Representation by matrices

Representation.
Basis change.

- $\mathrm{T}: \mathrm{Vn}^{\mathrm{n}}>\mathrm{W}^{\mathrm{m}} . \quad \mathcal{B}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}, \mathcal{B}^{\prime}=\left\{\beta_{1}, \ldots, \beta_{m}\right\}$

$$
\begin{gathered}
T \alpha_{j}=\sum_{i=1}^{m} A_{i j} \beta_{i}, A(i, j)=A_{i j} \text { mxn-matrix of } T . \\
\alpha=x_{1} \alpha_{1}+\cdots+x_{n} \alpha_{n} \\
T \alpha=T\left(\sum_{i=1}^{n} x_{j} \alpha_{j}\right)=\sum_{j=1}^{n} x_{j} T\left(\alpha_{j}\right) \\
=\sum_{j=1}^{n} x_{j}\left(\sum_{i=1}^{m} A_{i j} \beta_{i}\right)=\sum_{j=1}^{n} \sum_{i=1}^{m} x_{j} A_{i j} \beta_{i} \\
=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} A_{i j} x_{j}\right) \beta_{i} \\
\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(\sum_{j=1}^{n} A_{1 j} x_{j}, \ldots, \sum_{j=1}^{n} A_{m j} x_{j}\right) \\
{[T \alpha]_{\mathcal{B}^{\prime}}=A \cdot[\alpha]_{\mathcal{B}}}
\end{gathered}
$$

- T <-> matrix of T w.r.t B and B'
$-\{T: V->W\}<->_{B, B^{\prime}}\left\{A_{m \times n}\right\}$ 1-1 onto
$-L(V, W)<->_{B, B^{\prime}} M(m, n)$ 1-1 onto and is a linear isomorphism
- Example: $\mathrm{L}\left(\mathrm{F}^{2}, \mathrm{~F}^{2}\right)=\mathrm{M}_{2 \times 2}(\mathrm{~F})$
$-L\left(F^{m}, F^{n}\right)=M_{m \times n}(F)$
- When $W=V$, we often use $B^{\prime}=B$.

$$
\begin{array}{cl}
T\left(\alpha_{j}\right)=\sum_{i=1}^{n} A_{i j} \alpha_{i} & {[T]_{\mathcal{B}}=\left[A_{i j}\right]} \\
{[T \alpha]_{\mathcal{B}}=[T]_{\mathcal{B}}[\alpha]_{\mathcal{B}}} &
\end{array}
$$

- Example: $V=F^{n x 1}, W=F^{m x 1}$,
- $\mathrm{T}: \mathrm{V}->\mathrm{W}$ defined by $\mathrm{T}(\mathrm{X})=\mathrm{AX}$.
$-B, B$ ' standard basis
- Then $[T]_{B, B^{\prime}}=A$.

$$
\begin{array}{r}
T: C^{2} \rightarrow C^{2}, \begin{array}{ll}
y_{1} & =2 x_{1}-x_{2} \\
y_{2} & =x_{1}+x_{2}
\end{array} \\
A=\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right)
\end{array}
$$

- Theorem: V,W,Z, T:V->W, U:W->Z basis $B, B^{\prime}, B^{\prime \prime}, A=[T]_{B, B^{\prime}}, B=[U]_{B^{\prime}, B^{\prime \prime}}$. Then $C=B A=[U \cdot T]_{B, B^{\prime \prime}}$.
- Matrix multiplication correspond to compositions.
- Corollary: $[\mathrm{UT}]_{\mathrm{B}}=[\mathrm{U}]_{\mathrm{B}}[\mathrm{T}]_{\mathrm{B}}$ when $\mathrm{V}=\mathrm{W}=\mathrm{Z}, \mathrm{B}=\mathrm{B}^{\prime}=\mathrm{B}^{\prime \prime}$.
- Corollary. $\left[\mathrm{T}^{-1}\right]_{\mathrm{B}}=\left([\mathrm{T}]_{\mathrm{B}}\right)^{-1}$
- Proof: UT=I=TU. U=T-1.
$[U]_{B}[T]_{B}=[]_{B}=[T]_{B}[U]_{B}$.
- Basis Change

$$
\begin{aligned}
& \mathcal{B}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}, \mathcal{B}^{\prime}=\left\{\alpha_{1}^{\prime}, \ldots, \alpha_{n}^{\prime}\right\} \\
& \alpha_{j}^{\prime}=\sum_{i=1}^{n} P_{i j} \alpha_{i} \\
& x_{i}=\sum_{i=1}^{n} P_{i j} x_{j}^{\prime} \text { (P.51-52) } \\
& {[\alpha]_{\mathcal{B}}=\sum_{i=1} P[\alpha]_{\mathcal{B}^{\prime}}} \\
& {[T \alpha]_{\mathcal{B}}=[T]_{\mathcal{B}}[\alpha]_{\mathcal{B}}} \\
& {[T \alpha]_{\mathcal{B}}=P[T \alpha]_{\mathcal{B}^{\prime}}} \\
& {[T]_{\mathcal{B}} P[\alpha]_{\mathcal{B}^{\prime}}=P[T \alpha]_{\mathcal{B}^{\prime}}} \\
& P^{-1}[T]_{\mathcal{B}} P[\alpha]_{\mathcal{B}^{\prime}}=[T \alpha]_{\mathcal{B}^{\prime}} \\
& P^{-1}[T]_{\mathcal{B}} P=[T]_{\mathcal{B}^{\prime}}
\end{aligned}
$$

- Theorem 14: $[T]_{B^{\prime}}=P^{-1}[T]_{B} P$. Let U be s.t. $U a_{j}=a_{j}^{\prime} j=1, \ldots, n . P=\left[P_{1}, \ldots, P_{n}\right] . P_{j}=\left[a_{j}^{\prime}\right]_{B}$. - Then $[U]_{B}=P$ and $[T]_{B}=[U]_{B}{ }^{-1}[T]_{B}[U]_{B}$.
- Examples:

$$
[T]_{\mathcal{B}}=\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right)
$$

$$
\mathcal{B}=\{[1,0],[0,1]\}, \mathcal{B}^{\prime}=\{[1,1],[1,-1]\}
$$

$$
[1,1]=1[1,0]+1[0,1],[1,-1]=1[1,0]+(-1)[0,1]
$$

$$
P=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), P^{-1}=1 / 2\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

$$
[T]_{\mathcal{B}^{\prime}}=(1 / 2)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=(1 / 2)\left(\begin{array}{cc}
3 & 3 \\
-1 & 3
\end{array}\right)
$$

- Example:

$$
\begin{aligned}
& V=\{f: R \rightarrow R \mid f \text { is a polynomial of degree } \leq 3\} \\
& \mathcal{B}=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}, f_{i}(x)=x^{i-1}, i=1,2,3,4
\end{aligned}
$$

-B is a basis

- Define $\quad g_{i}(x):=(x+t)^{i-1}, i=1,2,3,4, t \in R$

$$
\begin{aligned}
& g_{1}=\quad f_{1}=1 \\
& g_{2}=(x+t)^{1}=t f_{1}+f_{2} \\
& g_{3}=(x+t)^{2}=t^{2} f_{1}+2 t f_{2}+f_{3} \\
& g_{3}=t^{3} f_{1}+3 t^{2} f_{2}+3 t f_{3}+f_{4} \\
& P=\left(\begin{array}{cccc}
1 & t & t^{2} & t^{3} \\
0 & 1 & 2 t & 3 t^{2} \\
0 & 0 & 1 & 3 t \\
0 & 0 & 0 & 1
\end{array}\right), P^{-1}=\left(\begin{array}{cccc}
1 & -t & t^{2} & -t^{3} \\
0 & 1 & -2 t & 3 t^{2} \\
0 & 0 & 1 & -3 t \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

- $\mathrm{D}: \mathrm{V}->\mathrm{V}$ is a differentiation.

$$
\begin{gathered}
{[D]_{\mathcal{B}}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)} \\
{[D]_{\mathcal{B}^{\prime}}=P^{-1}[D]_{\mathcal{B}} P=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)}
\end{gathered}
$$

- not changed as you can compute from

$$
D g_{1}=0, D g_{2}=g_{1}, D g_{3}=2 g_{2}, D g_{4}=3 g_{3}
$$

Linear functionals

- Linear functionals are another devices. They are almost like vectors but are not vectors. Engineers do not distinguish them. Often one does not need to....
- They were used to be called covariant vectors. (usual vectors were called contravariant vectors) by Einstein and so on.
- These distinctions help.
- Dirac functionals are linear functionals.
- Many singular functions are really functionals.
- They are not mysterious things.
- In mathematics, we give a definition and the mystery disappears (in theory).
- $f: V->F$. V over F is a linear functional if
$-f(c a+b)=c f(a)+f(b), c$ in F, a, b in V.
- If V is finite dimensional, it is easy to classify:
- Define f:Fn->F by

$$
f\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}+\ldots+a_{n} x_{n}
$$

- Then f is a linear functional and is represented by a row matrix

$$
\left[a_{1}, \ldots, a_{n}\right]
$$

- Every linear functional is of this form:

$$
f\left(x_{1}, \ldots, x_{n}\right)=f\left(\sum_{j=1}^{n} x_{j} \epsilon_{j}\right)=\sum_{j=1}^{n} x_{j} f\left(\epsilon_{j}\right)=\sum_{j=1}^{n} a_{j} x_{j}
$$

- where $a_{j}=f\left(e_{j}\right)$
- $V^{*}:=L(V, F)$ is a vector space called the dual space.
- $\operatorname{dim} \mathrm{V}^{*}=\operatorname{dim} \mathrm{V}$ by Theorem 5. Ch 3.
- Find a basis of V^{*} :
$-B=\left\{a_{1}, \ldots, a_{n}\right\}$ is a given basis of V.
- By Theorem 1 (p.69), there exists unique $\mathrm{f}_{\mathrm{i}} \mathrm{V}->\mathrm{F}$ such that $\mathrm{f}_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{j}}\right)=\delta_{\mathrm{ij}}$ for $\mathrm{I}=1, \ldots, \mathrm{n}$, $\mathrm{j}=1, \ldots, \mathrm{n}$.
- $\left\{\mathrm{f}_{1}, \ldots, \mathrm{f}_{n}\right\}$ is a basis of V^{*} : We only need to show they are linearly independent.
- Proof: Let $f=\sum_{i=1}^{n} c_{i} f_{i}$.

$$
f\left(\alpha_{j}\right)=\sum_{i=1}^{n} c_{i} f_{i}\left(\alpha_{j}\right)=\sum_{i=1}^{n} c_{i} \delta_{i j}=c_{j}--(*)
$$

If $\sum c_{i} f_{i}=0$, then $f\left(\alpha_{j}\right)=\sum_{i=1}^{n} c_{i} f_{i}\left(\alpha_{j}\right)=c_{j}=0 . \forall j=1, \ldots, n, c_{j}=0$.

- $B^{*}=\left\{f_{1}, \ldots, f_{n}\right\}$ is the dual basis of V^{*}.
- Theorem 15:

-(3) $\quad \alpha=\sum_{i=1}^{n} f_{i}\left(\alpha_{i}\right) \alpha_{i}$
- Proof: (1) done. (2) from (*)
- Proof continued: (3)

$$
\begin{aligned}
\alpha & =\sum_{\sum_{j=1}^{n} x_{i} x_{i} \alpha_{i}}^{f_{j}(\alpha)} \\
= & \sum_{i=1}^{n=1} \sum_{i j} j_{j}\left(\alpha_{i}\right) \\
\alpha & =\sum_{i=1}^{n=1} x_{i=1} f_{i j}=x_{i}(\alpha) x_{j}
\end{aligned}
$$

- Example: $\mathrm{I}(\mathrm{x}, \mathrm{y}):=2 \mathrm{x}+\mathrm{y}$ defined on F^{2}.
- Basis [1,0], [0,1]
- Dual basis $\mathrm{f}_{1}(\mathrm{x}, \mathrm{y}):=\mathrm{x}, \mathrm{f}_{2}(\mathrm{x}, \mathrm{y}):=\mathrm{y}$
$-L=2 f_{1}+f_{2} .(f([1,0])=2, f([0,1])=1)$
$-[x, y]=x[1,0]+y[0,1]=f_{1}([x, y])[1,0]+$ $\mathrm{f}_{2}([\mathrm{x}, \mathrm{y}])[0,1]$
-Example:
$\cdot \mathrm{C}[\mathrm{a}, \mathrm{b}]=\{\mathrm{f}:[\mathrm{a}, \mathrm{b}]->\mathrm{R} \mid \mathrm{f}$ is continuous $\}$
is a vector space over R.
$-L: C[a, b]$-> $R, L(g)=g(x)$ is a linear functional. x is a point of R.
$-L: C[a, b]->R, L(g)=\int_{a}^{b} g(t) d t$ is a linear functional.

Annihilators

- Definition: S a subset of V . $\mathrm{S}^{0}=$ annihilator(S) $:=\{f: V->F \mid f(a)=0$, for all a in $S\}$.
- S^{0} is a vector subspace of V^{*}.
- $\{0\}^{0}=\mathrm{V}^{*}$. $\mathrm{V}^{0}=\{0\}$.
- Theorem: W subspace of V f.d.v.s over F. $\operatorname{dim} \mathrm{W}+\operatorname{dim} \mathrm{W}^{0}=\operatorname{dim} \mathrm{V}$.
- Proof: $\left\{a_{1}, \ldots, a_{k}\right\}$ basis of W.
- Extend to V . $\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}, \mathrm{a}_{\mathrm{k}+1}, \ldots, \mathrm{a}_{\mathrm{n}}\right\}$ basis of V .
$-\left\{f_{1}, \ldots, f_{k}, f_{k+1}, \ldots, f_{n}\right\}$ dual basis V^{*}.
$-\left\{\mathrm{f}_{\mathrm{k}+1}, \ldots, \mathrm{f}_{\mathrm{n}}\right\}$ is a basis of W^{0} :
- f_{k+1}, \ldots, f_{n} are zero on a_{1}, \ldots, a_{k} and hence zero on W and hence in W^{0}.
- $\mathrm{f}_{\mathrm{k}+1}, \ldots, \mathrm{f}_{\mathrm{n}}$ are independent in W^{0}.
- They span W^{0} :
- Let f be in W^{0}. Then

$$
f=\sum_{i=1}^{n} f\left(\alpha_{i}\right) f_{i}=\sum_{i=k+1}^{n} f\left(\alpha_{i}\right) f_{i}
$$

- Corollary: W k-dim subspace of V . Then W is the intersection of n - k hyperspaces.
- (Hyperspace: a subspace defined by one nonzero linear functional.)
- Proof: In the proof of the above theorem, W is precisely the set of vectors zero under f_{k+1}, \ldots, f_{n}. Each f_{i} gives a hyperplane.
- Corollary: $\mathrm{W}_{1}, \mathrm{~W}_{2}$ subspaces of f.d.v.s. V . Then $W_{1}=W_{2}$ iff $W_{1}{ }^{0}=W_{2}{ }^{0}$.
- Proof: (->) obvious
- (<-) If $W_{1} \neq W_{2}$, then there exists v in W_{2} not in W_{1} (w.l.o.g).
- By above corollary, there exists f in V^{*} s.t. $\mathrm{f}(\mathrm{v}) \neq 0$ and $\mathrm{f} \mid \mathrm{W}_{1}=0$. Then f in $\mathrm{W}_{1}{ }^{0}$ but not in $\mathrm{W}_{2}{ }^{0}$.
- Solving a linear system of equations:
$A_{11} x_{1}+\ldots+A_{1 n} x_{n}=0$,
$A_{m 1} x_{1}+\ldots+A_{m n} x_{n}=0$.
- Let $f_{i}\left(x_{1}, \ldots, x_{n}\right)=A_{i 1} x_{1}+\ldots+A_{i n} x_{n}$.
- The solution space is the subspace of F^{n} of all v s.t. $f_{i}(v)=0, i=1, \ldots, m$.
- Dual point of view of this. To find the annihilators given a number of vectors:
- Given vectors $a_{i}=\left(A_{i 1}, \ldots, A_{i n}\right)$ in F^{n}.
$-\operatorname{Let} f\left(x_{1}, \ldots, x_{n}\right)=c_{1} x_{1}+\ldots+c_{n} x_{n}$.
- The condition that f is in the annhilator of the subspace S span by a_{i} is : $\sum_{j=1}^{n} A_{i j} c_{j}=0$
- The solution of the system $A X=0$ is S^{0}.
- Thus we can apply row-reduction techniques to solve for S^{0}.
- Example 24: a1=(2,-2,3,4,-1),
- a2=(-1,1,2,5,2), a3=(0,0,-1,-2,3),
- a4=(1,-1,2,3,0).

$$
\begin{gathered}
A=\left(\begin{array}{ccccc}
2 & -2 & 3 & 4 & -1 \\
-1 & 1 & 2 & 5 & 2 \\
0 & 0 & -1 & -2 & 3 \\
1 & -1 & 2 & 3 & 0
\end{array}\right) R=\left(\begin{array}{ccccc}
1 & -1 & 0 & -1 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
f\left(x_{1}, \ldots, x_{5}\right)=\sum_{j=1}^{5} c_{j} x_{j}, \quad \sum_{j=1}^{5} A_{i j} c_{j}=0, \quad \sum_{j=1}^{5} R_{i j} c_{j}=0 \\
c_{1}-c_{2}-c_{4}=0, c_{3}+2 c_{4}=0, c_{5}=0 \\
c_{2}=a, c_{4}=b, c_{1}=a+b, c_{3}=-2 b, c_{5}=0 \\
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(a+b) x_{1}+a x_{2}-2 b x_{3}+b x_{4}
\end{gathered}
$$

