Chapter 3: Linear transformations

Linear transformations, Algebra of
linear transformations, matrices, dual spaces, double duals

Linear transformations

- V, W vector spaces with same fields F.
- Definition: $\mathrm{T}: V \rightarrow \mathrm{~W}$ s.t. $\mathrm{T}(\mathrm{ca}+\mathrm{b})=\mathrm{c}(\mathrm{Ta})+\mathrm{Tb}$ for all a, b in V. c in F. Then T is linear.
- Property: $T(O)=O . T(c a+d b)=c T(a)+d T(b)$, a, b in V, c, d in F. (equivalent to the def.)
- Example: A mxn matrix over F. Define T by $\mathrm{Y}=\mathrm{AX} . \mathrm{T}: \mathrm{F}^{\mathrm{n}} \rightarrow \mathrm{F}^{\mathrm{m}}$ is linear.
- Proof: $T(a X+b Y)=A(a X+b Y)=a A X+b A Y=$ $a \mathrm{~T}(\mathrm{X})+\mathrm{bT}(\mathrm{Y})$.
$-U: F^{1 \times m}->F^{1 \times n}$ defined by $U(a)=a A$ is linear.
- Notation: $\mathrm{F}^{m=} \mathrm{Fm}^{m \times 1}$ (not like the book)
- Remark: $L\left(F^{m \times 1}, F^{n x 1}\right)$ is same as $M_{m x n}(F)$.
- For each mxn matrix A we define a unique linear transformation Tgiven by $T(X)=A X$.
- For each a linear transformation T has A such that $T(X)=A X$. We will discuss this in section 3.3.
- Actually the two spaces are isomorphic as vector spaces.
- If $m=n$, then compositions correspond to matrix multiplications exactly.
- Example: $T(x)=x+4$. $F=R . V=R$. This is not linear.
- Example: $\mathrm{V}=\{\mathrm{f}$ polynomial: $\mathrm{F} \rightarrow \mathrm{F}\}$ $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ defined by $\mathrm{T}(\mathrm{f})=\mathrm{Df}$.

$$
\begin{aligned}
f(x) & =c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{k} x^{k} \\
D f(x) & =c_{1}+2 c_{2} x+\cdots+k c_{k} x^{k-1}
\end{aligned}
$$

- $\mathrm{V}=\{\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ continuous $\}$

$$
T f(x)=\int_{0}^{x} f(t) d t
$$

- Theorem 1: V vector space over F. basis $\alpha_{1}, \ldots, \alpha_{n} . \mathrm{W}$ another one with vectors $\beta_{1}, \ldots, \beta_{m}$ (any kind $\mathrm{m} \geq \mathrm{n}$). Then exists unique linear tranformation $\mathrm{T}: \mathrm{V} \rightarrow$
W s.t. $T\left(\alpha_{j}\right)=\beta_{j}, j=1, \ldots, n$
- Proof: Check the following map is linear.

$$
\begin{aligned}
\alpha & =x_{1} \alpha_{1}+\cdots+x_{n} \alpha_{n} \\
T \alpha & =x_{1} \beta_{1}+\cdots+x_{n} \beta_{n}
\end{aligned}
$$

- Null space of $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}:=\{\mathrm{v}$ in $\mathrm{V} \mid \mathrm{Tv}=0\}$.
- Rank $T:=\operatorname{dim}\{T v \mid v$ in $V\}$ in W. = dim range T.
- Null space is a vector subspace of V.
- Range T is a vector subspace of W .
- Example:

$$
\left(\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

- Null space $z=t=0 . X+2 y=0$ dim =1
- Range = W. dim = 3
- Theorem: rank $\mathrm{T}+$ nullity $\mathrm{T}=\operatorname{dim} \mathrm{V}$.
- Proof: $a_{1}, . ., a_{k}$ basis of $N . \operatorname{dim} N=k$.

Extend to a basis of V : $\mathrm{a}_{1}, . ., \mathrm{a}_{\mathrm{k}}$,
a_{k+1}, \ldots, a_{n}.

- We show $T a_{k+1}, \ldots, T a_{n}$ is a basis of R.

Thus $n-k=\operatorname{dim} R$. $n-k+k=n$.

- Spans R: $v=x_{1} \alpha_{1}+\cdots+x_{n} \alpha_{n}$

$$
T v=x_{k+1} T\left(\alpha_{k+1}\right)+\cdots x_{n} T\left(\alpha_{n}\right)
$$

- Independence:

$$
\begin{array}{ccc}
\sum_{i=k+1}^{n} c_{i} T \alpha_{i} & = & 0 \\
T\left(\sum_{i=k+1}^{n} c_{i} \alpha_{i}\right) & = & 0 \\
\sum_{i=k+1}^{n} c_{i} \alpha_{i} & \in & N \\
\sum_{i=k+1}^{n} c_{i} \alpha_{i} & = & \sum_{i=1}^{k} c_{i} \alpha_{i} \\
c_{i} & = & 0, i=k+1, \ldots, n
\end{array}
$$

- Theorem 3: A mxn matrix. Row rank $A=$ Column rank A.
- Proof:
- column rank $A=$ rank T where $T: R^{n} \rightarrow R^{m}$ is defined by $Y=A X$. e_{i} goes to $i-$ th column. So range is spaned by column vectors.
- rankT+nullityT=n by above theorem.
- column rank A+ $\operatorname{dim} \mathrm{S}=\mathrm{n}$ where $S=\{X \mid A X=O\}$ is the null space.
- $\operatorname{dim} S=n$ - row rank $A(E x 15$ Ch. 5)
- row rank = column rank.
- (Ex 15 Ch. 5) A ${ }^{m \times n}$. S solution space. R r-r-e matrix
- $r=$ number of nonzero rows of R.
- $R X=0 k_{1}<k_{2}<\ldots<k_{r} . J=\{1, \ldots, n\}-\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$.

$$
\begin{array}{ccccc}
x_{k_{1}} & & & + & \sum_{j=1}^{n-r} C_{1 j} u_{j}
\end{array}=0
$$

- Solution spaces parameter u_{1}, \ldots, u_{n-r}.
- Or basis E_{j} given by setting $u_{j=0}$ and other 0 and $x_{k i}=c_{i j}$.

Algebra of linear transformations

- Linear transformations can be added, and multiplied by scalars. Hence they form a vector space themselves.
- Theorem 4: $\mathrm{T}, \mathrm{U}: \mathrm{V} \rightarrow \mathrm{W}$ linear.
- Define $T+U: V \rightarrow W$ by $(T+U)(a)=T(a)+U(a)$.
- Define cT:V \rightarrow W by cT(a)=c(T(a)).
- Then they are linear transformations.
- Definition: $L(V, W)=\{T: V \rightarrow W \mid T$ is linear $\}$.
- Theorem 5: $L(V, W)$ is a finite dim vector space if so are V, W. dimL=dimVdimW.
- Proof: We find a basis: $\mathcal{B}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset V$ $\mathcal{B}^{\prime}=\left\{\beta_{1}, \ldots, \beta_{m}\right\} \subset W$
- Define a linear transformation $\mathrm{V} \rightarrow \mathrm{W}$:

$$
E^{p, q}\left(\alpha_{i}\right)=\left\{\begin{array}{cc}
0, & i \neq q \\
\beta_{p}, & i=q
\end{array}=\delta_{i q} \beta_{p}, \quad 1 \leq p \leq m, 1 \leq q \leq n\right.
$$

- We show the basis: $E^{1,1}, \quad \ldots, \quad E^{1, n}$

$$
E^{m, 1}, \ldots, \quad E^{m, n}
$$

- Spans: T:V $\rightarrow \mathrm{W} . \quad T \alpha_{j}=\sum_{p=1}^{m} A_{p j} \beta_{p}$. We show

$$
\begin{aligned}
T & =U=\sum_{p=1}^{m} \sum_{q=1}^{n} A_{p q} E^{p, q} \\
U\left(\alpha_{j}\right) & =\quad \sum_{p=1}^{m} \sum_{q=1}^{n} A_{p q} E^{p, q}\left(\alpha_{j}\right) \\
& = \\
& =\sum_{p=1}^{m} \sum_{p j}^{m}\left(\sum_{q=1}^{n} A_{p q} \delta_{j p}\right) \beta_{p} \\
T & =U
\end{aligned}
$$

- Independence

- Suppose

$$
\begin{array}{ccc}
U & = & \sum_{p} \sum_{q} A_{p q} E^{p, q}=0 \\
U \alpha_{j} & = & 0 \\
\sum_{p} A_{p j} \beta_{p} & = & 0 \\
\left\{\beta_{p}\right\} & & \text { independent } \\
A_{p j} & = & 0 \text { for all } p, j
\end{array}
$$

- Example: $\mathrm{V}=\mathrm{F}^{\mathrm{m}} \mathrm{W}=\mathrm{F}^{\mathrm{n}}$. Then
$-M_{m \times n}(F)$ is isomorphic to $L\left(F^{m}, F^{n}\right)$ as vector spaces. Both dimensions equal $m n$.
$-E^{p, q}$ is the $m x n$ matrix with 1 at (p, q) and 0 everywhere else.
- Any matrix is a linear compinations of $E^{p, q}$.
- Theorem. $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}, \mathrm{U}: \mathrm{W} \rightarrow \mathrm{Z}$. $U T: V \rightarrow Z$ defined by $U T(a)=U(T(a))$ is linear.
- Definition: Linear operator $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$.
- $\mathrm{L}(\mathrm{V}, \mathrm{V})$ has a multiplication.
- Define $T^{0}=I, T^{n}=T$...T. n times.
- Example: A mxn matrix B pxm matrix T defined by $T(X)=A X$. U defined by $U(Y)=B Y$. Then UT(X) = BAX. Thus $U T$ is defined by $B A$ if T is defined by A and U by B.
- Matrix multiplication is defined to mimic composition.
- Lemma:

$$
\begin{aligned}
& -\mathrm{IU}=\mathrm{UI}=\mathrm{U} \\
& -\mathrm{U}\left(\mathrm{~T}_{1}+\mathrm{T}_{2}\right)=\mathrm{UT} \mathrm{~T}_{1}+\mathrm{UT} T_{2,}\left(\mathrm{~T}_{1}+\mathrm{T}_{2}\right) \mathrm{U}=\mathrm{T}_{1} \mathrm{U}+\mathrm{T}_{2} \mathrm{U} . \\
& -\mathrm{c}\left(\mathrm{UT} \mathrm{~T}_{1}\right)=(\mathrm{cU}) \mathrm{T}_{1}=\mathrm{U}\left(\mathrm{c} \mathrm{~T}_{1}\right) .
\end{aligned}
$$

- Remark: This make $L(V, V)$ into linear algebra (i.e., vector space with multiplications) in fact same as the matrix algebra $M_{n x n}(F)$ if $V=F^{n}$ or more generally $\operatorname{dim} \mathrm{V}=\mathrm{n}$. (Example 10. P.78)
- Example: $V=\{f: F \rightarrow F \mid f$ is a polynomial $\}$. $-\mathrm{D}: \mathrm{V} \rightarrow \mathrm{V}$ differentiation.

$$
\begin{aligned}
f(x) & =c_{0}+c_{1} x+\cdots+c_{n} x^{n} \\
D f(x) & =c_{1}+\cdots+n c_{n} x^{n-1}
\end{aligned}
$$

$-\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}: \mathrm{T}$ sends $\mathrm{f}(\mathrm{x})$ to $\mathrm{xf}(\mathrm{x})$
$-D T-T D=I$. We need to show DT-TD(f)=f for each polynomial f .

- (QP-PQ=ihl In quantum mechanics.)

Invertible transformations

- $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is invertible if there exists $\mathrm{U}: \mathrm{W} \rightarrow \mathrm{V}$ such that $U T=I_{v} T U=I_{w}$. U is denoted by T^{-1}.
- Theorem 7: If T is linear, then T^{-1} is linear.
- Definition: $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is nonsingular if $\mathrm{Tc}=0$ implies c=0
- Equivalently the null space of T is $\{\mathrm{O}\}$.
- T is one to one.
- Theorem 8: T is nonsingular iff T carries each linearly independent set to a linearly independent set.
- Theorem 9: $\mathrm{V}, \mathrm{W} \operatorname{dim} \mathrm{V}=\operatorname{dim} \mathrm{W}$. $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is linear. TFAE:
-T is invertible.
-T is nonsingular
-T is onto.
- Proof: We use n=dim V = dim W. rank T+nullity T = n.
- (ii) iff (iii): T is nonsingular iff nullity $\mathrm{T}=0$ iff rank T $=\mathrm{n}$ iff T is onto.
- (I) \rightarrow (ii): $\mathrm{TX}=0, \mathrm{~T}^{-1} \mathrm{TX}=0, \mathrm{X}=0$.
- (ii) \rightarrow (i): T is nonsingular. T is onto. T is $1-1$ onto. The inverse function exists and is linear. T^{-1} exists.

Groups

- A group (G, .):
- A set G and an operation GxG->G:
- $x(y z)=(x y) z$
- There exists e s.t. $x e=e x=x$
- To each x, there exists x^{-1} s.t. $x^{-1}=e$ and $x^{-1} x=e$.
- Example: The set of all 1-1 maps of $\{1,2, \ldots, n\}$ to itself.
- Example: The set of nonsingular maps $G L(V, V)$ forms a group.

Isomorphisms

- V, W T:V->W one-to-one and onto (invertible). Then T is an isomorphism. V, W are isomorphic.
- Isomorphic relation is an equivalence relation: $\mathrm{V} \sim \mathrm{V}, \mathrm{V} \sim \mathrm{W}$ <-> $\mathrm{W} \sim \mathrm{V}, \mathrm{V} \sim \mathrm{W}$, $W \sim U->V \sim W$.
- Theorem 10: Every n-dim vector space over F is isomorphic to F^{n}. (noncanonical)
- Proof: V n-dimensional
- Let $B=\left\{a_{1}, \ldots, a_{n}\right\}$ be a basis.
- Define T:V -> F^{n} by

$$
\alpha=x_{1} \alpha_{1}+\cdots+x_{n} \alpha_{n} \mapsto\left(x_{1}, \ldots, x_{n}\right) \in F^{n}
$$

- One-to-one
- Onto
- Example: isomorphisms

$$
\begin{aligned}
& F^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in F\right\} \\
& \cong\left\{\left.\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \right\rvert\, x_{i} \in F\right\} \\
& P^{n}(F) \cong\left\{f: F \rightarrow F \mid f(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}\right\} \\
& F^{n+1}
\end{aligned}
$$

Basis $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$

$$
c_{0}+c_{1} x+\cdots+c_{n} x^{n} \mapsto\left(c_{0}, c_{1}, \ldots, c_{n}\right)
$$

There will be advantages in looking this way!

