
Ch. 5 Determinants 

Ring 
Determinant functions 

Existence, Uniqueness and 
Properties 



Rings 

•  A ring is a set K with operations  
–  (x,y)->x+y. 
–  (x,y)->xy. 
–  (a) K is commutative under + 
–  (b) (xy)z=x(yz) 
–  (c ) x(y+z)=xy+xz, (y+z)x=yx+zx 

•  If xy=yx, then K is a commutative ring. 
•  If there exists 1 s.t. 1x=x1=x for all x in K, 

then K is a ring with 1.  



•  Fields are commutative rings.  
•  F[x] is a commutative ring with 1. 
•  Z the ring of integers is a commutative 

ring with 1. Not a field 

•  Rings with 1. Two are commutative. 
•  Zn. n any positive integer is a 

commutative ring with 1.  
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•  Definition: Mmxn(K)={Amxn | aij in K }, K a 
commutative ring with 1.  
– Sum and product is defined 
– A(B+C)=AB+AC  
– A(BC)=(AB)C.  
– m=n case: This will be a ring (not 

commutative in general) 
•  We introduce this object to prove some 

theorems elegantly in this book.  



5.2. Determinant functions 
Existence and Uniqueness 

•  Knxn ={nxn matrices over K} = {n tuple of 
n-dim row vectors over K} 

•  n-linear functions 
 D: Knxn -> K, A -> D(A) in K.  
– D is n-linear if D(r1,…,ri,….,rn) is a linear 

function of ri for each i. ri=ith row. 



•  Example: D(A) := a A(1,k1)…,A(n,kn),  
1≤ ki ≤n, A(i,j):= Aij. 

•  This is n-linear: n=3, k1=2,k2=3, k3=3  
•  D(A) =cA(1,2)A(2,3)A(3,3) 

–   D(a1,da2+a2’,a3) = ca12(da23+a’23)a33 

–    = cda12a23a33 + ca12a’23a33 

–     =  dD(a1,a2,a3)+ D(a1,a2’,a3) 
•  Proof: D(…,ai,…)= A(i,ki)b 

D(….,cai+a’i,…)= (cA(i,ki)+A’(i,ki))b 
= cD(…,ai,…)+D(…,a’i,…). 



•  Lemma: A linear combination of n-linear 
functions is n-linear. 

•  Definition: D is n-linear. D is alternating if  
–  (a) D(A)=0 if two rows of A are equal. 
–  (b) If A’ is obtained from A by interchanging two 

rows of A, then D(A)=-D(A’).  

•  Definition: K a commutative ring with 1. 
   D is a determinant function if D is n-

linear, alternating and D(I)=1.   
(The aim is to show existence and uniqueness 

of D) 



•  A 1x1 matrix D(A) = A. This is a 
determinant function. This is unique 
one. 

•  A 2x2 matrix. D(A):=A11A22-A12A21. 
– This is a determinant function 

•  D(I)=1.  
•  2-linear since sum of two 2-linear functions 
•  Alternating. Check (a), (b) above.  
•  This is also unique: 





•  Lemma: D nxn n-linear over K.  
D(A)=0 whenever two adjacent rows are 
equal è D is alternating.  
Proof: We show  
– D(A)=0 if any two rows of A are equal. 
– D(A’)=-D(A) if two rows are interchanged.  
–  (i) We show D(A’)=-D(A) when two 

adjacent rows are interchanged.  
•  0= D(…, ai+ai+1, ai+ai+1,…) 

= D(….,ai,ai,…)+ D(…, ai, ai+1,….) 
+ D(…., ai+1 , ai ,….) + D(…, ai+1 , ai+1 ,….)  
= D(…, ai, ai+1,….) + D(…., ai+1 , ai ,….)  



–  (ii) Say B is obtained from A by interchanging row i 
with row j. i<j. 

•  D(B)= (-1)2(j-i)-1 D(A), D(B)=-D(A).  

–  (iii) D(A)=0 if A has two same i, j rows:  
Let B be obtained from A so that has same 
adjacent rows. Then D(B)=-D(A), D(A)=0. 



•  Construction of determinant functions:  
– We will construct the functions by induction 

on dimensions.  
•  Definition: n>1. A nxn matrix over K.  

A(i|j) (n-1)x(n-1) matrix obtained by 
deleting ith row and jth column.  

•  If D is (n-1)-linear, A nxn, define  
Dij(A) = D[A(i|j)].  

•  Fix j. Define  



•  Theorem 1: n>1.  
– Ej is an alternating n-linear function.  
–  If D is a determinant, then Ej is one for 

each j. 
•  This constructs a determinant function 

for each n by induction.  
•  Proof: Dij(A) is linear of any row except 

the ith row.  
– Aij Dij(A) is n-linear 
– Ej is n-linear 



– We show Ej(A)=0 if A has two equal 
adjacent rows.  

•  Say ak=ak+1. D[A(i|j)] =0 if i≠k, k+1. 

•  Thus Ej(A)=0. Ej is alternating n-linear function. 

–  If D is a determinant, then so is Ej. 

EJ (In×n ) = (−1)i+ j
i=1

n

∑ IijDij (I ) = (−1)
2 jδ

jj
Djj (I ) = D(I(n−1)×(n−1) ) =1



•  Corollary: K commutative ring with 1. 
There exists at least one determinant 
function on Knxn.  

•  Proof: K1x1, K2x2 exists  
Kn-1xn-1 exists -> Knxn exists by Theorem 
1.  



Uniqueness of determinant 
functions 

•  Symmetric group Sn  
={f:{1,2,…,n} -> {1,2,…,n}|f one-to-one, onto} 

•  Facts: Any f can be written as a product of 
interchanges (i,j): 
–  Given f, the product may be many. 
–  But the number is either even or odd depending 

only on f.  
•  Definition: sgn(f) = 1 if f is even, =-1 if f is odd.  



•  Claim: D a determinant 

•  Proof:                        is obtained from I 
by applying                       to D(I).  
– Each application changes the sign of the 

value once.   
•  Consequence: sgn is well-defined. 



•  We show the uniqueness of the 
determinant function by computing its 
formula.  

•  Let D be alternating n-linear function. 
•  A a nxn-matrix with rows a1,…,an. 
•  e1,…, en rows of I. 



•  By induction, we obtain 



•  if                  is not distinct.   
•  Thus {1,…,n}->{k1,…,kn} is a 

permutation. 



•  Theorem 2: D(A) = det(A)D(I) for D alternating 
n-linear. 
–  Proof: proved above.   

•  Theorem 3: det(AB)=(detA)(det B).  
•  Proof: A, B nxn matrix over K. 

–  Define  D(A)=det(AB) for B fixed.  
–  D(a1,…,an)= det(a1B,…,anB). 
–  D is n-linear as a -> aB is linear. 
–  D is alternating since if ai=a i+1, then D(A)=0. 



–  D(A) = det A D(I).  
–  D(I) = det(IB)=det B.  
–  det AB = D(A)=detA det B. 

•  Fact: sgn:Sn -> {-1,1} is a homomorphism. 
That is, sgn(στ)=sgn(σ)sgn(τ). 

•  Proof: σ = σ1…σn, τ=τ1…τm:            
interchanges. στ = σ1…σnτ1…τm.	



•  Another proof:  
sgn(στ) = det(στ(Ι))= det(σ(Ι)τ(Ι))	



=  det(σ(Ι))det(τ(Ι)) =  sgn(σ)sgn(τ) 


