Linear Algebra: Midterm Exam (2006 Spring)

Justify your answers fully.

1. Prove or disprove.
(a) (5 pts.) \mathbf{Z}_{2006} is a field.
(b) (5 pts.) \mathbf{Z}_{2006} is a \mathbf{Z}_{2}-module.
(c) (10 pts.) $M_{2 \times 2}(\mathbf{C})$ is an \mathbf{R}-module.
(d) (10 pts.) $\left\{A \in M_{2 \times 2}\left(\mathbf{Z}_{7}\right) \mid \operatorname{det} A= \pm 1\right\}$ forms a group under matrix multiplications.
(e) (10 pts.) $M_{2 \times 2}\left(\mathbf{Z}_{2}\right)$ is a commutative ring with 1 .
2. Let V be the vector space of all 2×2-matrix over the real field \mathbf{R} and let $B \in V$.
(a) (10 pts.) If

$$
T(A)=A B-B A
$$

show that T is a linear transformation from V to V. Is T invertible?
(b) (10 pts.) Express T as a matrix under a basis of V.
(c) (10 pts.) Is the rank of T dependent on B ? If so, find examples.
3. Let $\mathbf{C}^{2 \times 2}$ be the complex vector space of 2×2-matrices with complex entries. Let

$$
B=\left(\begin{array}{cc}
1 & -1 \\
-4 & 4
\end{array}\right)
$$

Let T be a linear operator on $\mathbf{C}^{2 \times 2}$ defined by $T(A)=B A$.
(a) (10pts.) Compute the rank of T.
(b) (10pts.) Determine T^{2} and its rank.
4. (20 pts .) Let V be the vector space of polynomials over the field \mathbf{R} of degree ≤ 2. Let ϕ_{1}, ϕ_{2} and ϕ_{3} be the linear functionals on V defined by

$$
\phi_{1}(f)=\int_{0}^{1} f(t) d t, \quad \phi_{2}(f)=f^{\prime}(1), \quad \phi_{3}(f)=f(0) \text { for } f \in V .
$$

Find the basis $\left\{f_{1}, f_{2}, f_{3}\right\}$ of V which is dual to $\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$.
5. Let V be a free \mathbf{Z}-module and $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis.
(a) (10pts.) Prove that there exists a dual basis of V^{*}.
(b) (10pts.) Prove the the dual basis is a basis of V^{*}.
(c) (10pts.) Let A be the matrix obtained by writing v_{i} in terms of the another basis $\left\{u_{1}, \ldots, u_{n}\right\}$. Is A in $M_{n \times n}(\mathbf{Z})$?
(d) (10pts.) Show that $\operatorname{det} A= \pm 1$.

