Ch. 5 Determinants

Ring

Determinant functions
Existence, Uniqueness and Properties

Rings

- A ring is a set K with operations
$-(x, y)->x+y$.
- (x,y)->xy.
- (a) K is commutative under +
- (b) (xy)z=x(yz)
- (c) $x(y+z)=x y+x z,(y+z) x=y x+z x$
- If $x y=y x$, then K is a commutative ring.
- If there exists 1 s.t. $1 x=x 1=x$ for all x in K, then K is a ring with 1.
- Fields are commutative rings.
- $\mathrm{F}[\mathrm{x}]$ is a commutative ring with 1.
- Z the ring of integers is a commutative ring with 1. Not a field

$$
Z+i Z, Z+\sqrt{2} Z, M_{n \times n}(F), M_{n \times n}(Z), L(V)
$$

- Rings with 1. Two are commutative.
- Z_{n}. n any positive integer is a commutative ring with 1.

Field, vector space, algebra, ring, modules...

- Under + , abelian group always scalar *

Ring, +,
*(com or non), 1

Algebra
+,*(com
or non), 1
scalar *also

Fields, ,+ *, 1, () $)^{-1}$

Vector space
+, scalar *,
modules +, scalar * (by rings)

- Definition: $\mathrm{M}_{\mathrm{mxn}}(\mathrm{K})=\left\{\mathrm{A}_{\mathrm{mxn}} \mid \mathrm{a}_{\mathrm{ij}}\right.$ in K$\}$, K a commutative ring with 1.
- Sum and product is defined
$-A(B+C)=A B+A C$
$-A(B C)=(A B) C$.
- $m=n$ case: This will be a ring (not commutative in general)
- We introduce this object to prove some theorems elegantly in this book.

5.2. Determinant functions Existence and Uniqueness

- $\mathrm{K}^{\mathrm{nxn}}=\{\mathrm{nxn}$ matrices over K$\}=\{n$ tuple of n-dim row vectors over K\}
- n-linear functions
$D: K^{n x n}->K, A->D(A)$ in K.
$-D$ is n-linear if $D\left(r_{1}, \ldots, r_{i}, \ldots, r_{n}\right)$ is a linear function of r_{i} for each i. $r_{i}=$ ith row.

$$
\begin{aligned}
D\left(\alpha_{1}, \ldots, c \alpha_{i}+\alpha_{i}^{\prime}, \ldots, \alpha_{n}\right) & =c D\left(\alpha_{1}, \ldots, \alpha_{i}, \ldots, \alpha_{n}\right) \\
& +D\left(\alpha_{1}, \ldots, \alpha_{i}^{\prime}, \ldots, \alpha_{n}\right)
\end{aligned}
$$

- Example: $\mathrm{D}(\mathrm{A}):=\mathrm{a} \mathrm{A}\left(1, \mathrm{k}_{1}\right) \ldots, \mathrm{A}\left(\mathrm{n}, \mathrm{k}_{\mathrm{n}}\right)$, $1 \leq k_{i} \leq n, A(i, j):=A_{i j}$.
- This is n-linear: $n=3, k_{1}=2, k_{2}=3, k_{3}=3$
- $\mathrm{D}(\mathrm{A})=\mathrm{cA}(1,2) \mathrm{A}(2,3) \mathrm{A}(3,3)$
$-D\left(a_{1}, \mathrm{da}_{2}+\mathrm{a}_{2}{ }^{\prime}, \mathrm{a}_{3}\right)=\mathrm{ca}{ }_{12}\left(\mathrm{da}_{23}+\mathrm{a}^{\prime}{ }_{23}\right) \mathrm{a}_{33}$
- $=c d a_{12} \mathrm{a}_{23} \mathrm{a}_{33}+\mathrm{ca}_{12} \mathrm{a}^{\prime}{ }_{23} \mathrm{a}_{33}$
$-=d D\left(a_{1}, a_{2}, a_{3}\right)+D\left(a_{1}, a_{2}^{\prime}, a_{3}\right)$
- Proof: $\mathrm{D}\left(\ldots, \mathrm{a}_{\mathrm{i}}, \ldots\right)=\mathrm{A}\left(\mathrm{i}, \mathrm{k}_{\mathrm{i}}\right) \mathrm{b}$
$D\left(\ldots, \mathrm{ca}_{\mathrm{i}}+\mathrm{a}^{\prime}{ }_{\mathrm{i}}, \ldots\right)=\left(\mathrm{cA}\left(\mathrm{i}, \mathrm{k}_{\mathrm{i}}\right)+\mathrm{A}^{\prime}\left(\mathrm{i}, \mathrm{k}_{\mathrm{i}}\right)\right) \mathrm{b}$
$=c D\left(\ldots, a_{i}, \ldots\right)+D\left(\ldots, a^{\prime}{ }_{i}, \ldots\right)$.
- Lemma: A linear combination of n-linear functions is n-linear.
- Definition: D is n -linear. D is alternating if - (a) $D(A)=0$ if two rows of A are equal.
- (b) If A^{\prime} is obtained from A by interchanging two rows of A, then $D(A)=-D\left(A^{\prime}\right)$.
- Definition: K a commutative ring with 1. D is a determinant function if D is n linear, alternating and $\mathrm{D}(\mathrm{I})=1$.
(The aim is to show existence and uniqueness of D)
- A 1×1 matrix $D(A)=A$. This is a determinant function. This is unique one.
- $A 2 x 2$ matrix. $D(A):=A_{11} A_{22}-A_{12} A_{21}$.
- This is a determinant function
- $\mathrm{D}(\mathrm{I})=1$.
- 2-linear since sum of two 2-linear functions
- Alternating. Check (a), (b) above.
- This is also unique:

$$
\begin{array}{ccc}
D(A) & = & D\left(A_{11} \epsilon_{1}+A_{12} \epsilon_{2}, D\left(A_{21} \epsilon_{1}+A_{22} \epsilon_{2}\right)\right. \\
= & D\left(A_{11} \epsilon_{1}, A_{21} \epsilon_{1}+A_{22} \epsilon_{2}\right)+D\left(A_{12} \epsilon_{2}, A_{21} \epsilon_{1}+A_{22} \epsilon_{2}\right) \\
= & D\left(A_{11} \epsilon_{1}, A_{21} \epsilon_{1}\right)+D\left(A_{11} \epsilon_{1}, A_{22} \epsilon_{2}\right)+D\left(A_{12} \epsilon_{2}, A_{21} \epsilon_{1}\right)+D\left(A_{12} \epsilon_{2}, A_{22} \epsilon_{2}\right) \\
= & A_{11} A_{21} D\left(\epsilon_{1}, \epsilon_{1}\right)+A_{11} A_{22} D\left(\epsilon_{1}, \epsilon_{2}\right)+A_{12} A_{21} D\left(\epsilon_{2}, \epsilon_{1}\right)+A_{12} A_{22}\left(\epsilon_{2}, \epsilon_{2}\right) \\
= & A_{11} A_{22}-A_{12} A_{21} \\
& & \\
& & D\left(\epsilon_{1}, \epsilon_{1}\right)=D\left(\epsilon_{2}, \epsilon_{2}\right)=0 \\
& & D\left(\epsilon_{2}, \epsilon_{1}\right)=-D\left(\epsilon_{1}, \epsilon_{2}\right)=-D(I)=-1
\end{array}
$$

- Lemma: D nxn n-linear over K.
$D(A)=0$ whenever two adjacent rows are equal $\rightarrow \mathrm{D}$ is alternating. Proof: We show
- $D(A)=0$ if any two rows of A are equal.
- D(A')=-D(A) if two rows are interchanged.
- (i) We show $D\left(A^{\prime}\right)=-D(A)$ when two adjacent rows are interchanged.
- $0=D\left(\ldots, a_{i}+a_{i+1}, a_{i}+a_{i+1}, \ldots\right)$
$=D\left(\ldots, a_{i}, a_{i}, \ldots\right)+D\left(\ldots, a_{i}, a_{i+1}, \ldots\right)$
$+D\left(\ldots, a_{i+1}, a_{i}, \ldots\right)+D\left(\ldots, a_{i+1}, a_{i+1}, \ldots\right)$
$=D\left(\ldots, a_{i}, a_{i+1}, \ldots\right)+D\left(\ldots, a_{i+1}, a_{i}, \ldots\right)$
- (ii) Say B is obtained from A by interchanging row i with row j. i<j.

$$
\begin{gathered}
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}, \underbrace{\alpha_{i+1}, \ldots, \alpha_{j}}_{j-i}, \ldots, \alpha_{n} \\
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i-1}, \underbrace{\alpha_{i+1}, \ldots, \alpha_{j}}_{j-i}, \alpha_{i} \ldots, \alpha_{n} \\
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i-1}, \alpha_{j}, \underbrace{\alpha_{i+1}, \ldots, \alpha_{j-1}}_{j-i-1}, \alpha_{i}, \ldots, \alpha_{n}
\end{gathered}
$$

- $D(B)=(-1)^{2(-i)-1} D(A), D(B)=-D(A)$.
- (iii) $D(A)=0$ if A has two same i, j rows: Let B be obtained from A so that has same adjacent rows. Then $D(B)=-D(A), D(A)=0$.
- Construction of determinant functions:
- We will construct the functions by induction on dimensions.
- Definition: $\mathrm{n}>1$. A nxn matrix over K. A(ijj) $(\mathrm{n}-1) \mathrm{x}(\mathrm{n}-1)$ matrix obtained by deleting ith row and jth column.
- If D is ($n-1$)-linear, $A n x n$, define $D_{\mathrm{ij}}(A)=D[A(i j)]$.
- Fix j. Define

$$
E_{j}(A):=\sum_{i=1}^{n}(-1)^{i+j} A_{i j} D_{i j}(A)
$$

- Theorem 1: $\mathrm{n}>1$.
$-\mathrm{E}_{\mathrm{j}}$ is an alternating n -linear function.
- If D is a determinant, then E_{j} is one for each j .
- This constructs a determinant function for each n by induction.
- Proof: $D_{i j}(A)$ is linear of any row except the ith row.
$-A_{i j} D_{i j}(A)$ is n-linear
- E_{j} is n -linear

- We show $E_{j}(A)=0$ if A has two equal adjacent rows.

- Say $\mathrm{a}_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}+1}$. $\mathrm{D}[\mathrm{A}(\mathrm{i} \mathrm{j})]=0$ if $\mathrm{i} \neq \mathrm{k}, \mathrm{k}+1$.

$$
\begin{gathered}
E_{j}(A)=(-1)^{k+j} A_{k j} D_{k j}(A)+(-1)^{k+1+j} A_{(k+1) j} D_{(k+1) j}(A) \\
\alpha_{k}=\alpha_{k+1}, A_{k j}=A_{(k+1) j}, D_{k j}(A)=D_{(k+1) j}(A)
\end{gathered}
$$

- Thus $E_{j}(A)=0$. E_{j} is alternating n-linear function.
- If D is a determinant, then so is E_{j}.

$$
E_{J}\left(I_{n \times n}\right)=\sum_{i=1}^{n}(-1)^{i+j} I_{i j} D_{i j}(I)=(-1)^{2 j} \delta_{i j} D_{i j}(I)=D\left(I_{(n-1) \times(n-1)}\right)=1
$$

- Corollary: K commutative ring with 1. There exists at least one determinant function on $K^{n \times n}$.
- Proof: $\mathrm{K}^{1 \times 1}, \mathrm{~K}^{2 \times 2}$ exists
$K^{n-1 \times n-1}$ exists -> $\mathrm{K}^{n \times n}$ exists by Theorem 1.

Uniqueness of determinant functions

- Symmetric group Sn
$=\{f:\{1,2, \ldots, n\}->\{1,2, \ldots, n\} \mid f$ one-to-one, onto $\}$
- Facts: Any f can be written as a product of interchanges (i,j):
- Given f, the product may be many.
- But the number is either even or odd depending only on f .
- Definition: $\operatorname{sgn}(\mathrm{f})=1$ if f is even, $=-1$ if f is odd.
- Claim: D a determinant

$$
\begin{gathered}
D\left(\epsilon_{\sigma 1}, \ldots, \epsilon_{\sigma n}\right)= \pm D\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)= \pm 1 \\
D\left(\epsilon_{\sigma 1}, \ldots, \epsilon_{\sigma n}\right)=\mathrm{s} g n \sigma
\end{gathered}
$$

- Proof: $D\left(\epsilon_{\sigma 1}, \ldots, \epsilon_{\sigma n}\right)$ is obtained from I by applying $\iota_{1}, \cdots, \iota_{m}$ to $D(I)$.
- Each application changes the sign of the value once.
- Consequence: sgn is well-defined.
- We show the uniqueness of the determinant function by computing its formula.
- Let D be alternating n -linear function.
- A a nxn-matrix with rows a_{1}, \ldots, a_{n}.
- e_{1}, \ldots, e_{n} rows of I.

$$
\alpha_{i}=\sum_{j=1}^{n} A(i, j) \epsilon_{j}
$$

$$
\begin{aligned}
D(A) & =D\left(\sum_{j} A(1, j) \epsilon_{j}, \alpha_{2}, \ldots, \alpha_{n}\right) \\
& =\sum_{k_{1}} A\left(1, k_{1}\right) D\left(\epsilon_{k_{1}}, \alpha_{2}, \ldots, \alpha_{n}\right) \\
& \alpha_{2}=\sum_{k_{2}} A\left(2, k_{2}\right) \epsilon_{k_{2}}
\end{aligned}
$$

$$
D\left(\epsilon_{k_{1}}, \alpha_{2}, \ldots, \alpha_{n}\right)=\quad D\left(\epsilon_{k_{1}}, \sum_{k_{2}} A\left(2, k_{2}\right) \epsilon_{k_{2}}, \ldots, \alpha_{n}\right)
$$

$$
D(A) \quad=\sum_{k_{1}} A\left(1, k_{1}\right) \sum_{k_{2}} A\left(2, k_{2}\right) D\left(k_{k_{1}}, \epsilon_{k_{2}}, \ldots, \alpha_{n}\right)
$$

- By induction, we obtain

$$
D(A)=\sum_{k_{1}, k_{2}, \ldots, k_{n}} A\left(1, k_{1}\right) A\left(2, k_{2}\right) \cdots A\left(n, k_{n}\right) D\left(\epsilon_{k_{1}}, \epsilon_{k_{2}}, \ldots, \epsilon_{k_{n}}\right)
$$

$$
D\left(\epsilon_{k_{1}}, \ldots, \epsilon_{k_{n}}\right)=0
$$

- if $\left\{k_{1}, \ldots, k_{n}\right\}$ is not distinct.
- Thus $\{1, \ldots, n\}->\left\{\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{n}}\right\}$ is a permutation.

$$
\begin{gathered}
D(A)=\sum_{\sigma \in S_{n}} A(1, \sigma 1) A(2, \sigma 2) \cdots A(n, \sigma n) D\left(\epsilon_{\sigma 1}, \ldots, \epsilon_{\sigma n}\right) \\
D(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn} \sigma A(1, \sigma 1) A(2, \sigma 2) \cdots A(n, \sigma n) D(I) \\
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn} \sigma A(1, \sigma 1) A(2, \sigma 2) \cdots A(n, \sigma n)
\end{gathered}
$$

- Theorem 2: $\mathrm{D}(\mathrm{A})=\operatorname{det}(\mathrm{A}) \mathrm{D}(\mathrm{I})$ for D alternating n-linear.
- Proof: proved above.
- Theorem 3: $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$.
- Proof: A, B nxn matrix over K.
- Define $D(A)=\operatorname{det}(A B)$ for B fixed.
$-D\left(a_{1}, \ldots, a_{n}\right)=\operatorname{det}\left(a_{1} B, \ldots, a_{n} B\right)$.
- D is n-linear as $a->a B$ is linear.
$-D$ is alternating since if $a_{i}=a_{i+1}$, then $D(A)=0$.
$-D(A)=\operatorname{det} A D(I)$.
$-\quad D(I)=\operatorname{det}(I B)=\operatorname{det} B$.
$-\operatorname{det} A B=D(A)=\operatorname{det} A \operatorname{det} B$.
- Fact: sgn: $\mathrm{S}_{\mathrm{n}}->\{-1,1\}$ is a homomorphism. That is, $\operatorname{sgn}(\sigma \tau)=\operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)$.
- Proof: $\sigma=\sigma_{1} \ldots \sigma_{n}, \tau=\tau_{1} \ldots \tau_{m}$: interchanges. $\sigma \tau=\sigma_{1} \ldots \sigma_{n} \tau_{1} \ldots \tau_{m}$. Another proof:
$\operatorname{sgn}(\sigma \tau)=\operatorname{det}(\sigma \tau(\mathrm{I}))=\operatorname{det}(\sigma(\mathrm{I}) \tau(\mathrm{I}))$
$=\operatorname{det}(\sigma(\mathrm{I})) \operatorname{det}(\tau(\mathrm{I}))=\operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)$

