Polynomial Ideals

Euclidean algorithm
Multiplicity of roots
Ideals in $\mathrm{F}[\mathrm{x}]$.

Euclidean algorithms

- Lemma. f,d nonzero polynomials in $F[x]$. deg $d \leq \operatorname{deg} f$. Then there exists a polynomial g in $F[x]$ s.t. either $f-d g=0$ or deg(f-dg)<deg f.
- Proof of lemma:

$$
\begin{aligned}
& f=\quad a_{m} x^{m}+\sum_{i=0}^{m-1} a_{i} x^{i}, a_{m} \neq 0 \\
& d=b_{n} x^{n}+\sum_{i=0}^{n-1} b_{i} x^{i}, b_{n} \neq 0, m \geq n
\end{aligned}
$$

$$
\begin{array}{ccc}
f-\left(a_{m} / b_{n}\right) x^{m-n} d & = & c_{m-1} x^{m-1}+\ldots+c_{0} \\
\operatorname{deg}\left(f-\left(a_{m} / b_{n}\right) x^{m-n} d\right) & < & \operatorname{deg} f \\
\operatorname{or} f-\left(a_{m} / b_{n}\right) x^{m-n} d & = & 0 \\
g=\left(a_{m} / b_{n}\right) x^{m-n}
\end{array}
$$

Theorem 4. f, d in $F[x] . d \neq 0$. There exists q, r in $\mathrm{F}[\mathrm{x}]$ s.t.
(i) $f=d q+r$
(ii) $r=0$ or deg $r<d e g d$.

This is the Euclidean algorithm.

- Proof of Theorem 4. If $\mathrm{f}=0$ or $\operatorname{deg} \mathrm{f}<$ deg d, take $q=0$, and $r=f$.
- Assum deg f $>$ deg d.
$-\exists \mathrm{g}$ in $\mathrm{F}[\mathrm{x}]$ s.t.
(i) $\operatorname{deg}(\mathrm{f}-\mathrm{dg}$) $<\operatorname{deg} \mathrm{f}$ or (ii) f -dg=0.
- Case (i) We find h such that
- deg(f-dg-dh)<deg f-dg or f-d(g+h)=0.
- $\mathrm{f}-\mathrm{d}\left(\mathrm{g}+\mathrm{h}+\mathrm{h}^{\prime}+\ldots+\mathrm{h}^{(\mathrm{n})}\right)=\mathrm{r}$ with deg $\mathrm{r}<\mathrm{deg} \mathrm{d}$ or $=0$.
- Thus $f=d q+r, r=0$ or deg $r<d e g d$.
- Uniqueness: $f=d q+r, f=d q \prime+r$ '.
- deg r < deg d.
- Suppose $\mathrm{q}-\mathrm{q} \neq 0$ and $\mathrm{d} \neq 0$.
$-d\left(q^{\prime}-q\right)=r^{\prime}-r$.
$-\operatorname{deg} d+\operatorname{deg}\left(q^{\prime}-q\right)=\operatorname{deg}\left(r^{\prime}-r\right)$
- But deg r^{\prime}, deg $r<d e g d$. This is a contradiction.
$-q^{\prime}=q, r^{\prime}=r$.
- $f=d g$, d divides f. f is a multiple of d. q is a quotient of f.
- Corollary. f is divisible by $(\mathrm{x}-\mathrm{c})$ iff $f(c)=0$.
- Proof: $f=(x-c) q+r, \operatorname{deg} r=0, r$ is in F. $f(c)=0 . q(c)+r . f(c)=0$ iff $r=0$.
- Definition. c in F is a root of f iff $f(c)=0$.
- Corollary. A polynomial of degree n over a field F has at most n roots in F.
- Proof: $f=(x-a) g$ if a is a root. Deg $g<d e g$ f. By induction g has at most $n-1$ roots. F has at most n roots.

Multiplicity of roots

- Derivative of $f=c_{0}+c_{1} x+\ldots+c_{n} x^{n}$.

$$
\begin{aligned}
& -f^{\prime}=D f=c_{1}+2 c_{2} x+\ldots+n c_{n} x^{n-1} . \\
& -f^{\prime \prime}=D^{2}=D D f
\end{aligned}
$$

- Taylors formula: F a field of char 0. f a polynomial.

$$
f(x)=\sum_{k=0}^{n} \frac{D^{k} f(c)}{k!}(x-c), c \in F
$$

$$
\begin{aligned}
& \text { - Proof: }(a+b)^{m}=\quad \sum_{k=0}^{m}\binom{m}{k} a^{m-k} b^{k} \\
& \binom{m}{k}=\frac{m!}{k!(m-k)!}=\frac{m(m-1) \cdots(m-k+1)}{1 \cdot 2 \cdots k} \\
& x^{m}=\quad(c+(x-c))^{m} \\
& =\quad \sum_{k=0}^{m}\binom{m}{k} c^{m-k}\left(x-c \mathbf{)}^{k}\right. \\
& =c^{m}+m c^{m-1}(x-c)+\cdots+(x-c)^{m} \\
& x^{m}=\quad \sum_{k=0}^{m} \frac{D^{k} x^{m}}{k!}(c)(x-c)^{k} \\
& \begin{array}{ccc}
\begin{array}{cc}
\mathbf{f}(\mathbf{x}) & = \\
\mathbf{D}^{k} \mathbf{f}(\mathbf{c}) & =
\end{array} & \sum_{m=0}^{n} \sum_{m=0}^{n} \mathbf{a}_{m}\left(\mathbf{D}^{k} \mathbf{x}^{m}\right)(\mathbf{c})
\end{array} \\
& \sum_{k=0}^{n} \frac{D^{k} f(c)}{k!}(\mathbf{x}-\mathbf{c})^{k}=\sum_{k=0}^{n} \sum_{m=0}^{n} \mathbf{a}_{m} \frac{D^{k} x^{m}}{k!}(\mathbf{x}-\mathbf{c})^{k} \\
& \begin{array}{ll}
=\sum_{m=0}^{n} \mathbf{a}_{m} \sum_{k=0}^{n} \frac{D^{k} x^{m}}{k!}(\mathbf{c})(\mathbf{x}-\mathbf{c})^{k} \\
= & \sum_{m=0}^{n} \mathbf{a}_{m} \mathbf{x}^{m}=\mathbf{f}
\end{array}
\end{aligned}
$$

- Multiplicity of roots: c is a zero of f . The multiplicity of c is largest positive integer r such that ($x-c)^{r}$ divides f.
- Theorem 6: F a field of char 0. $\operatorname{deg} \mathrm{f} \leq \mathrm{n}$.
$-c$ is a root of f of multiplicity r iff
$-D^{k f}(c)=0,0 \leq k \leq r-1$, and $D^{r} f(c) \neq 0$.
- Proof: (->) c mult r. $\mathrm{f}=(\mathrm{x}-\mathrm{c})^{\mathrm{r}} \mathrm{g}, \mathrm{g}(\mathrm{c}) \neq 0$.

$$
\begin{array}{rlrl}
f(x) & =(x-c)^{r}\left(\sum_{m=0}^{n-r} \frac{D^{m g}}{m!}(c)(x-c)^{m}\right) \\
& = & \sum_{m=0}^{n-r} D^{m} g \\
& = & \sum_{k=0}^{n}(x)(x-c)^{m+r} k(c) \\
& = & (x-c)^{k}
\end{array}
$$

- By uniqueness of polynomial expansions:

$$
\begin{array}{rlc}
\frac{D^{k} f(c)}{k!} & =\quad 0,0 \leq k \leq r-1 \\
& = & \frac{D^{k-r} g}{(k-r)!}, r \leq k \leq n \\
\frac{D^{o} g(c)}{0!} & = & g(c) \neq 0
\end{array}
$$

- (<-) $D^{k f}(c)=0,0 \leq k \leq r-1$.
- By Taylors formula, $f=(x-c)^{r} g, g(c) \neq 0$.
$-r$ is the largest integer such that $(x-c)^{r}$ divides f.
- Ideals: This is an important concept introduced by Dedekind in 1876 as generalizations of numbers....
- One can add and multiply ideals but ideals are subsets of $\mathrm{F}[\mathrm{x}]$.
- Ideals play important roles in number theory and algebra. In fact, useful in the Fermat conjecture and in algebraic geometry.
- Search "ideal in ring theory". en.wikipedia.org/wiki/Main_Page
- Definition: An ideal in $F[x]$ is a subspace M of $F[x]$ such that $f g$ is in M whenever f is in $F[x]$ and g is in M.
- General ring theory case is not needed in this book.
- Example: Principal ideals
- d a polynomial
$-M=d F[x]=\{d f \mid f$ in $F[x]\}$ is an ideal.
- $c(d f)+d g=d(c f+g)$.
- $f d g=d(f g)$
- If d in F not 0 , then $d F[x]=F[x]$.
$-F[x]$ is an ideal
-M is a principal ideal generated by d .
- (d can be chosen to be monic always)
- Example: $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{n}}$ polynomials in $F[x] .<d_{1} F[x], d_{2} F[x], \ldots, d_{n} F[x]>$ is an ideal.
- Proof:

$$
\begin{aligned}
& -g_{1}=d_{1} f_{1}+\ldots+d_{n} f_{n}, g_{2}=d_{1} h_{1}+\ldots+d_{n} h_{n} \text { in } M \\
& \cdot \operatorname{cg}_{1}+g_{2}=d_{1}\left(c f_{1}+h_{1}\right)+\ldots+d_{n}\left(c f_{n}+h_{n}\right) \text { is in } M . \\
& -g=d_{1} f_{1}+\ldots+d_{n} f_{n} \text { is in } M \text { and } f \text { in } F[x] . \\
& \quad \cdot f g=d_{1} f_{1}+\ldots+d_{n}+f_{n} \text { is in } M
\end{aligned}
$$

- Ideals can be added and multiplied like numbers:

$$
\begin{aligned}
& -I+J=\{f+g \mid f \in I, g \in J\} \\
& -I J=\left\{a_{1} b_{1}+\ldots+a_{n} b_{n} \mid a_{i} \in I, b_{i} \in J\right\}
\end{aligned}
$$

- Example:

$$
\begin{gathered}
-<d_{1} F[x], d_{2} F[x], \ldots, d_{n} F[x]>= \\
d_{1} F[x]+d_{2} F[x]+\ldots+d_{n} F[x] . \\
-d_{1} F[x] d_{2} F[x]=d_{1} d_{2} F[x] .
\end{gathered}
$$

- Theorem: F a field. M any none zero ideal. Then there exists a unique monic polynomial din $\mathrm{F}[\mathrm{x}]$ s.t. $\mathrm{M}=\mathrm{dF}[\mathrm{x}]$.
- Proof: $\mathrm{M}=0$ case: done
- Let $\mathrm{M} \neq 0$. M contains some non-zero poly.
- Let d be the minimal degree one.
- Assume d is monic.
- If f is in $M, f=d q+r$. $r=0$ or deg $r<d e g d$.
- Since r must be in M and d has minimal degee, $r=0$.
$-f=d q$. $M=d F[x]$.
- Uniqueness: $\mathrm{M}=\mathrm{dF}[\mathrm{x}]=\mathrm{gF}[\mathrm{x}]$. d,g monic
- There exists p, q s.t. $d=g p, g=d q$.
$-d=d p q . \operatorname{deg} d=\operatorname{deg} d+\operatorname{deg} p+\operatorname{deg} q$.
$-\operatorname{deg} p=\operatorname{deg} q=0$.
- d, q monic. $\mathrm{p}, \mathrm{q}=1$.
- Corollary: p_{1}, \ldots, p_{n} polynomials not all 0 . Then There exists unique monic polynomial d in $F[x]$ s.t.
- (i) d is in $\left\langle p_{1} F[x], \ldots, p_{n} F[x]>\right.$.
- (ii) d divides each of the p_{i} s.
- (iii) d is divisible by every polynomial dividing all $p_{i} s$. (i.e., d is maximal such poly with (i),(ii).)
- Proof: (existence) Let d be obtained by $M=p_{1} F[x]+\ldots+p_{n} F[x]=d F[x]$.
- (ii) Thus, every f in M is divisible by d.
- (i) d is in M.
- (iii) Suppose $p_{i} \mid f, i=1, \ldots, n$.
- Then $p_{i}=\mathrm{fg}_{\mathrm{i}} \mathrm{l}=1, \ldots, \mathrm{n}$
$-d=p_{1} q_{1}+\ldots+p_{n} q_{n}$ since d is in M.
$-d=f g_{1} q_{1}+\ldots+f g_{n} q_{n}=f\left(g_{1} q_{1}+\ldots+g_{n} q_{n}\right)$
$-\mathrm{d} \mid \mathrm{f}$
- (Uniqueness)
- Let d' satisfy (i),(ii).
- By (i) for d and (ii) for d', d' divides d .
- By (i) for d' and (ii) for d, d divides d'.
- Thus, cd'=d, c in F. d' satisfies (iii) also.
- Conversely, (i)(ii)(iii) -> d is the monic generator of M .
- Definition: $p_{1} F[x]+\ldots+p_{n} F[x]=d F[x]$. We define $d=\operatorname{gcd}\left(p_{1}, \ldots, p_{n}\right)$
- p_{1}, \ldots, p_{n} is relatively prime if $\mathrm{gcd}=1$.
- If $\mathrm{gcd}=1$, there exists $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}}$ s.t. $1=f_{1} p_{1}+\ldots+f_{n} p_{n}$.
- Example: $\operatorname{gcd}\left(x+2, x^{2}+8 x+16\right)$

$$
\begin{gathered}
x^{2}+8 x+16=(x+2)(x+6)+4 \\
4 \in M, 1 \in M, M=F[x] \\
g c d\left(x+1, x^{2}+8 x+16\right)=1 \\
1=(-1 / 4)(x+6)(x+2)+(1 / 4)\left(x^{2}+8 x+16\right)
\end{gathered}
$$

4.5. Prime Factorization of a polynomial

- f in $F[x]$ is reducible over F if there exists g ,h s.t. $\mathrm{f}=\mathrm{gh}$. Otherwise f is irreducible.
- Example 1: $x^{2}+1$ is irreducible in $R[x]$.
- Proof: $(a x+b)(c x+d)=x^{2}+1, a, b, c, d$ in R
$-=a c x^{2}+(b c+a d) x+b d$.
$-a c=1, b d=1, b c+a d=0 . c=1 / a, d=1 / b$. $b / a+a / b=0 .\left(b^{2}+a^{2}\right) / a b=0->a=0, b=0$.
$-X^{2}+1=(x+i)(x-i)$ is reducible in $C[x]$.
- A prime polynomial is a non-scalar, irreducible polynomial in F[x].
- Theorem 8. p.f,g in F[x]. Suppose that p is prime and p divides $f g$. Then p divides f or p divides g.
- Proof: Assume p is monic. (w.l.o.g.)
- Only divisor of p are 1 and p.
- Let $d=\operatorname{gcd}(f, p)$. Either $d=1$ or $d=p$.
- If $\mathrm{d}=\mathrm{p}$, we are done.
- Suppose d=1. f,p rel. prime.
- Since (f, p)=1, there exists f_{0}, p_{0} s.t. $1=f_{0} f+p_{0} p$.
$-g=f_{0} f g+p_{0} p g=(f g) f_{0}+p\left(p_{0} g\right)$.
- Since p divides fg and p divides $p\left(p_{0} g\right)$, p divides g .
- Corollary. p prime. p divides $\mathrm{f}_{1} \mathrm{f}_{2} \ldots \mathrm{f}_{\mathrm{n}}$. Then p divides at least one f_{i}.
- Proof: By induction.
- Theorem 9. F a field. Every nonscalar monic polynomial in $F[x]$ can be factored into a product of monic primes in $F[x]$ in one and, except for order, only one way.
- Proof: (Existence)In case deg f=1. $f=a x+b=x+b$ form. Already prime.
- Suppose true for degree < n.
- Let deg $f=n>1$. If f is irreducible, then f is prime and done.
- Otherwise, $f=g h . g, h$ nonscalar, monic.
- deg g, deg h < n. g,h factored into monic primes by the induction hypothesis.
- $F=p_{1} p_{2} \ldots p_{n} . p_{i}$ monic prime.
- (Uniqueness) $f=p_{1} p_{2} \ldots p_{m}=q_{1} q_{2} \ldots q_{n}$.
- p_{m} must divide q_{i} for some i by above Cor.
$-q_{i} p_{m}$ are monic prime -> $q_{i}=p_{m}$
- If $\mathrm{m}=1$ or $\mathrm{n}=1$, then done.
- Assume m,n>1.
- By rearranging, $p_{m}=q_{n}$.
- Thus, $p_{1} \ldots p_{m-1}=q_{1} \ldots q_{n-1}$ deg $<n$.
- By induction $\left\{p_{1}, \ldots, p_{m-1}\right\}=\left\{q_{1}, \ldots, q_{n-1}\right\}$
- $\quad f=p_{1}^{n_{1}} \ldots p_{r}^{n_{r}}$
primary decomposition of f.
- Theorem 10. $f=p_{1}^{n_{1}} \ldots p_{k}^{n_{k}}$

$$
f_{j}=f / p_{j}^{n_{j}}=\prod_{i \neq j}^{k} p_{i}^{n_{i}}
$$

Then f_{1}, \ldots, f_{k} are relatively prime.

- Proof: Let $g=\operatorname{gcd}\left(f_{1}, \ldots, f_{k}\right)$.
- g divides f_{i} for each i.
$-g$ is a product of $p_{i} s$.
- g does not have as a factor p_{i} for each i since g divides f_{i}.
$-\mathrm{g}=1$.
- Theorem 11: Let f be a polynomial over F with derivative f^{\prime}. Then f is a product of distinct irreducible polynomial over F iff f and f ' are relatively prime.
- Proof: (<-) We show If f is not prod of dist polynomials, then f and f ' has a common divisor not equal to a scalar.
- Suppose $f=p^{2} h$ for a prime p.
$-f^{\prime}=p^{2} h^{\prime}+2 p p^{\prime} h$.
$-p$ is a divisor of f and f^{\prime}.
- f and f ' are not relatively prime.
- $(->) f=p_{1} \ldots p_{k}$ where p_{1}, \ldots, p_{k} are distinct primes.
$-f^{\prime}=p_{1} f_{1}+p_{2}{ }^{\prime} f_{2}+\ldots+p_{k}{ }^{\prime} f_{k}$.
- Let p be a prime dividing both f and f^{\prime}.
- Then $p=p_{i}$ for some i (since f|p).
- p_{i} divides f_{j} for all $j \neq i$ by def of f_{i}.
$-p_{i}$ divides $f^{\prime}=p_{1}{ }^{\prime} f_{1}+p_{2}{ }^{\prime} f_{2}+\ldots+p_{k}{ }^{\prime} f_{k}$.
$-p_{i}$ divides $p_{i}{ }^{\prime} f_{i}$ by above two facts.
$-p_{i}$ can't divide pi' since deg $p_{i}^{\prime}<\operatorname{deg} p_{i}$.
$-p_{i}$ can't divide f_{i} by definition. A contradiction.
- Thus f and f^{\prime} are relatively prime.
- A field F is algebraically closed if every prime polynomial over F has degree 1.

$$
f=c\left(x-c_{1}\right)^{m_{1}} \cdots\left(x-c_{k}\right)^{m_{k}}
$$

- $F=R$ is not algebraically closed.
- C is algebraically closed. (Topological proof due to Gauss.)
- fa real polynomial.
- If c is a root, then \bar{c} is a root.
- f a real polynomial, then roots are

$$
\left\{t_{1}, \ldots, t_{k}, c_{1}, \bar{c}_{1}, \ldots, c_{r}, \bar{c}_{r}\right\}, t_{i} \in R, c_{j} \in C-R
$$

- f is a product of $\left(\mathrm{x}-\mathrm{t}_{\mathrm{i}}\right)$ and $\mathrm{p}_{\mathrm{j}} \mathrm{S}$.
$p_{i}:=\left(x-c_{i}\right)\left(x-\bar{c}_{i}\right)=x^{2}-\left(c_{i}+\bar{c}_{i}\right)+c_{i} \bar{c}_{i}$
- f is a product of 1 st order or 2 nd order irreducible polynomials.

