Linear Algebra: Final Exam (2006 Spring)

Justify your answers fully.

1. (50 pts .) Find the minimal polynomial and the rational form of each of the following four matrices:

$$
\left(\begin{array}{ccc}
0 & -1 & -1 \\
1 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
c & 0 & -1 \\
0 & c & 1 \\
-1 & 1 & c
\end{array}\right),\left(\begin{array}{ccc}
3 & -4 & -4 \\
-1 & 3 & 2 \\
2 & -4 & -3
\end{array}\right),\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

Here $\theta \neq n \pi / 2$ for $n \in \mathbf{Z}$.
2. Let V be an n-dimensional vector space over \mathbf{C} and T a diagonalizable linear operator on V, $n \geq 2$.
(a) (10 pts.) Show that if T has n distinct characteristic values, and if $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is a basis of characteristic vectors for T show that $\alpha_{1}+\cdots+\alpha_{n}$ is a cyclic vector for T.
(b) (10 pts.) Suppose T has only $n-1$ distinct characteristic values for $n \geq 2$. Discuss the cyclic decomposition of V for T and the cyclic vectors.
(c) (10 pts.) Show that if T has a cyclic vector, then T has n distinct characteristic values.
3. (30 pts .) Find a basis of the space of solutions of the ordinary differential equation

$$
\frac{d^{4} f}{d t^{4}}+2 \frac{d^{3} f}{d t^{3}}-2 \frac{d f}{d t}-1=0
$$

In particular, what is the dimension of the solution space?
4. Let V be the vector space of $n \times n$-matrices over a complex field with a bilinear form given by $(A, B)=\operatorname{tr}\left(A B^{*}\right)$ for $A, B \in V$. Let P be an element of V and define a linear operator $T_{P}: V \rightarrow V$ by $A \mapsto A P$ for $A \in V$.
(a) (5 pts.) Show that (\cdot, \cdot) is an inner product.
(b) (15 pts.) Describe the adjoint linear operator of T_{P} with respect to the inner product.
5. (20 pts.) Write the following matrix B as $N U$ where N is in $T^{+}(3)$ and $U \in U(3)$:

$$
B=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

