
Row-equivalences again

Row spaces bases
computational techniques using

row-equivalences
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• The row space of A is the span of row
vectors.

• The row rank of A is the dimension of
the row space of A.

• Theorem 9: Row-equivalent matrices
have the same row spaces.
– proof: Check for elementary row

equivalences only.
• Theorem 10: R nonzero row reduced

echelon matrix. Then nonzero rows of R
form a basis of the row space of R.
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• proof:               row vectors of R.
–
–

– Let                         be a vector in the row
space.

–                      are linearly independent: basis 3
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• Theorem 11: m, n, F a field. W a
subspace of Fn. Then there is precisely
one mxn r-r-e matrix which has W as a
row space.

• Corollary: Each mxn matrix A is row
equiv. to one unique r-r-e matrix.

• Corollary. A,B mxn.
A and B are row-equiv iff A,B have the
same row spaces.
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Summary of row-equivalences

• TFAE
– A and B are row-equivalent
– A and B have the same row-space
– B= PA where P is invertible.
– AX=0 and BX=0 has the same solution

spaces.
• Proof: (i)-(iii) done before. (i)-(ii) above

corollary. (i)->(iv) is also done. (iv)->(i)
to be done later. 5
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Computations
• Numerical problems:

– 1. How does one determine a set of
vectors S=(a1,..,an) is linearly independent.
What is the dimension of the span W of S?

– 2. Given a vector v, determine whether it
belongs to a subspace W. How to write
 v = c1a1+...+cnan.

– 3. Find some explicit description of W: i.e.,
coordinates of W. -> Vague...
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• Let A be mxn matrix.
• r-r-e R
• dim W = r the number of nonzero rows

of R.

7

give a parametrization of W.
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• Example:

• (1) can be answered by computing the
rank of R. If rank R =m, then
independent. If rank R < m, then
dependent. (A=PR, P invertible.)
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• (2): b given. Solve for AX = b.
• Second method: A=PR, P invertible.

• In line 3, we solve for
• Final equation is from comparing the

first line with the second to the last line.
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•

• Find r-r-e R. Find a basis of row space
• Which vectors (b1,b2,b3,b4) is in W?
• coordinate of (b1,b2,b3,b4)?
• write (b1,b2,b3,b4) as a linear

combination of rows of A.
• Find description of solutions space  V of

AX=0.
• Basis of V?
• For what Y, AX=Y has solutions?
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• R=QA.
• Basis of row spaces: rows above,

dim=3

12
Qi  is the ith column of Q.
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• AX=0 ↔ RX=0.

• V is one-dimensional
• Basis of V: (1,-1,2,3).
• AX=Y for what Y? All Y. See page 63.
• Examples 21 and 22 must be

thoroughly understood.


