Ch 4: Polynomials

Polynomials
Algebra
Polynomial ideals

Polynomial algebra

- The purpose is to study linear transformations. We look at polynomials where the variable is substituted with linear maps.
- This will be the main idea of this book to classify linear transformations.
- F a field. A linear algebra over F is a vector space A over F with an additional operation AxA -> A.
- (i) a(bc)=(ab)c.
- (ii) $a(b+c)=a b+a c,(a+b) c=a c+b c, a, b, c$ in A.
- (iii) $c(a b)=(c a) b=a(c b), a, b$ in A, c in F
- If there exists 1 in A s.t. $a 1=1 a=a$ for all a in A , then A is a linear algebra with 1 .
- A is commutative if $a b=b$ for all a, b in A.
- Note there may not be a^{-1}.
- Examples:
$-F$ itself is a linear algebra over F with 1. (R, $C, Q+i Q, \ldots$) operation = multiplication
$-M_{n \times n}(F)$ is a linear algebra over F with 1=Identity matrix. Operation=matrix mutiplication
$-L(V, V), V$ is a v.s. over F, is a linear algebra over F with 1=identity transformation. Operation=composition.
- We introduce infinite dimensional algebra (purely abstract device)

$$
\begin{array}{rlc}
F^{\infty}=\left\{\left(f_{0}, f_{1}, f_{2}, \ldots\right) \mid f_{i} \in F\right\} \\
f & = & \left(f_{0}, f_{1}, f_{2}, \ldots\right) \\
g & = & \left(g_{0}, g_{1}, g_{2}, \ldots\right) \\
a f+b g & = & \left(a f_{0}+b g_{0}, a f_{1}+b g_{1}, \ldots\right) \\
(f g)_{n} & = & \sum_{i=0}^{n} f_{i} g_{n-i}, n=0,1,2 \ldots
\end{array}
$$

$$
\begin{array}{cl}
f g & = \\
(g f)_{n} & =\sum_{i=0}^{n} g_{i} f_{n-i}=\sum_{j=1}^{n} f_{j} g_{n-j}=(f g)_{n}
\end{array}
$$

- (fg)h=f(gh)
- Algebra of formal power series

$$
f(x)=\sum_{n=0}^{\infty} f_{n} x^{n}
$$

$$
F[x] \subset F^{\infty}, F[x]=\operatorname{Span}\left(1, x, x^{2}, x^{3}, \ldots\right)
$$

- deg f:

$$
f(x)=f_{0} x^{0}+f_{1} x^{1}+\cdots+f_{n} x^{n}, \operatorname{deg} f=n
$$

- Scalar polynomial cx ${ }^{0}$
- Monic polynomial $f_{n}=1$.
- Theorem 1: f, g nonzero polynomials over F. Then

1. fg is nonzero.
2. $\operatorname{deg}(f g)=\operatorname{deg} f+\operatorname{deg} g$
3. $f g$ is monic if both f and g are monic.
4. $f g$ is scalar iff both f and g are scalar.
5. If $f+g$ is not zero, then $\operatorname{deg}(f+g) \leq$ $\max (\operatorname{deg}(\mathrm{f}), \operatorname{deg}(\mathrm{g})$).

- Corollary: $\mathrm{F}[\mathrm{x}]$ is a commutative linear algebra with identity over $\mathrm{F} .1=1 . \mathrm{x}^{0}$.
- Corollary 2: $\mathrm{f}, \mathrm{g}, \mathrm{h}$ polynomials over F . $\mathrm{f} \neq$ 0. If $\mathrm{fg}=\mathrm{fh}$, then $\mathrm{g}=\mathrm{h}$.
- Proof: $\mathrm{f}(\mathrm{g}-\mathrm{h})=0$. By 1. of Theorem 1, $\mathrm{f}=0$ or $\mathrm{g}-\mathrm{h}=0$. Thus $\mathrm{g}=\mathrm{h}$.
- Definition: a linear algebra A with identity over a field F. Let $a^{0}=1$ for any a in A. Let $f(x)$ $=f_{0} x^{0}+f_{1} x^{1}+\ldots+f_{n} x^{n}$. We associate $f(a)$ in A by $f(a)=f_{0} a^{0}+f_{1} a^{1}+\ldots+f_{n} a^{n}$.
- Example: $A=M_{2 \times 2}(C) \cdot B=\left[\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right], f(x)=x^{2}+2$.

$$
f(B)=2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
-1 & 2
\end{array}\right]^{2}=\left[\begin{array}{cc}
3 & 0 \\
-3 & 6
\end{array}\right]
$$

- Theorem 2: F a field. A linear algebra A with identity over F.

$$
\begin{aligned}
& -1 .(c f+g)(a)=c f(a)+g(a) \\
& -2 . f g(a)=f(a) g(a) .
\end{aligned}
$$

- Fact: $f(a) g(a)=g(a) f(a)$ for any f, g in $F[x]$ and a in A.
- Proof: Simple computations.
- This is useful.

Lagrange Interpolations

- This is a way to find a function with preassigned values at given points.
- Useful in computer graphics and statistics.
- Abstract approach helps here: Concretely approach makes this more confusing. Abstraction gives a nice way to view this problem.
- $t_{0}, t_{1}, \ldots, t_{n} n+1$ given points in F. (char $F=0$)
$-V=\{f$ in $F[x] \mid \operatorname{deg} f \leq n\}$ is a vector space.
$-L_{i}(f):=f\left(t_{i}\right) . L_{i}: V$-> $F . i=0,1, \ldots, n$. This is a linear functional on V .
$-\left\{L_{0}, L_{1}, \ldots, L_{n}\right\}$ is a basis of V^{*}.
- We find a dual basis in $\mathrm{V}=\mathrm{V}^{* *}$:
- We need $\mathrm{L}_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{j}}\right)=\delta_{\mathrm{ij}}$. That is, $\mathrm{f}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{i}}\right)=\delta_{\mathrm{ij}}$.
- Define

$$
P_{i}(x)=\prod_{j \neq i}\left(\frac{x-t_{j}}{t_{i}-t_{j}}\right)
$$

$$
P_{2}(x)=\frac{x-t_{0}}{t_{2}-t_{0}} \frac{x-t_{1}}{t_{2}-t_{1}} \frac{x-t_{3}}{t_{2}-t_{3}} \frac{x-t_{4}}{t_{2}-t_{4}}, n=4, i=2
$$

- Then $\left\{\mathrm{P}_{0}, \mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}\right\}$ is a dual basis of $\mathrm{V}^{* *}$ to $\left\{L_{0}, L_{1}, \ldots, L_{n}\right\}$ and hence is a basis of V.
- Therefore, every f in V can be written uniquely in terms of $P_{i} s$.

$$
\begin{aligned}
f(x) & =\sum_{i=0}^{n} L_{i}(f) P_{i} \\
& =\sum_{i=0}^{n} f\left(t_{i}\right) P_{i}
\end{aligned}
$$

- This is the Lagrange interpolation formula.
- This follows from Theorem 15. P.99. (a->f, $\left.L_{i} \rightarrow f_{i,}, a_{i}>P_{i}\right)$

$$
\alpha=\sum_{i=1}^{n} f_{i}(\alpha) \alpha_{i}
$$

- Example: Let $\mathrm{f}=\mathrm{xj}$. Then

$$
x^{j}=\sum_{i=1}^{n}\left(t_{i}\right)^{j} P_{i}
$$

- Bases

$$
\begin{aligned}
& \left\{x^{0}, x^{1}, \ldots, x^{n}\right\},\left\{P_{0} \cdot P_{1}, \ldots, P_{n}\right\} \\
& {\left[\begin{array}{ccccc}
1 & t_{0} & t_{0}^{2} & \ldots & t_{0}^{n} \\
1 & t_{1} & t_{1}^{2} & \ldots & t_{1}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & t_{n} & t_{n}^{2} & \ldots & t_{n}^{n}
\end{array}\right]}
\end{aligned}
$$

- The change of basis matrix is invertible
(The points are distinct.) Vandermonde matrix
- Linear algebra isomorphism I: A->A'
$-l(c a+d b)=c l(a)+d l(b), a, b$ in A, c, d in F.
$-I(a b)=I(a) I(b)$.
- Vector space isomorphism preserving multiplications,
- If there exists an isomorphism, then A and A^{\prime} are isomorphic.
- Example: $L(V)$ and $M_{n x n}(F)$ are isomorphic where V is a vector space of dimension n over F.
- Proof: Done already.
- Useful fact:

$$
\begin{aligned}
& \begin{aligned}
f & =\sum_{i=0}^{n} c_{i} x^{i} \\
f(U) & =\sum_{n=0}^{i=0} c_{i} U^{i} \\
{[f(U)]_{\mathcal{B}} } & =\sum_{n=0}^{n} c_{i}\left[U^{i}\right]_{\mathcal{B}}
\end{aligned} \\
& {\left[T_{1} T_{2}\right]_{\mathcal{B}}={ }_{\left[T_{1}\right]_{\mathcal{B}}\left[T_{2}\right]_{\mathcal{B}}}} \\
& {\left[U^{i}\right]_{\mathcal{B}}=[U]_{\mathcal{B}}^{i}} \\
& {[f(U)]_{\mathcal{B}}=f\left([U]_{\mathcal{B}}\right)}
\end{aligned}
$$

