(c_1) b_1+...+f(c_k)b_k$
 - Choose f_i in F[x] so that f_i(c_j)= 1 (i=j) 0 (i ≠j) (from Lagrange)
 - $0=f_i(T)(0)=f_i(T)b_1+...+f_i(T)b_k=f_i(c_1)b_1+...+f_i(c_k)b_k=b_i$
 - B_i basis. Let $B = \{B_1, \dots, B_k\}$
 - B spans W.
 - B is linearly independent:
 - If $\sum c_1^i B_1^i + \sum c_2^i B_2^i + \dots + \sum c_k^i B_k^i = 0$

- If not all $c_i^i=0$, then we have $b_1+...+b_k=0$ for some b_is . However, $b_i=0$ as above. This is a contradiction. Thus all $c_i^i=0$.
- Theorem 2. T:Vⁿ -> Vⁿ. c₁,...c_k distinct characteristic values of T. W_i=null(T-c_i I).

TFAE.

- 1. T is diagonalizable.
- 2. $f_T = (x-c_1)^{d1} \dots (x-c_k)^{dk}$. dim $W_i = d_i$.
- 3. dim V = dim W_1 +...+dim W_k
- Proof: (i)->(ii) done already
 - (ii)->(iii). d_1 +....+ d_k = deg f_T = n.
 - (iii)->(i) W= W_1 +...+ W_k . W is a subspace of V.
 - $\quad \dim V = \dim W \rightarrow V = W.$
 - $V = W_1 + ... + W_k$. V is spanned by characteristic vectors and hence T is diagonalizable.

- Lesson here: Algorithm for diagonalizability:
 - Method 1: Determine W_i-> dim W_i -> sum d_is -> equal to dim V -> yes: diagonalizable. no: nondiagonalizable.
 - Method 2: Find characteristic polynomial of f.
 - Completely factored?: -> no: not diagonalizable.
 - -> yes:d_i factor degree-> compute W_i. -> d_i=dim W_i? -> no: not diagonalizable. yes: check for all i.
- Usually, a small perturbations makes nondiagonalizable matrix into diagonalizable matrix if F=C.