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Preface

Warning: This draft is still temporary and not final.
Let G be a Lie group acting transitively on a manifold X . An (X ,G)-geometry is given

by this pair. Furthermore, an (X ,G)-structure on an orbifold or a manifold is an atlas of
charts to X with transition maps in G. Here, we are concerned with G = PGL(n+ 1,R)
and X = RPn.

Cartan, Ehresmann, and others started the field of (X ,G)-structures. Subjects of
(X ,G)-structures were popularized by Thurston and Goldman among many other people.
These structures provide a way to understand representations and their deformations giv-
ing us viewpoints other than algebraic ones. Our deformation spaces often parameterize
significant parts of the space of representations.

Since the examples are easier to construct, even now, we will be studying orb, a natural
generalization of manifolds. Also, computations can be done fairly well for simple exam-
ples. We began our study with Coxeter orbifolds where the computations are probably the
simplest possible.

Thurston did use the theory of orbifolds in a deep way. The hyperbolization of Haken
3-manifold requires the uses of the deformation theory of orbifolds where we build from
hyperbolic structures from handlebodies with “scalloped” orbifold structures. (See Morgan
[133].) We do not really know how to escape this step, which was a very subtle point that
some experts misunderstood. Also, orbifolds are natural objects obtained when we take
quotients of manifolds by fibrations and so on. These are some of the reasons we study
orbifolds instead of just manifolds.

Classically, conformally flat structures were studied much by differential geometers.
Projectively flat structures were also studied from Cartan’s time. However, our techniques
are much different from their approaches.

Convex real projective orbifolds are quotient spaces of convex domains on a projec-
tive space RPn by a discrete group of projective automorphisms. Hyperbolic manifolds
and many symmetric manifolds are natural examples. These can be deformed to one not
coming from simple constructions. The study was initiated by Kuiper [116], Koszul [114],
Benzécri [25], Vey [151], and Vinberg [153], accumulating some class of results. Closed
manifolds or orbifolds admit many such structures as shown first by Kac-Vinberg [107],
Goldman [88], and Cooper-Long-Thistlethwaites [64], [65]. Some parts of the theory for
closed orbifolds were completed by Benoist [20] in the 1990s.

The topics of convex real projective structures on manifolds and orbifolds are currently
developing. We present some parts. This book is mainly written for researchers in this field.

There are surprisingly many such structures coming from hyperbolic ones and de-
forming as shown by Vinberg for Coxeter orbifolds, Goldman for surfaces, and later by
Cooper-Long-Thistlethwaite for 3-manifolds.

ix
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We compare these theories to the Mostow or Margulis type rigidity for symmetric
spaces. The rigidity can be replaced by what is called the Ehresmann-Thurston-Weil prin-
ciple that

• a subspace of the G-character space (variety) of the fundamental group of a man-
ifold or orbifold M classifies the (X ,G)-structures on M under the map

hol : Defc(M)→ Homc(π1(M),G)/G

where
– we define the deformation space

Defc(M) := {(X ,G)-structures on M satisfying some conditions denoted by c}/∼

where ∼ is the isotopy equivalence relation, and
– Homc(π1(M),G)/G is the subspace of the character space Hom(π1(M),G)/G

satisfying the corresponding conditions to c.
For closed real projective orbifolds, it is widely thought that Benoist’s work is quite an

encompassing one. Hence, we won’t say much about this topic. (See Choi-Lee-Marquis
for a survey [61].)

We focus on convex real projective orbifolds with ends, which we have now accumu-
lated some number of examples. Basically, we will prove an Ehresmann-Thurston-Weil
principle: We will show that the deformation space of properly convex real projective
structures on an orbifold with some end conditions identifies under a map with the union
of components of the subset of character spaces of the orbifold satisfying the correspond-
ing conditions on end holonomy groups. Our conditions on the ends are probably very
generic ones, and we have many examples of such deformations.

In fact, we are focusing on generic cases of lens-type or horospherical ends. To com-
plete the picture, we need to consider all types of ends. Even with end vertex conditions,
we are still to complete the picture leaving out the NPNC-ends. We hope to allow these
types for our deformation spaces in the near future.

The book is divided into three parts:
(Part I): We will give some introduction and survey our main results and give ex-

amples where our theory is applicable.
(Part II): We will classify the types of ends we will work with. We use the uniform

middle eigenvalue conditions. The condition is used to prove the preservation of
the convexity of the deformations.

(Part III): We will try to prove the Ehresmann-Thurston-Weil principle for the de-
formation spaces for our type of orbifolds. We show the local homeomorphism
property and the closedness of the images for the maps from the deformations
spaces to the character spaces restricted by the end conditions.

We will try to follow the strictly logical progression of the material. However, for each
chapter, we will introduce the main results first.

As an application, we will use the results of the whole of the monograph Chapter 12,
which are the nicest cases. One can consider these as the conclusions of the monograph.

The logical dependence of the monograph is as ordered by the order of appearance.
Appendix A depends only on Chapter 1, and the results are used in the monograph except
for Chapter 1.

We give an outline at the beginning of each part.
As a motivation for our study, we say about some long-term goal: Deforming a real

projective structure on an orbifold to an unbounded situation results in the actions of the
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fundamental group on affine buildings. This hopefully will lead us to some understanding
of orbifolds and manifolds in particular of dimension three as indicated by Ballas, Cooper,
Danciger, G.S. Lee, Leitner, Long, Thistlethwaite, and Tillmann.

There is a concurrent work by the group consisting of Cooper, Long, and Tillmann
with Ballas and Leitner on the same subjects but with different conditions on ends. They
impose the condition that the end fundamental groups to be amenable. However, we do
not require the same conditions in this paper but instead we will use some type of norms
of eigenvalue conditions to guarantee the convexity during the deformations. We note that
their deformation spaces are somewhat differently defined. Of course, we benefited much
from their work and insights in this book and are very grateful for their generous help
and guidance. We also appreciate much help from Crampon and Marquis working also
independently of the above group and us.

We need to lift the objects to Sn using Section 1.1.8. We give proofs in the book by
considering objects to be in Sn and using the projective automorphism group SL±(n+
1,R). We will use proof symbols:

SnS: at the end of the proof indicates that it is sufficient to prove for Sn since the
conclusion does not involve RPn nor Sn.

SnT: indicates that the version of the theorem, proposition, or lemma for Sn implies
one for RPn often with the help of Proposition 1.4.2.

SnP: indicates that the proof of the theorem for Sn implies one for RPn often with
the help of Proposition 1.4.2.

If we do not need to go to Sn to prove the result, we leave no mark except for the end
of the proof.

This book generalizes and simplifies the earlier preprints of the author. We were able
to drop many conditions in the earlier versions of the theorems overcoming many limita-
tions. Some of the results were announced in some survey articles [52] and [53].

Finally, to better communicate the ideas, the author made some effort to make the
material more clear and precise, entailing the trade-off of the writing being long, somewhat
technical, and sometimes redundant.

Daejeon,
March, 2024 Suhyoung Choi





Part 1

Introduction to orbifolds and real
projective structures.



Part I aims to survey some preliminary definitions and elementary used facts. These
are standard materials, and there are no new results.

In Chapter 1, we go over basic preliminary materials. We begin with defining geo-
metric structures and real projective structures, in particular convex ones. We discuss the
ends of orbifolds. Affine orbifolds and affine suspensions of real projective orbifolds are
defined. We discuss the linear algebra and estimations using it, orthopotent actions of
Lie groups, higher-convergence group actions, attracting and repelling sets, convexity, the
Benoist theory on convex divisible actions, and so on. We discuss the dual orbifolds of a
given convex real projective orbifolds as given by Vinberg. Finally, we extend duality to
all convex compact sets and discuss the geometric limits of the dual convex sets. Here we
will use a slightly more generalized version of convexity.

In Chapter 2, we give some examples, where our full theory applies. We will fully
explain this in Chapter 12. Coxeter orbifolds and the orderability theory for Coxeter orb-
ifolds using the Vinberg theory will be explained. We discuss the work jointly done with
Gye-Seon Lee, Hodgson, and Greene. We state the work of Heusner-Porti on projective de-
formations of hyperbolic link complements. Also, we state some results on finite-volume
convex real projective structures by Cooper-Long-Tillmann and Crampon-Marquis that
these admit thick and thin decompositions.



CHAPTER 1

Preliminaries

We will go over the underlying theory. In Section 1.1, we discuss the Hausdorff con-
vergences of sequences of compact sets, Hilbert metrics, some orbifold topology, geomet-
ric structures on orbifolds, real projective structures on orbifolds, spherical real projective
structures and liftings. We also classify compact convex subsets of Sn in Proposition 1.1.4.
In Section 1.2, we discuss that affine structures and affine suspensions of real projective
orbifolds. In Section 1.3, we discuss the linear algebra and estimation to find conver-
gences, orthopotent groups, proximal and semi-proximal actions, semi-simplicity, and the
higher convergence groups. Higher convergence groups are generalizations of convergence
groups. In Section 1.4, we explain the comprehensive Benoist theory on convex orbifolds,
where he completed theories of Kuiper, Koszul, Vey, Vinberg, and so on, on divisible ac-
tions on convex linear cones as he terms them. In particular, the strict-join decomposition
of properly convex orbifolds will be explained. Lemma 1.4.16 shows that the properly
convex real projective structures are uniquely determined by holonomy groups, which is
a somewhat commonly overlooked fact. In Section 1.5, we explain the duality theory of
Vinberg. We introduce the augmented boundary of properly convex domains as the set
of boundary points and the sharply supporting hyperplanes associated with these points.
The duality map is extended to the augmented boundary. Duality is extended to sweeping
actions also. The duality is extended to every compact convex set in Sn, and we discuss
the relationship between the duality and the geometric convergences of the sequences of
properly convex sets.

1.1. Preliminary definitions

As usual, we denote by RPn the projectivization of Rn+1. There is a group PGL(n+
1,R) acting effectively and transitively on Sn.

Given a vector space V , we denote by S(V ) the quotient space of

(V −{O})/∼ where v ∼ w iff v = sw for s > 0.

We denote by Sn := S(Rn+1). We will represent each element of PGL(n+1,R) by a matrix
of determinant ±1; i.e., PGL(n+ 1,R) = SL±(n+ 1,R)/⟨±I⟩. Recall the covering map
pSn : Sn = S(Rn+1)→ RPn.

The following notation is used in the monograph. For a subset A of a space X , we
denote by ClX (A) the closure of A in X and bdX A the boundary of A in X . We will omit
the subscript X if X is clear from the context. If A is a domain of a subspace of RPn or Sn,
we denote by bdA the topological boundary in the subspace. The closure Cl(A) of a subset
A of RPn or Sn is the topological closure in RPn or in Sn. We will also denote by Ko the
manifold or orbifold interior for a manifold or orbifold K. Also, we may use Ko as the
interior relative to the topology of P when K is a domain K in a totally geodesic subspace
P in Sn or RPn. Define ∂A for a manifold or orbifold A to be the manifold or orbifold
boundary. (See Section 1.1.4.)

3



4 1. PRELIMINARIES

Let p,q ∈ Sn. We also denote by pq a minor arc connecting p and q in a great circle
in Sn. If q ̸= p−, this is unique. Otherwise, we need to specify a point in Sn not antipodal
to both. We denote by pzq the unique minor arc connecting p and q passing z.

If p,q ∈ RPn, then pq denote one of the closures of a component of l −{p,q} for a
one dimensional projective line containing p,q.

1.1.1. Convex sets in RPn and Sn. Recall that an affine path in RPn is a complement
of a codimension-one subspace. It has a canonical geodesic structure where each projec-
tive geodesics corresponds to affine geodesics up to parameterizations and conversely. A
convex set in RPn is a convex subset of an affine patch of RPn.

We use a slightly different definition of convexity for Sn.

DEFINITION 1.1.1. A convex segment is an arc contained in a great segment. A convex
subset of Sn is a subset A where every pair of points of A connected by a convex segment.

It is easy to see that either a convex subset of Sn is contained in an affine subspace, it
is in a closed hemisphere, or it is a great sphere of dimension ≥ 1. In the first case, the set
embeds to a convex set in RPn under the covering map.

Since an affine patch of RPn always lifts to an open hemisphere in Sn. Hence, a convex
subset of RPn always lifts to a convex subset of Sn which maps to it homeomorphically
under the projection Sn → RPn. Hence, the convex subsets of RPn corresponds to convex
subset of Sn contained in an open hemisphere in a one-to-one manner.

DEFINITION 1.1.2. Given a convex set D in RPn, we obtain a connected cone C(D)
in Rn+1 −{O} mapping to D, determined up to the antipodal map. For a convex domain
D ⊂ Sn, we have a unique domain C(D)⊂ Rn+1 −{O}.

A join of two properly convex subsets A and B in a convex domain D of RPn (resp.
Sn) is defined as

A∗B := {[t⃗x+(1− t )⃗y]|⃗x, y⃗ ∈C(D), [⃗x] ∈ A, [⃗y] ∈ B, t ∈ [0,1]}
(resp. A∗B := {((t⃗x+(1− t )⃗y)) |⃗x, y⃗ ∈C(D),((⃗x)) ∈ A,((⃗y)) ∈ B, t ∈ [0,1]})

where C(D) is a cone corresponding to D in Rn+1. The definition is independent of the
choice of C(D) in Sn. In RPn, the join may depend on the choice C(D). Note we use
p∗B = {p}∗B interchangeably for a point p.

DEFINITION 1.1.3. Let C1, . . . ,Cm respectively be cones in a set of independent vector
subspaces V1, . . . ,Vm of Rn+1. In general, a sum of convex sets C1, . . . ,Cm in Rn+1 in
independent subspaces Vi is defined by

C1 + · · ·+Cm := {v|v = c⃗1 + · · ·+ c⃗m, c⃗i ∈Ci}.
A strict join of convex sets Ωi in Sn (resp. in RPn) is given as

Ω1 ∗ · · · ∗Ωm := Π
′(C1 + · · ·+Cm) (resp. Π(C1 + · · ·+Cm))

where each Ci −{O} is a convex cone with image Ωi for each i for the projection Π′ (resp.
Π).

PROPOSITION 1.1.4. A closed convex subset K of Sn is either a great sphere Si0 of
dimension i0 ≥ 1, or is contained in a closed hemisphere H i0 in Si0 and is one of the
following:

• There exist a great sphere S j0 of dimension j0 ≥ 0 in the boundary bdK and
a compact properly convex domain KK in an independent subspace of S j0 and
K = S j0 ∗KK , a strict join. Moreover, S j0 is a unique maximal great sphere in K.
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• K is a properly convex domain in the interior of i0 +1-hemisphere. for some i.
• Unless K is a great sphere, ∂K = bdSnK and K is homeomorphic to a cell. For a

properly convex compact domain K in RPn, ∂K = bdRPnK and K is homeomor-
phic to a cell.

PROOF. Let Si0 be the span of K. Then Ko is not an empty domain in Si0 . The map
x 7→ d(x,K) is continuous on Si0 . Choose a maximum point x0. If the maximum is < π/2,
then the elliptic geometry tells us that there at least two point y,z of K closest to x0 of
same distance from x0 since otherwise we can increase the value of d(·,K) by moving x0
slightly. Then there is a closer point on xyo in K to x0. This is a contradiction. Hence,
K = Si0 . Otherwise, K is a subset of an i0-hemisphere in Si0 . (See [43] also.)

The second part follows from Section 1.4 of [36]. (See also [71].) Hence, we obtain
a unique maximal great sphere S j0 in K which is contained in bdK, and K is a union of
j0 +1-hemispheres with common boundary S j0 .

By choosing an independent subspace Sn− j0−1 to S j0 , each j0 +1-hemisphere in K is
transverse to Sn− j0−1 and hence meets it in a unique point. We let KK denote the set of
intersection points. Therefore, K = S j0 ∗KK .

There is a map K →KK given by sending a j0+1-hemisphere to the intersection point.
Obviously, this is a restriction of projective diffeomorphism from the space of j0 + 1-
hemispheres with boundary S j0 to Sn− j0−1. Since K cannot contain a higher-dimensional
great sphere, it follows that KK is properly convex also.

For the final item, the fact that K is a join of a great sphere with a properly convex
domain implies this. □

Given a vector space V, we let P(V) denote the space obtained by taking the quotient
space of V−{O} under the equivalence relation

v⃗ ∼ w⃗ for v⃗, w⃗ ∈ V−{O} iff v⃗ = sw⃗, for s ∈ R−{0}.

We let [⃗v] denote the equivalence class of v⃗ ∈ V−{O}. For a subspace W of V, we denote
by P(W) the image of W−{O} under the quotient map, also said to be a subspace.

Recall that the projective linear group PGL(n+1,R) acts on RPn, i.e., P(Rn+1), in a
standard manner.

Recall that SL±(n+1,R) is isomorphic to GL(n+1,R)/R+. Then this group acts on
Sn to be seen as a quotient space of Rn+1 −{O} by the equivalence relation

v⃗ ∼ w⃗, v⃗, w⃗ ∈ Rn+1 −{O} if v⃗ = sw⃗ for s ∈ R+.

We let ((⃗v)) denote the equivalence class of v⃗ ∈ Rn+1 −{O}. Given a vector subspace
V ∈ Rn+1, we denote by S(V ) the image of V −{O} under the quotient map. The image
is called a subspace. A set of antipodal points is a subspace of dimension 0. There is
a double covering map pSn : Sn → RPn with the deck transformation group generated by
A . This gives a projective structure on Sn. The group of projective automorphisms is
identified with SL±(n+ 1,R). The notion of geodesics are defined as in the projective
geometry: they correspond to arcs in great circles in Sn.

A collection of subspaces S(V1), . . . ,S(Vm) (resp. P(V1), . . . ,P(Vm)) are independent
if the subspaces V1, . . . ,Vm are independent.

The group SL±(n+1,R) of linear transformations of determinant ±1 maps to the pro-
jective group PGL(n+ 1,R) by a double covering homomorphism q̂, and SL±(n+ 1,R)
acts on Sn lifting the projective transformations. The elements are also projective transfor-
mations.
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REMARK 1.1.5. For each g ∈ PGL(n+1,R) acting on a convex open domain Ω, there
is a unique lift in SL±(n+ 1,R) preserving each component of the inverse image of Ω

under Sn → RPn. We will use this representative.

1.1.2. The Hausdorff distances used. We will be using the standard elliptic metric
d on RPn (resp. in Sn) where the set of geodesics coincides with the set of projective
geodesics up to parameterizations. Sometimes, these are called Fubini-Study metrics.

DEFINITION 1.1.6. Given a set, we define

Nε(A) := {x ∈ Sn|d(x,A)< ε} ( resp. Nε(A) := {x ∈ RPn|d(x,A)< ε}.)

Given two subsets K1 and K2 of Sn (resp. RPn), we define the Hausdorff distance dH(K1,K2)
between K1 and K2 to be

inf{ε > 0|K2 ⊂ Nε(K1),K1 ⊂ Nε(K2)}.

The simple distance d(K1,K2) is defined as

inf{d(x,y)|x ∈ K1,K2}.

We say that a sequence {Ai} of compact sets converges to a compact subset A if
{dH(Ai,A)} → 0. Here the limit is unique. Recall that every sequence of compact sets
{Ai} in Sn (resp. RPn) has a convergent subsequence. The limit A is characterized as
follows if it exists:

(1.1.1) A := {a ∈ H|a is a limit point of some sequence {ai|ai ∈ Ai}}.

See Proposition E.12 of [15] for a proof since the Chabauty topology for a compact space
is the Hausdorff topology (See also Munkres [136].)

We will use the same notation even when Ai and A are closed subsets of a fixed open
domain using dH and d.

PROPOSITION 1.1.7 (Benedetti-Petronio). A sequence {Ai} of compact sets in RPn

(resp. Sn) converges to A in the Hausdorff topology if and only if the both of the following
hold:

• If xi j ∈ Ai j and {xi j}→ x, where i j → ∞, then x ∈ A.
• If x ∈ A, then there exists xi ∈ Ai for each i such that {xi}→ x.

PROOF. Since Sn and RPn are compact, the Chabauty topology is same as the Haus-
dorff topology. Hence, this follows from Proposition E.12 of Benedetti-Petronio [15]. □

LEMMA 1.1.8. Let {gi} be a sequence of elements of PGL(n+1,R) (resp. SL±(n+
1,R)) converging to g∞ in PGL(n+1,R) (resp. SL±(n+1,R)). Let {Ki} be a sequence of
compact set and let K be another one. Then {Ki}→ K if and only if {gi(Ki)}→ g∞(K).

PROOF. We use the above point description of the geometric limit. [SnS] □

An n-hemisphere H in Sn supports a domain D if H contains D. H is called a sup-
porting hemisphere. An oriented hyperspace S in Sn supports a domain D if the closed
hemisphere bounded in an inner-direction by S contains D. S is called a supporting hyper-
space. If a supporting hyperspace contains a (not necessarily unique) boundary point x of
D, then it is called a sharply-supporting hyperspace at x. If the boundary of a supporting
n-hemisphere is sharply supporting at x, then the hemisphere is called a sharply-supporting
hemisphere at x.
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PROPOSITION 1.1.9. Let Ki be a sequence of compact convex sets (resp. cells) of Sn.
Then up to choosing a subsequence Ki → K to a compact convex set (resp. cell) K of Sn.
Also, a geometric limit must be a compact convex cell when Ki are compact convex cells.
If Ki is in a fixed n-hemisphere, then so is K.

PROOF. By Proposition 1.1.7, we can show this when Ki is a hemisphere. For other
cases, consider sequences of segments and Proposition 1.1.7. □

The following is probably well-known.

LEMMA 1.1.10. Suppose that one of the following holds:
• Ki for each i, i = 1,2, . . . , is a compact convex domain, and K is one also in Sn.
• Ki is a convex open domain, and K is one also in Sn.
• Ki is a properly convex domain, and K is one also in RPn.

Suppose that a sequence {Ki} geometrically converging to K with nonempty interior. Then
{bdKi}→ bdK.

PROOF. We prove for Sn. Suppose that a point p is in bdK. Let Bε(p) be an open
ε-ball of p. Suppose Bε(p)∩Ki = /0 for infinitely many i. Then p cannot be a limit point
of K by Proposition 1.1.7. This is a contradiction. Thus, Bε(p)∩Ki ̸= /0 for i > N for some
N. Suppose that Bε(p)⊂ Ki for infinitely many i. Then each point in Bε(p)−K is a limit
point of some sequence pi, pi ∈ Ki. and hence Bε(p)⊂ K, p ∈ Ko, a contradiction. Hence,
given ε > 0, Bε(p)∩ bdKi ̸= /0 for i > M for some M. Then p is a limit of a sequence
pi, pi ∈ bdKi.

Conversely, suppose that a sequence {pi j}, pi j ∈ bdKi j where i j → ∞ as j → ∞, con-
verges to p. Then p ∈ K clearly. Suppose that p ∈ Ko. Then there is ε,ε > 0, with
Bε(p)⊂ K. Now, Ki j has a sharply supporting closed hemisphere Hi j at pi j with Ki j ⊂ Hi j .
Since {pi j}→ p, we may choose a subsequence k j so that {Hk j}→H∞ and dH(Hk j ,H∞)<

ε/4 for a hemisphere H∞. Let q ∈ B3ε/4(p)− H∞ so that dH(q,H∞) > ε/4. Hence,
Bε/4(q) ∈ Bε(p)−Hk j for all j. Since Kk j ⊂ Hk j , no sequence {qk j},qk j ∈ Kk j converges
to q. However, since {Kk j} → K and q ∈ K, this is a contradiction to Proposition 1.1.7.
Hence, p ∈ bdK. Now, Proposition 1.1.7 proves {bdKi}→ bdK.

When Ki is an open domain in Sn, we just need to take its closure and use the first part.
For the RPn-version, we lift Ki to Sn to properly convex domains K′

i . Now, we may
also choose a subsequence so that {K′

i} geometrically converges to a choice of a lift K′ of
K by Proposition 1.1.7. Since K′ is properly convex, K′ is in a bounded subset of an affine
subspace of Sn. Then the result follows from the Sn-version. □

We note that the last statement is false if {Ki} geometrically converges to a hemisphere
when lifted to Sn.

THEOREM 1.1.11. Suppose that Ki and K are (resp. properly) convex compact balls
of the same dimension in Sn (resp. RPn). Suppose that {Ki}→ K. It follows that

(1.1.2) {bdKi}→ bdK.

This holds also provided Ki and K are properly compact convex in RPn with {Ki}→ K.

PROOF. Since Ki and K are of the same dimension, we find gi ∈ SL±(n+ 1,R) so
that gi(⟨Ki⟩) = ⟨K⟩ and {gi} → g∞ for g∞ ∈ SL±(n + 1,R). Then {gi(Ki)} → g∞(K).
Then {bdgi(Ki)} → bdg∞(K) by Lemma 1.1.10. Hence, {bdKi} → bdK by Lemma 1.1.8.
[SnP] □
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1.1.3. The Hilbert metric. Let Ω be a convex open domain. A line or a subspace of
dimension-one in RPn has a 2-dimensional homogeneous coordinate system. Let [o,s,q, p]
denote the cross ratio of four points on a line as defined by

ō− q̄
s̄− q̄

s̄− p̄
ō− p̄

where ō, p̄, q̄, s̄ denote respectively the first coordinates of the homogeneous coordinates of
o, p,q,s provided that the second coordinates equal 1. Define a pseudo-metric for p,q ∈
Ω, dΩ(p,q) = log |[o,s,q, p]| where o and s are endpoints of the maximal segment in Ω

containing p,q where o,q separates p,s. If Ω is properly convex, then it is a metric and a
Finsler metric (See [112].) If Ω is complete affine, the metric is zero always.

LEMMA 1.1.12. Assume that {Ki}→ K geometrically for a sequence of properly con-
vex compact domains Ki and a properly convex compact domain K. Suppose that two
sequences of points {xi|xi ∈ Ko

i } and {yi|yi ∈ Ko
i } converge to x,y ∈ Ko respectively. Then

(1.1.3) {dKo
i
(xi,yi)}→ dKo(x,y).

PROOF. Let zi and ti denote the endpoint of the maximal line containing xi and yi
in Ki. Let z and t denote the endpoint of one containing x and y in K. It is easy to see
zi → z and ti → t. Let li and mi denote the supporting great hypersphere at zi and ti for Ki.
Then li and mi must converge up to subsequences a supporting great hypersphere at z and
t respectively since the closures of components of their complements are disjoint from Ko

i .
This implies that ziti converges to a subsegment of zt up to subsequences. However, a limit
cannot be a proper segment since otherwise a boundary point of Ki converges to an interior
point of K contradicting Theorem 1.1.11. This implies the result. □

LEMMA 1.1.13 (Cooper-Long-Tillman [67]). Let U be a convex subset of a properly
convex domain V in Sn (resp. RPn). Let

Uε := {x ∈V |dV (x,U)≤ ε}
for ε > 0. Then Uε is properly convex.

PROOF. Given u,v ∈Uε , we find

w, t ∈ Ω so that dV (u,w)< ε,dV (v, t)< ε.

Then each point of uv is within ε of wt ⊂U in the dV -metric. By Lemma 1.8 of [67], this
follows. [SnS] □

PROPOSITION 1.1.14. Let Ω be a properly convex domain in Sn (resp. RPn). Then the
group Aut(Ω) of projective automorphisms Ω is closed in SL±(n+ 1,R) (resp. PGL(n+
1,R)) acts on Ω. Also, the set of elements of g of Aut(Ω) so that g(x) ∈ K for a compact
subset K of Ω is compact.

PROOF. We prove for Sn. Clearly, the limit of a sequence of elements in Aut(Ω) is an
isometry of the Hilbert metric of Ω. Hence, it acts on Ω.

For the second part, we take an n-simplex σ with a point x in the interior as a base
point.

The space S n of nondegenerate convex n-simplices with base points in their interiors
with the Hausdorff topology is homeomorphic to SL±(n+1,R) since the action of SL±(n+
1,R) is simply transitive on S n.

The subspace of simplices of form g(σ) for g with g(x) ∈ K, g ∈ Aut(Ω) is compact
by the existence of the Hilbert metric: We can show this by using the invariants. The edge
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lengths are invariants. The distance from each vertex to the hyperspace containing the
remaining vertices is an invariant of the action.

We can see that the set of such g is bounded: We can find the bounded set

{hg ∈ Aut(Sn)|hg ◦g(σ ,x) = (σ ,x)}
since the set of g(σ) do not degenerate and g(x) is uniformly bounded away from the
boundary of g(σ). Since the simplex σ and the basepoint x is fixed, we have hg ◦g = I for
g(x) ∈ K. Hence the set of {g|g(x) ∈ K} is uniformly bounded.

Since S n is diffeomorphic to SL±(n+ 1,R), the closedness of Aut(Ω) proves the
result. □

PROPOSITION 1.1.15. Let Ω be a properly convex domain in Sn (resp. RPn). Suppose
that a discrete subgroup Γ of SL±(n+1,R) (resp. PGL(n+1,R)) acts on Ω. Then Ω/Γ is
an orbifold.

PROOF. The second part of Proposition 1.1.14 implies that Γ acts properly discontin-
uously. We obtain that Ω/Γ is again a closed orbifold. (We need a slight modification of
Proposition 3.5.7 of Thurston [149].) □

1.1.4. Topology of orbifolds. We summarize Chapter 4 of [51]. We will only briefly
go over it. An n-dimensional orbifold structure on a Hausdorff space X is given by maximal
collection of charts (U,φ ,G) satisfying the following conditions:

• U is an open subset of Rn and φ : U → X is a map and G is a finite group acting
on U ,

• the chart φ : U → X induces a homeomorphism U/G to an open subset of X ,
• the sets of form φ(U) covers X .
• for any pair of models (U,φ ,G) and (V,ψ,H) with an inclusion map ι : φ(U)→

φ(V ) lifts to an embedding U → V equivariant with respect to an injective ho-
momorphism G → H. (compatibility condition)

An orbifold O is a topological space with an orbifold structure. The boundary ∂O of an
orbifold is defined as the set of points with only half-open sets as models. (These are often
distinct from topological boundary.) A suborbifold N of O is a subspace of X equipped
with maximal collection of charts containing the orbifold charts of form (U ∩N,φ |U ∩
N,G|U ∩N) from O . (See Definition 4.4.2 of [51].) (Note this is more general than other
defintiions.) A boundary components of O is a suborbifold.

Orbifolds are stratified by manifolds. Let O denote an n-dimensional orbifold with
finitely many ends. We will require that O is strongly tame; that is, O has a compact
suborbifold K so that O −K is a disjoint union of end neighborhoods homeomorphic to
closed (n−1)-dimensional orbifolds multiplied by open intervals. Hence ∂O is a compact
suborbifold. (See [148], [1], [108] and [51] for details.)

An orbifold covering map p : O1 → O is a map so that for any point on O , there is a
connected open set U ⊂ X with model (Ũ ,φ ,G) as above whose inverse image p−1(U) is
a union of connected open set Ui of O1 with models (Ũ ,φi,Gi) for a subgroup Gi ⊂ G and
the induced chart φi : Ũ → Ũi.

We say that an orbifold is a manifold if it has a subatlas of charts with trivial local
groups. We will consider good orbifolds only, i.e., covered by simply connected manifolds.
In this case, the universal covering orbifold Õ is a manifold with an orbifold covering map
pO : Õ → O . The group of deck transformations will be denote by π1(O) or ΓΓΓ, and is
said to be the fundamental group of O . They act properly discontinuously on Õ but not
necessarily freely.
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We will follow Section 4.4.2 of [51]. (See Chapter 4 of [100] for manifolds.) A neat
suborbifold N ⊂O is a suborbifold such that ∂N ⊂ ∂O and the tangent spaces to N at ∂N is
transversal to the tangent spaces of ∂O . Of course, if ∂N = /0, a suborbifold N is considered
neat. Let N(N) denote the subspace of the tangent bundle of O over N consisting of vectors
perpedicular to N. Let ε : N → [0,∞) denote a real valued function. We denote by Nε(N)
the subspace of normal vectors to N of length ≤ ε(x) at each TxO , x ∈ N. The exponential
map is an embedding from Nε(N) to O for sufficiently small ε . We call the image tubular
neighborhood of N.

PROPOSITION 1.1.16. We can give a Riemannian metric on O so that ∂O is totally
geodesic and a neat submanifold N to be totally geodesic perpendicular to ∂O . A tubular
neighborhoods are always diffeomorphic to the orbifold product N × (−1,1) or one N ×
[0,1) provided N is a union of boundary components.

PROOF. See Section 4.4.2 and Lemma 4.4.1 of [51]. □

1.1.5. Geometric structures on orbifolds. An (X ,G)-structure on an orbifold O is
an atlas of charts from open subsets of X with finite subgroups of G acting on them, and
the inclusions always lift to restrictions of elements of G in open subsets of X . This is
equivalent to saying that the orbifold O has a simply connected manifold cover Õ with
an immersion D : Õ → X and the fundamental group π1(O) acts on Õ properly discon-
tinuously so that h : π1(O)→ G is a homomorphism satisfying D ◦ γ = h(γ) ◦D for each
γ ∈ π1(O). Here, π1(O) is allowed to have fixed points with finite stabilizers. (We shall
use this second more convenient definition here.) (D,h(·)) is called a development pair
and for a given (X ,G)-structure, it is determined only up to an action

(D,h(·)) 7→ (k ◦D,kh(·)k−1) for k ∈ G.

Conversely, a development pair completely determines the (X ,G)-structure. (See Thurston
[149] for the general theory of geometric structures.)

Thurston showed that an orbifold with an (X ,G)-structure is always good, i.e., covered
by a manifold with an (X ,G)-structure. (See Proposition 13.2.1 of Chapter 13 of Thurston
[148].) Hence, every geometric orbifold is of form M̃/Γ for a discrete group Γ acting on
a simply connected manifold M̃. Here, we have to understand M̃/Γ as having an orbifold
structure coming from an atlas where each model set is based on a precompact open cell
of M̃ on which a finite subgroup of Γ acts. (See Theorem 4.23 of [51] for details.)

1.1.6. Real projective structures on orbifolds. A cone C in Rn+1 −{O} is a sub-
space so that given a vector x ∈C, sx ∈C for every s ∈R+. A convex cone is a cone that is
a convex subset of Rn+1 in the usual sense. A properly convex cone is a convex cone not
containing a complete affine line.This seems repeated

Recall the real projective space RPn is defined as Rn+1 − {O} under the quotient
relation v⃗ ∼ w⃗ iff v⃗ = sw⃗ for s ∈ R−{O}.

• Given a vector v⃗ ∈ Rn+1 −{O}, we denote by [⃗v] ∈ RPn the equivalence class.
Let Π : Rn+1 −{O}→ RPn denote the projection.

• Given a connected subset A of an affine subspace of RPn, a cone C(A) ⊂ Rn+1

of A is given as a connected cone in Rn+1 mapping onto A under the projection
Π : Rn+1 −{O}→ RPn.

• C(A) is unique up to the antipodal map A : Rn+1 → Rn+1 given by v⃗ → −⃗v.
The general linear group GL(n+1,R) acts on Rn+1 and PGL(n+1,R) acts faithfully

on RPn. Denote by R+ = {r ∈ R|r > 0}. The real projective sphere Sn is defined as
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the quotient of Rn+1 −{O} under the quotient relation v⃗ ∼ w⃗ iff v⃗ = sw⃗ for s ∈ R+. We
will also use Sn as the double cover of RPn. Then Aut(Sn), isomorphic to the subgroup
SL±(n+1,R) of GL(n+1,R) of determinant ±1, double-covers PGL(n+1,R). Aut(Sn)
acts as a group of projective automorphisms of Sn. A projective map of a real projective
orbifold to another is a map that is projective by charts to RPn. Let Π : Rn+1−{O}→RPn

be a projection and let Π′ : Rn+1−{O}→ Sn denote one for Sn. An infinite subgroup Γ of
PGL(n+1,R) (resp. SL±(n+1,R)) is strongly irreducible if every finite-index subgroup
is irreducible. A subspace S of RPn (resp. Sn) is the image of a subspace with the origin
removed under the projection Π (resp. Π′).

A line in RPn or Sn is an embedded arc in a 1-dimensional subspace. A projective geo-
desic is an arc in a projective orbifold developing into a line in RPn or to a one-dimensional
subspace of Sn. A great segment is an embedded geodesic connecting a pair of antipodal
points in Sn or the complement of a point in a 1-dimensional subspace in RPn. Sometimes
open great segment is called a complete affine line. An affine space An can be identified
with the complement of a codimension-one subspace RPn−1 so that the geodesic structures
are same up to parameterizations. A convex subset of RPn is a convex subset of an affine
subspace in this paper. A properly convex subset of RPn is a precompact convex subset of
an affine subspace. Rn identifies with an open half-space in Sn defined by a linear function
on Rn+1. (In this paper an affine subspace is either embedded in RPn or Sn.)

An i-dimensional complete affine subspace is a subspace of a projective orbifold pro-
jectively diffeomorphic to an i-dimensional affine subspace in some affine subspaceAn of
RPn or Sn.

Again an affine subspace in Sn is a lift of an affine subspace in RPn, which is the
interior of an n-hemisphere. Convexity and proper convexity in Sn are defined in the same
way as in RPn.

The complement of a codimension-one subspace W in RPn can be considered an affine
space An by correspondence

[1,x1, . . . ,xn]→ (x1, . . . ,xn)

for a coordinate system where W is given by x0 = 0. The group Aff(An) of projective
automorphisms acting onAn is identical with the group of affine transformations of form

x⃗ 7→ A⃗x+ b⃗

for a linear map A : Rn →Rn and b⃗ ∈Rn. The projective geodesics and the affine geodesics
agree up to parametrizations.

A subset A of RPn or Sn spans a subspace S if S is the smallest subspace containing A.
We write S = ⟨A⟩. Of couse, we use the same term for affine and vector spaces as well.

We will consider an orbifold O with a real projective structure: This can be expressed
as

• having a pair (dev,h) where dev : Õ → RPn is an immersion equivariant with
respect to

• the homomorphism h : π1(O)→ PGL(n+ 1,R) where Õ is the universal cover
and π1(O) is the group of deck transformations acting on Õ .

(dev,h) is only determined up to an action of PGL(n+1,R) given by

g◦ (dev,h(·)) = (g◦dev,gh(·)g−1) for g ∈ PGL(n+1,R).

dev is said to be a developing map and h is said to be a holonomy homomorphism and
(dev,h) is called a development pair. We will usually use only one pair where dev is an
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embedding for this paper and hence identify Õ with its image. A holonomy is an image of
an element under h. The holonomy group is the image group h(π1(O)).

We denote by Aut(K) the group of projective automorphisms of a set K in some space
with a projective structure. The Klein model of the hyperbolic geometry is given as fol-
lows: Let x0,x1, . . . ,xn denote the standard coordinates of Rn+1. Let B be the interior in
RPn or Sn of a standard ball that is the image of the positive cone of x2

0 > x2
1 + · · ·+ x2

n in
Rn+1. Then B can be identified with a hyperbolic n-space. The group of isometries of the
hyperbolic space equals the group Aut(B) of projective automorphisms acting on B. Thus,
a complete hyperbolic manifold carries a unique real projective structure and is denoted by
B/Γ for Γ ⊂ Aut(B). Actually, g(B) for any g ∈ PGL(n+1,R) will serve as a Klein model
of the hyperbolic space, and Aut(gB) = gAut(B)g−1 is the isometry group. (See [51] for
details.)

A totally geodesic hypersurface A in Õ is a suborbifold of codimension-one where
each point p in A has a neighborhood U in Õ so that D|Ã has the image in a hyperspace. A
suborbifold A is a totally geodesic hypersurface if it is covered by a one in Õ .

1.1.7. Spherical real projective structures. We now discuss the standard lifting: A
real projective structure on O provides us with a development pair (dev,h) where dev :
Õ →RPn is an immersion and h : π1(O)→ PGL(n+1,R) is a homomorphism. Since pSn

is a covering map and Õ is a simply connected manifold, O being a good orbifold, there
exists a lift dev′ : Õ → Sn unique up to the action of {I,A }. This induces a spherical real
projective structure on Õ and dev′ is a developing map for this real projective structure.
Given a deck transformation γ : Õ → Õ , the composition dev′◦γ is again a developing map
for the real projective structure and hence equals h′(γ)◦dev′ for h′(γ)∈ SL±(n+1,R). We
verify that h′ : π1(O) → SL±(n+ 1,R) is a homomorphism. Hence, (dev′,h′) gives us a
spherical real projective structure, which induces the original real projective structure.

Given a real projective structure where dev : Õ → RPn is an embedding to a properly
convex open subset D, the developing map dev lifts to an embedding dev′ : Õ → Sn to an
open domain D without any pair of antipodal points. D is determined up to A .

We will identify Õ with D or A (D) and π1(O) with ΓΓΓ. Then ΓΓΓ lifts to a subgroup ΓΓΓ
′

of SL±(n+1,R) acting faithfully and discretely on Õ . There is a unique way to lift so that
D/ΓΓΓ is projectively diffeomorphic to Õ/ΓΓΓ

′.

THEOREM 1.1.17. There is a one-to-one correspondence between the space of real
projective structures on an orbifold O with the space of spherical real projective struc-
tures on O . Moreover, a real projective diffeomorphism of real projective orbifolds is an
(Sn,SL±(n+1,R))-diffeomorphism of spherical real projective orbifolds and vice versa.

PROOF. Straightforward. See p. 143 of Thurston [149] ( see also Section 1.1.8). □

Again, we can define the radial end structures, horospherical, and totally geodesic
ideal boundary for spherical real projective structures in obviously. Also, each end has R-
type or T -type assigned accordingly compatible with these definitions. They correspond
directly in the following results also.

PROPOSITION 1.1.18 (Selberg-Malcev). The holonomy group of a convex real pro-
jective orbifold is residually finite.

PROOF. In this case, dev : Õ → RPn always lifts an embedding to a domain in Sn.
Γ also lifts to a group of projective automorphisms of the domain in SL±(n+ 1,R). The
lifted group is residually finite by by Malcev [122]. Hence, Γ is thus always residually
finite. [SnS] □
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THEOREM 1.1.19 (Selberg). A real projective orbifold S is covered finitely by a real
projective manifold M and S is real projectively diffeomorphic to M/G1 for a finite group
G1 of real projective automorphisms of M. An affine orbifold S is covered finitely by an
affine manifold N, and S is affinely diffeomorphic to N/G2 for a finite group G2 of affine
automorphisms of N. Finally, given a two convex real projective or affine orbifold S1 and
S2 with isomorphic fundamental groups, one is a closed orbifold if and only if so is the
other.

PROOF. Since Aff(An) is a subgroup of a general linear group, Selberg’s Lemma
[142] shows that there exists a torsion-free subgroup of the deck transformation group. We
can choose the group to be a normal subgroup and the second item follows.

A real projective structure induces an (Sn,SL±(n+1,R))-structure and vice versa by
Theorem 1.1.17. Also a real projective diffeomorphism of orbifolds is an (Sn,SL±(n+
1,R))-diffeomorphism and vice versa. We regard the real projective structures on S and
M as (Sn,SL±(n+1,R))-structures. We are done by Selberg’s lemma [142] that a finitely
generated subgroup of a general linear group has a torsion-free normal subgroup of finite-
index.

For the final item, we can take a torsion-free subgroup and the finite covers of S1 and S2
are manifold which are K(π,1) for identical π . Hence, the conclusion follows. [SnS] □

1.1.8. A comment on lifting real projective structures and conventions. We sharpen
Theorem 1.1.17. Let SL−(n+ 1,R) denote the component of SL±(n+ 1,R) not contain-
ing I. A projective automorphism g of Sn is orientation preserving if and only if g has
a matrix in SL(n+ 1,R). For even n, the quotient map SL(n+ 1,R) → PGL(n+ 1,R) is
an isomorphism and so is the map SL−(n+ 1,R)→ PGL(n+ 1,R) for the component of
SL±(n+1,R) with determinants equal to −1. For odd n, the quotient map SL(n+1,R)→
PGL(n+ 1,R) is a 2 to 1 covering map onto its image component with deck transforma-
tions given by A →±A.

THEOREM 1.1.20. Let M be a strongly tame n-orbifold. Suppose that h : π1(M) →
PGL(n+1,R) is a holonomy homomorphism of a real projective structure on M with radial
or lens-shaped totally geodesic ends. Then the following hold :

• Suppose that M is orientable. We can lift to a homomorphism h′ : π1(M) →
SL(n+ 1,R), which is a holonomy homomorphism of the (Sn,SL±(n+ 1,R))-
structure lifting the real projective structure.

• Suppose that M is not orientable. Then we can lift h to a homomorphism h′ :
π1(M)→ SL±(n+1,R) that is the holonomy homomorphism of the (Sn,SL±(n+
1,R))-structure lifting the real projective structure so that the condition (∗) is
satisfied.
(∗) a deck transformation goes to a negative determinant matrix if and only if it

reverses orientations.
In general a lift h′ is unique if we require it to be the holonomy homomorphism of the lifted
structure. For even n, the lifting is unique if we require the condition (∗).

PROOF. For the first part, recall SL(n+ 1,R) is the group of orientation-preserving
linear automorphisms of Rn+1 and hence is precisely the group of orientation-preserving
projective automorphisms of Sn. Since the deck transformations of the universal cover M̃
of the lifted (Sn,SL±(n+ 1,R))-orbifold are orientation-preserving, the holonomy of the
lift are in SL(n+1,R). We use as h′ the holonomy homomorphism of the lifted structure.

For the second part, we can double cover M by an orientable orbifold M′ with an
orientation-reversing Z2-action of the projective automorphism group generated by φ :
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M′ → M′. φ lifts to φ̃ : M̃′ → M̃′ for the universal covering manifold M̃′ = M̃ and hence
h(φ̃)◦dev = dev◦ φ̃ for the developing map dev and the holonomy

h(φ̃) ∈ SL−(n+1,R).

Then it follows from the first item since dev preserves orientations for a given orientation
of M̃. (See p. 143 of Thurston [149].)

The proof of the uniqueness is straightforward. □

REMARK 1.1.21 (Convention on using spherical real projective structures). Suppose
we are given a convex real projective orbifold of form Ω/Γ for Ω a convex domain in
RPn and Γ a subgroup of PGL(n+ 1,R). We can also think of Ω as a domain in Sn and
Γ ⊂ SL±(n+1,R). We can think of them in both ways and we will use a convenient one
for the purpose.

1.1.8.1. Convex hulls.

DEFINITION 1.1.22. Given a subset K of a convex domain Ω of an affine subspace
An in Sn (resp. RPn), the convex hull C H (K) of K is defined as the smallest convex set
containing K in Cl(Ω)⊂An where we required Cl(Ω) is a bounded subset ofAn.

The convex hull is well-defined as long as Ω is properly convex. Otherwise, it may be
not. This does not change the convex hull. (Usually it will be clear what Ω is by context but
we will mention these.) For RPn, the convex hull depends on Ω but one can check that the
convex hull is well-defined on Sn as long as Ω is properly convex. Also, it is commonly
well-known that each point of the convex hull of a set K has a direction vector equal to
a linear sum of at most n+ 1 vectors in the direction of K. Hence, the convex hull is a
union of n-simplices with vertices in K. Also, if K is compact, then the convex hull is also
compact (See Berger [26].)

LEMMA 1.1.23. Let Ω be a convex open set. Let {Ki} be a sequence for a compact
set Ki in a properly convex domain for each i. Suppose that {Ki} geometrically converges
to a compact set K ⊂ Ω, Then {C H (Ki)}→ C H (K).

PROOF. It is sufficient to prove for Sn. We write each element of C H (Ki) as a finite
sum

((
∑

n+1
j=1 λi, j⃗vi, j

))
for v⃗i, j in the direction of Ki and λi, j ≥ 0. Lemma 1.1.7 implies the

result. [SnT] □

1.2. Affine orbifolds

An affine orbifold is an orbifold with a geometric structure modeled on (An,Aff(An)).
An affine orbifold has a notion of affine geodesics as given by local charts. Recall that
a geodesic is complete in a direction if the affine geodesic parameter is infinite in the
direction.

• An affine orbifold has a parallel end if the corresponding end has an end neigh-
borhood foliated by properly embedded affine geodesics parallel to one another
in charts and each leaf is complete in one direction. We assume that the affine
geodesics are leaves assigned as above.

– We obtain a smooth complete vector field XE in a neighborhood of E for
each end following the affine geodesics, which is affinely parallel in the
flow; i.e., leaves have parallel tangent vectors. We call this an end vector
field.
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– We denote by XO the vector field partially defined on O by taking the union
of vector fields defined on some mutually disjoint neighborhoods of the ends
using the partition of unity.

– The oriented direction of the parallel end is uniquely determined in the de-
veloping image of each p-end neighborhood of the universal cover of O .

– Finally, we put a fixed complete Riemannian metric on O so that for each
end there is an open neighborhood where the metric is invariant under the
flow generated by XO . Note that such a Riemannian metric always exists.

• An affine orbifold has a totally geodesic end E if each end can be completed by
a totally geodesic affine hypersurface. That is, there exists a neighborhood of the
end E diffeomorphic to ΣE × [0,1) for an (n− 1)-orbifold ΣE that compactifies
to an orbifold diffeomorphic to ΣE × [0,1], and each point of ΣE ×{1} has a
neighborhood affinely diffeomorphic to a neighborhood of a point p in ∂H for
a half-space H of an affine space. This implies the fact that the corresponding
p-end holonomy group h(π1(Ẽ)) for a p-end Ẽ going to E acts on a hyperspace
P corresponding to E ×{1}.

Recall that an orbifold is a topological space stratified by open manifolds (See Chapter
4 of [51]). An affine or projective orbifold is triangulated if there is a smoothly embedded
n-cycle consisting of geodesic n-simplices on the compactified orbifold relative to ends by
adding an ideal point to a radial end and an ideal boundary to each totally geodesic ends.
where the interiors of i-simplices in the cycle are mutually disjoint and are embedded in
strata of the same or higher dimension.

1.2.1. Affine suspension constructions. The affine subspace Rn+1 is a dense open
subset of RPn+1 which is the complement of (n+1)-dimensional projective space RPn+1.
Thus, an affine transformation is a restriction of a unique projective automorphism acting
on Rn+1. The group of affine transformations Aff(An+1) is isomorphic to the group of
projective automorphisms acting on Rn+1 by the restriction homomorphism.

A dilatation γ in an affine subspace Rn+1 is a linear transformation with respect to
an affine coordinate system so that all its eigenvalues have norm > 1 or < 1. Here, γ is
an expanding map in the dynamical sense. A scalar dilatation is a dilation with a single
eigenvalue.

An affine orbifold O is radiant if h(π1(O)) fixes a point in Rn+1 for the holonomy
homomorphism h : π1(O) → Aff(An+1). A real projective orbifold O of dimension n
has a developing map dev′ : Õ → Sn and the holonomy homomorphism h′ : π1(O) →
SL±(n+1,R). We regard Sn is embedded as a unit sphere in Rn+1 temporarily. We obtain
a radiant affine (n+1)-orbifold by taking Õ and dev′ and h′: Define D′′ : Õ×R+ →Rn+1

by sending (x, t) to tdev′(x). For each element of γ ∈ π1(O), we define the transformation
γ ′ on Õ ×R+ from

γ
′(x, t) =(γ(x),θ(γ)||h′(γ)(tdev′(x))||)

for a homomorphism θ : π1(O)→ R+.(1.2.1)

Also, there is a transformation Ss : Õ ×R+ → Õ ×R+ sending (x, t) to (x,st) for s ∈ R+.
Thus,

Õ ×R+/⟨Sρ ,π1(O)⟩,ρ ∈ R+,ρ > 1

is an affine orbifold with the fundamental group isomorphic to π1(O)×Z where the de-
veloping map is given by D′′ the holonomy homomorphism is given by h′ and sending the
generator of Z to Sρ . We call the result the affine suspension of O , which of course is
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radiant. The representation of π1(O)×Z with the center Z mapped to a scalar dilatation is
called an affine suspension of h. A special affine suspension is an affine suspension with
θ ≡ 1 identically.

There is a variation called generalized affine suspension. Here we use any γ that is a
dilatation and normalizes h′(π1(O)) and we deduce that

Õ ×R+/⟨γ,π1(O)⟩

is an affine orbifold with the fundamental group isomorphic to ⟨π1(O),Z⟩. (See Sullivan-
Thurston [147], Barbot [10] and Choi [47] also.)

DEFINITION 1.2.1. We denote by C(Õ) the manifold Õ ×R with the structure given
by D′′, and say that C(Õ) is the affine suspension of Õ .

Let St : Rn+1 →Rn+1, given by v⃗ → t⃗v, t ∈R+, be a one-parameter family of dilations
fixing a common point. A family of self-diffeomorphisms Ψt on an affine orbifold M
lifting to Ψ̂t : M̃ → M̃ so that D ◦ Ψ̂t = Set ◦D for t ∈ R is called a group of radiant flow
diffeomorphisms.

LEMMA 1.2.2. Let O be a strongly tame real projective n-orbifold.

• An affine suspension O ′ of O always admits a group of radiant flow diffeomor-
phisms. Here, {Φt} is a circle and all flow lines are closed.

• Conversely, if there exists a group of radiant flow diffeomorphisms where all
orbits are closed and have the homology class

[[
∗×S1

]]
on O × S1 with an

affine structure, then O×S1 is affinely diffeomorphic to one obtained by an affine
suspension construction from a real projective structure on O .

PROOF. The first item is clear by the above construction.
The generator of the π1(S1)-factor goes to a scalar dilatation since it induces the iden-

tity map on the space of directions of radial segments from the global fixed point. Thus,
each closed curve along ∗×S1 gives us a nontrivial homology. The homology direction
of the flow equals

[[
∗×S1

]]
∈ S(H1(O ×S1;R)). By Theorem D of [79], there exists a

connected cross-section homologous to

[O ×∗] ∈ Hn(O ×S1,V ×S1;R)∼= H1(O ×S1;R)

where V is the union of the disjoint end neighborhoods of product forms in O . By Theorem
C of [79], any cross-section is isotopic to O ×∗. The radial flow is transverse to the cross-
section isotopic to O ×∗ and hence O admits a real projective structure. It follows easily
now that O ×S1 is an affine suspension. (See [10] for examples.) □

An affine suspension of a horospherical orbifold is called a suspended horoball orb-
ifold. An end of an affine orbifold with an end neighborhood affinely diffeomorphic to this
is said to be of suspended horoball type. This has also a parallel end since the fixed point
in the boundary of Rn gives a unique direction.

PROPOSITION 1.2.3. Under the affine suspension construction, a strongly tame real
projective n-orbifold has radial, totally geodesic, or horospherical ends if and only if the
affine (n+ 1)-orbifold affinely suspended from it has parallel, totally geodesic, or sus-
pended horospherical ends.

Again affine (n+1)-orbifold suspended have type R- or T -ends if the corresponding
real projective n-orbifold has R- or T -ends in correspondingly.



1.3. THE NEEDED LINEAR ALGEBRA 17

1.3. The needed linear algebra

Here, we will collect the linear algebra we will need in this monograph. A source is a
comprehensive book by Hoffman and Kunz [101].

DEFINITION 1.3.1. Given an eigenvalue λ of an element g ∈ SL±(n+ 1,R), a C-
eigenvector v⃗ is a nonzero vector in

REλ (g) := Rn+1 ∩
(

ker(g−λ I)+ker(g− λ̄ I)
)
,λ ̸= 0,ℑλ ≥ 0

A C-fixed point is the direction of a C-eigenvector in RPn (resp. Sn or CPn).
Any element of g has a primary decomposition. (See Section 6.8 of [101].) Write

the minimal polynomial of g as ∏
m
i=1(x− λi)

ri for ri ≥ 1 and mutually distinct complex
numbers λ1, . . . ,λm. Define

Cλi(g) := ker(g−λiI)ri ⊂ Cn+1

where ri = r j if λi = λ̄ j. Then the primary decomposition theorem states

Cn+1 =
m⊕

i=1

Cλi(g),

which is a canonical decomposition.
A real primary subspace is the sum Rn+1 ∩ (Cλ (g)+C

λ̄
(g)) for λ an eigenvalue of g.

A point [⃗v], v⃗ ∈ Rn+1, is affiliated with a norm µ of an eigenvalue if

(1.3.1) v⃗ ∈ Rµ(g) :=
⊕

i∈{ j||λ j |=µ}
Cλi(g)∩Rn+1.

Let µ1, . . . ,µl denote the set of distinct norms of eigenvalues of g. We also have Rn+1 =⊕l
i=1 Rµi(g). Here, Rµ(g) ̸= {0} if µ equals |λi| for at least one i.

PROPOSITION 1.3.2. Let g be an element of PGL(n+ 1,R) (resp. SL±(n+ 1,R))
acting on RPn (resp. Sn). Let V and W be independent complementary subspaces where g
acts on. Suppose that every norm of the eigenvalue of any eigenvector in the direction of
V is strictly larger than any norms of the eigenvalues of the vectors in the direction of W.
Let V S be the subspace that is the join of the C-eigenspaces of V . Then

• for x ∈ RPn −Π(V )−Π(W ) (resp. Sn −Π′(V )−Π′(W )), {gn(x)} accumulates
to only points in Π(V S) (resp. Π′(V S)) as n → ∞.

• Let U be a neighborhood of x in RPn − Π(V )− Π(W ) (resp. Sn − Π′(V )−
Π′(W )). There exists an open subset U ′ of Π(V S) (resp. Π′(V S)) where each
point of U ′ is realized as a limit point of {gn(y)} as n → ∞ for some y in U.

PROOF. It is sufficient to prove for Cn+1 and CPn. We write the minimal polynomial
of g as ∏

m
i=1(x−λi)

ri for ri ≥ 1 and mutually distinct complex numbers λ1, . . . ,λm. Let
WC be the complexification of the subspace corresponding to W and VC the one for V .
Then Cλi(g) is a subspace of WC or VC by elementary linear algebra.

Now, we write the matrix of g determined only up to ±I in terms of above primary
decomposition spaces. Then we write the matrix in the Jordan form in an upper triangular
form. The diagonal terms of the matrix of gn dominates nondiagonal terms in terms of
ratios of the absolute values. The lemma easily follows.

The last part follows by writing x and y in terms of vectors in directions of V and W
and other g-invariant subspaces. □
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1.3.1. Nilpotent and orthopotent groups. Let U denote a maximal nilpotent sub-
group of SL±(n+ 1,R) given by upper triangular matrices with diagonal entries equal to
1. We let UC denote the group of by upper triangular matrices with diagonal entries equal
to 1 in SL±(n+1,C).

Let O(n+ 1) denote the orthogonal group of Rn+1 with the standard hermitian inner
product.

LEMMA 1.3.3 (Iwasawa Decomposition). The matrix of g ∈ Aut(Sn) can be written
under an orthogonal coordinate system as k(g)a(g)n(g) where k(g) is an element of O(n+
1), a(g) is a positive diagonal element, and n(g) is real unipotent. Also, diagonal elements
of a(g) are the norms of eigenvalues of g as elements of Aut(Sn).

PROOF. See Theorem 1.3 of Chapter IX of [98]. □

Recall that all maximal unipotent subgroups are conjugate to each other in SL±(n+
1,R). (See Section 21.3 of Humphreys [102].) We define

U′ :=
⋃

k∈O(n+1)

kUk−1 =
⋃

k∈SL±(n+1,R)
kUk−1.

The second equality is explained: Each maximal unipotent subgroup is characterized by a
maximal flag. Each maximal unipotent subgroup is conjugate to a standard lower triangular
unipotent group by an orthogonal element in O(n+ 1) since O(n+ 1) acts transitively on
the maximal flag space.

COROLLARY 1.3.4. Suppose that we have for a positive constant C1, and an element
g ∈ SL±(n+1,R),

1
C1

≤ λn+1(g)≤ λ1(g)≤C1

for the minimal norm λn+1(g) of the eigenvalue of g and the maximal norm λ1(g) of the
eigenvalues of g. Then g is in a bounded distance from U′ with the bound depending only
on C1.

PROOF. Let us fix an Iwasawa decomposition SL±(n+1,R) = O(n+1)Dn+1U for a
positive diagonal group Dn+1. By Lemma 1.3.3, we can find an element k ∈ O(n+ 1) so
that

g = kk(g)k−1ka(g)k−1kn(g)k−1

where k(g) ∈ O(n+1),a(g) ∈ D+
n ,n(g) ∈ U′. Then kk(g)k−1 ∈ O(n+1) and ka(g)k−1 is

uniformly bounded from I by a constant depending only on C1 by assumption. □

A subset of a Lie group is of polynomial growth if the volume of the ball BR(I) radius
R is less than or equal to a polynomial of R. As usual, the metric is given by the standard
positive definite left-invariant bilinear form that is invariant under the conjugations by the
compact group O(n+1).

LEMMA 1.3.5. U′ is of polynomial growth in terms of the distance from I.

PROOF. Let Aut(Sn) have a left-invariant Riemannian metric. Clearly U is of polyno-
mial growth by Gromov [94] since U is nilpotent. Given fixed g ∈ O(n+ 1), the distance
between gug−1 and u for u ∈ U′ is proportional to a constant cg, cg > 1, multiplied by
d(u, I). Choose u ∈U′ which is unipotent. We can write u(s) = exp(s⃗u),s ≥ 0 where u⃗ is a
nilpotent matrix of unit norm. g(t) := exp(t⃗x), t ≥ 0 for x⃗ in the Lie algebra of O(n+1) of
unit norm. For a family of g(t) ∈ O(n+1), we define

(1.3.2) u(t,s) = g(t)u(s)g(t)−1 = exp(sAdg(t )⃗u).
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We compute

u(t,s)−1 du(t,s)
dt

= u(t,s)−1(⃗xu(t,s)−u(t,s)⃗x) = (Adu(t,s)−1 − I)(⃗x).

Since u⃗ is nilpotent, Adu(t,s)−1 − I is a polynomial of variables t,s. The norm of du(t,s)/dt
is bounded above by a polynomial in s and t. The conjugation orbits of O(n+1) in Aut(Sn)
are compact. Also, the conjugation by O(n+1) preserves the distances of elements from I
since the left-invariant metric µ is preserved by conjugation at I and geodesics from I go to
geodesics from I of same µ-lengths under the conjugations by (1.3.2). Hence, we obtain a
parametrization of U′ by U and O(n+1) where the volume of each orbit of O(n+1) grows
polynomially. Since U is of polynomial growth, U′ is of polynomial growth in terms of the
distance from I. □

THEOREM 1.3.6 (Zassenhaus [158]). For every discrete group G of GL(n+1,R), all
of which have the shape in a complex basis in Cn

eiθ1 ∗ · · · ∗
0 eiθ2 · · · ∗

0 0
. . .

...
0 0 · · · eiθn+1

 ,

there exists a positive number ε , so that all the matrices A from G which satisfy the in-
equalities |eiθ j −1|< ε for every j = 1, . . . ,n+1 are contained in the radical of the group,
i.e., the subgroup Gu of elements of G with only unit eigenvalues.

An element g of GL(n+1,R) (resp. PGL(n+1,R)) is said to be unit-norm-eigenvalued
if it (resp. its representative) has only eigenvalues of norm 1. A group is unit-norm-
eigenvalued if all of its elements are unit-norm-eigenvalued.

A subgroup G of SL±(n+1,R) is orthopotent if there is a flag of subspaces 0 = Y0 ⊂
Y1 ⊂ ·· · ⊂Ym =Rn+1 preserved by G so that G acts as an orthogonal group on Yj+1/Yj for
each j = 0, . . . ,m−1 for some choices of inner-products. (See D. Fried [80].)

THEOREM 1.3.7. Let G be a unit-norm-eigenvalued subgroup of SL±(n+1,R). Then
G is orthopotent, and the following hold:

• If G is discrete, then G is virtually unipotent.
• If G is a connected Lie group, then G is an extension of a solvable group by a

compact group; i.e., G/S is a compact group for a normal solvable group S in G.
• If G is contractible, then G is a simply connected solvable Lie group.

PROOF. By Corollary 1.3.4, G is in U′.
Suppose that G is discrete. Then G is of polynomial growth by Lemma 1.3.5. By

Gromov [94], G is virtually nilpotent.
Choose a finite-index normal nilpotent subgroup G′ of G. Since G′ is solvable, The-

orem 3.7.3 of [150] shows that G′ can be put into an upper triangular form for a complex
basis. Let G′

u denote the subset of G′ with only elements with all eigenvalues equal to 1. G′
u

is a normal subgroup since it is in an upper triangular form. The map G′ → G′/G′
u factors

into a map G′ → (S1)n by taking the complex eigenvalues. By Theorem 1.3.6, the image
is a discrete subgroup of (S1)n. Hence, G′/G′

u is finite where G′
u is unipotent. (Another

proof is given in the Remark of page 124 of Jenkins [105].)
Suppose that G is a connected Lie group. Since a(g) = I for a(g) for all g ∈ G,

Corollary 1.3.4 shows that G ⊂ KUK for a compact Lie group K. Recall that a distal group
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is a linear group whose elements do not decrease norms of vectors. Since U is a distal
group, G is a distal group, and hence G is orthopotent by [62] or [132].

Since G ⊂ KUK, it is of polynomial growth, Corollary 2.1 of Jenkins [105] implies
that G is an extension of a solvable Lie group by a compact Lie group.

If G is contractible, G then can only be an extension by a finite group. Since G is
determined by its Lie algebra, G must be solvable by the second item. □

1.3.2. Elements of dividing groups. Suppose that Ω, Ω ⊂ Sn (resp. ⊂ RPn), is
an open domain that is properly convex but not necessarily strictly convex. Let Γ, Γ ⊂
SL±(n+ 1,R) (resp. ⊂ PGL(n+ 1,R)), be a discrete group acting on Ω so that Ω/Γ is
compact.

An element of Γ is said to be elliptic if it is conjugate to an element of a compact
subgroup of PGL(n+1,R) or SL±(n+1,R).

LEMMA 1.3.8. Suppose that Ω is a properly convex domain in RPn (resp. in Sn), and
Γ is a group of projective automorphisms of Ω. Suppose that Ω/Γ is an orbifold. Then an
element g of Γ is elliptic if and only if g fixes a point of Ω if and only if g is of finite order.

PROOF. Let us assume Ω ⊂ Sn. Let g be an elliptic element of Γ. Take a point
x ∈ Ω. Let x⃗ denote a vector in a cone C(Ω) ⊂ Rn+1 corresponding to x. Then the orbits
{gn(⃗x)|n ∈ Z} has a compact closure. There is a fixed vector in C(Ω), which corresponds
to a fixed point of Ω.

If x is a point of Ω fixed by g, then it is in the stabilizer group. Since Ω/Γ is an
orbifold, g is of finite order.

If g is of finite order, g is certainly elliptic. [SnT] □

We recall the definitions of Benoist [23]: For an element g of SL±(n+1,R), we denote
by λ1(g), . . . ,λn+1(g) the sequence of the norms of eigenvalues of g with repetitions by
their respective multiplicities. The first one λ1(g) is called the spectral radius of g.

Assume λ1(g) ̸= λn+1(g) for the following definitions.
• An element g of SL±(n+1,R) is proximal if λ1(g) has multiplicity one.
• g is positive proximal if g is proximal and λ1(g) is an eigenvalue of g.
• An element g of SL±(n+1,R) is semi-proximal if λ1(g) or −λ1(g) is an eigen-

value of g.
• An element g of SL±(n+1,R) is positive semi-proximal if λ1(g) is an eigenvalue

of g. (Definition 3.1 of [23].)

• g is called positive bi-proximal if g and g−1 is both positive proximal.
• g is called positive bi-semi-proximal if g and g−1 is both positive semi-proximal.

Of course, the proximality is a stronger condition than semi-proximality.
Let Ω be a properly convex open domain in Sn. For each positive bi-semi-proximal

element g ∈ Γ acting on Ω, we have two disjoint compact convex subspaces

Ag := A∩Cl(Ω) and Rg := R∩Cl(Ω)

for the eigenspace A associated with the largest of eigenvalues of g and the eigenspace R
associated with the smallest of the eigenvalues of g. Note g|Ag and g|Rg are both identity
maps. Here, Ag is associated with λ1(g) and Rg is with λn(g), which is an eigenvalue as
well. Ag is called an attracting fixed subset and Rg a repelling fixed subset.

Let g be a positive bi-semi-proximal element. For g, g ∈ SL±(n+1,R),
• we denote by V A

g := ker(g−λ1(g)I)m1 : Rn+1 →Rn+1 where m1 is the multiplic-
ity of the eigenvalue λ1(g) in the characteristic polynomial of g, and
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• by V R
g = ker(g−λn(g)I)mn :Rn →Rn+1 where mn is the multiplicity of the eigen-

value λn(g).

We denote Âg = ⟨V A
g ⟩∩Cl(Ω) and R̂g = ⟨V R

g ⟩∩Cl(Ω). Clearly,

Ag ⊂ Âg and Rg ⊂ R̂g.

LEMMA 1.3.9 (Lemma 3.2 of [23]). Suppose a nonidentity projective automorphism
g acts on a properly convex domain. Then g is positive bi-semi-proximal.

The following propositions are related to Section 2, 3 of [67], using somewhat different
apporaches. We denote by ||·|| a standard Euclidean norm of a vector space over R.

LEMMA 1.3.10. Suppose that Ω is a properly convex domain in Sn. Suppose that an
infinite-order element g acts on Ω with only single norm of eigenvalue. Then

inf
y∈Ω

{dΩ(y,g(y))|y ∈ Ω∩Q}= 0.

PROOF. g fixes a point x in Cl(Ω) by the Brouwer-fixed-point theorem. If g fix a point
in Ω, we are done. Assume x ∈ bdΩ is a fixed point of g.

We prove by induction. When dimΩ = 0,1, this is clearly obvious. Suppose that we
proved the conclusion when dimΩ = n−1, n ≥ 2. We now assume that dimΩ = n.

We may assume that Ω ⊂An for an affine space An since Ω is properly convex. We
choose a coordinate system where x is the origin of An. Then g has a form of a rational
map. We denote by Dgx the linear map that is the differential of g at x.

Let Sr denote the similarity transformation ofAn fixing x. Then we obtain

Sr ◦g◦S1/r : Sr(Ω)→ Sr(g(Ω)).

Recall the definition of the linear map Dgx : Rn → Rn is one satisfying

lim
y,u→0

||g(y)−g(u)−Dgx(y−u)||
||y−u||

→ 0.

Hence,
lim
r→∞

r
∣∣∣∣g(S1/r(y))−g(S1/r(u))−S1/rDgx(y−u)

∣∣∣∣→ 0.

Setting u = 0, we obtain

lim
r→∞

∣∣∣∣Sr ◦g◦S1/r(y)−Dgx(y)
∣∣∣∣→ 0.

We obtain that as r → ∞, {Sr ◦g◦S1/r} converges to Dgx on a sufficiently small open ball
around x.

Also, it is easy to show that as r → ∞, {Sr(Ω)} geometrically converges to a cone Ωx,∞
with the vertex at x on which Dgx acts on.

Let xn be an affine coordinate function for a sharply-supporting hyperspace of Ω taking
0 value at x. It will be specified a bit later. For now any such one will do. Let x(t) be a
projective geodesic with x(0) = x at t = 0 and x(t) ∈ Ω,xn(x(t)) = t for t > 0 and let
u⃗ = dx(t)/dt ̸= 0 at t = 0. We assumed in the premise that g is unit-norm-eigenvalued.
Then

(1.3.3) lim
t→0

dΩ(g(x(t)),x(t)) = dΩx,∞(Dgx(⃗u), u⃗)

considering u⃗ as an element of the cone Ωx,∞: This follows from

dΩ(g◦S1/r ◦Sr(x(t)),x(t)) = dSr(Ω)(Sr ◦g◦S1/r(Sr(x(t))),Sr(x(t)))
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since Sr : (Ω,dΩ) → (Sr(Ω),dSr(Ω)) is an isometry. We set x(t) = x(1/r) and obtain
Sr(x(1/r))→ u⃗ as r → ∞. Since Sr(Ω)→ Ωx,∞ as r → ∞, (1.1.3) shows that

(1.3.4) {dSr(Ω)(Sr ◦g◦S1/r(Sr(x(1/r))),Sr(x(1/r)))}→ dΩx,∞(Dgx(⃗u), u⃗) as r → ∞.

Now, Ωo
x,∞ is a convex cone of form C(U) for a convex open domain U in the infinity

of An. The space U∗ of sharply-supporting hyperspaces of Ωo
x,∞ at x is a convex compact

set.
Since g acts on a ball U∗, g fixes a point by the Brouwer-fixed-point theorem, which

corresponds to a hyperspace. Let P be a hyperspace in An passing x sharply-supporting
Ωo

x,∞ invariant under Dgx.
We now choose the affine coordinate xn for P so that P is the zero set. There are three

possiblity for Ωx,∞ by Proposition 1.1.4:
• a complete affine space,
• a prroperly convex domain, or
• a convex but complete and not properly convex domain

First, suppose that Ωx,∞ is a properly convex cone. Projecting Ωo
x,∞ to the space Sn−1

x
of rays starting from x, we obtain a properly convex open domain Ω1 = Rx(Ω). Here,
dimΩ1 ≤ n−1.

By the induction hypothesis on dimension dimΩ1, since the Dgx-action has only one-
norm of the eigenvalues, we can find a sequence {zi} in Ω1 so that {dΩ1(Dgx(zi),zi)}→ 0.
Since Ωx,∞ is a proper convex cone inAn, we choose a sequence ui ∈ Ωx,∞ with xn(ui) = 1
and ui has the direction of zi from x. Let u⃗i denote the vector in the direction of −→xzi on
An where xn(⃗ui) = 1. Since g is unit-norm-eigenvalued, xn(Dgx(⃗ui)) = 1 also. Hence,
the geodesic to measure the Hilbert metric from u⃗i to Dgx(⃗ui) is on xn = 1. Let P1 denote
the affine subspace given by xn = 1. The projection Ωx,∞ ∩P1 → U from x is a projective
diffeomorphism and hence is an isometry. Therefore, dΩx,∞(Dgx(⃗ui), u⃗i)→ 0.

We can find arcs xi(t) with

xn(xi(t)) = t and dxi(t)/dt = u⃗i at t = 0.

Also, we find a sequence of points {xi(ti)}, ti → 0, so that

dΩ(g(xi(ti)),xi(ti)) = dS1/ti
(Ω)(S1/ti ◦g◦Sti(S1/ti(xi(ti))),S1/ti(xi(ti))).

Since {S1/t j(Cl(Ω))}→ Cl(Ωx,∞), and {S1/t j(xi(t j))}→ u⃗i as j → ∞, we obtain

{dΩ(g(xi(t j)),xi(t j))}→ dΩx,∞(Dgx(⃗ui), u⃗i)

by (1.3.4).
By choosing ji sufficiently large for each i, we obtain

{dΩ(g(xi(t ji)),xi(t ji))}→ 0.

Suppose that Ωx,∞ is not a properly convex cone. If Ω1 is a complete affine space, then
we can use the argument very similar to

Now, Ω1 = Rx(Ω) is a convex but not properly convex domain. By Proposition
1.1.4, such a set is foliated by complete affine spaces of dimension j, 0 < j < n− 1 or
is a complete affine space of dimension n − 1. The quotient space Ox := Ω1/ ∼ with
equivalence relationship given by complete affine subspace is a properly convex open do-
main of dimension < n. Recall that there is a pseudo-metric dΩ1 on Ω1. Suppose that
dimOx = 0. Then we have we have a sequence yi ∈ Ω1 so that dOx(yi,Dgx(yi)) = 0.
Suppose now that dimOx ≥ 1. Note that the projection π : Ω1 → Ox is projective and
dΩ1(y,z) = dOx(π(y),π(z)) for all x,y ∈ Ω1, which is fairly easy to show. The differential
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Dgx induces a projective map D′gx : Ox → Ox. Since dimOx < dimΩ, we have by the
induction a sequence yi ∈ Ox so that dOx(yi,D′gx(yi)) → 0 as i → ∞. We take an inverse
image zi in Ω1 of yi. Then dΩ1(zi,Dgx(zi)) = dOx(yi,D′gx(yi))→ 0 as i → ∞. Similarly to
above, we obtain the desired result. □

We believe that these were already well known by Benoist and Cooper-Long-Tillmann
[67].

PROPOSITION 1.3.11. Let Ω be a properly convex domain in Sn. Suppose that Γ ⊂
SL±(n+1,R) is a discrete group acting on Ω so that Ω/Γ is compact and Hausdorff. Let
g be a non-torsion non-identity element. Then the following hold:

• g has two distinct positive eigenvalues associated with Q.
• The largest and the smallest norms of g are realized by positive eigenvalues big-

ger than 1 and less than 1, and g is positive semiproximal.
• In particular g is not orthopotent, and, hence, g cannot be unipotent.

PROOF. Notice it is sufficient to prove for the case of Q since we can let Q = Sn.
Suppose that g acts with a single norm of eigenvalues on a subspace Q with Q∩Ω ̸= /0.
Applying Lemma 1.3.10 where n is replaced by the dimension of Q, we obtain 0 as the
infimum of the Hilbert lengths of closed curves in a compact orbifold Ω/Γ. Since Ω/Γ is
a compact orbifold, there should be a positive lower bound. This is a contradiciton.

Lemma 1.3.9 and the fact that the product of the norms of eigenvalues are 1 proved
this by taking g and g−1. □

We generalize Proposition 5.1 of Benoist [22]. By Theorem 1.1.19 following from
Selberg’s Lemma [142], there is a finite index subgroup Γ′ ⊂ Γ elements of Γ are not
elliptic. (In fact a finite manifold cover is enough.)

THEOREM 1.3.12 (Benoist [23]). Suppose that Ω is properly convex but not necessar-
ily strictly convex in Sn. Let Γ be a discrete group acting on Ω so that Ω/Γ is compact and
Hausdorff. Let Γ′ be the finite index subgroup of Γ without torsion. Then each nonidentity
element g, g ∈ Γ′ is positive bi-semi-proximal with following properties:

• λ1(g)> 1,λn(g)< 1,
• Ag, Âg ⊂ bdΩ, Rg, R̂g ⊂ bdΩ are properly convex subsets in the boundary.
• dimAg = dimker(g−λ1I)−1 and dimRg = dimker(g−λnI)−1.
• Let K be a compact set in Ω. Then {gi(K)|n ≥ 0} has the limit set in Ag, and
{gi(K)|n < 0} has the limit set in Rg.

Furthermore, if Ω is strictly convex, then Ag = Âg is a point in bdΩ and Rg = R̂g is a point
in bdΩ and g is positive bi-proximal.

PROOF. By Proposition 1.3.11, every nonidentity element g of Γ′ has a norm of eigen-
value > 1. By Lemma 1.3.9, g is positive bi-semi-proximal.

By Proposition 1.3.2, Ag is a limit point of {gi(x)|i > 0}. Hence, Ag is not empty and
Ag ⊂ bdΩ. Similarly Rg is not empty as well.

Then Ag equals the intersection ⟨V1⟩∩Cl(Ω) for the eigenspace V1 of g corresponding
to λ1(g). Since g fixes each point of ⟨V1⟩, it follows that Ag is a compact convex subset of
bdΩ. Similarly, Rg is a compact convex subset of bdΩ.

Suppose that Âg∩Ω ̸= /0. Then g acts on the open properly convex domain Âg∩Ω as a
unit-norm-eigenvalued element. By Lemma 1.3.10 applied to Âg ∩Ω, we obtain a contra-
diction again by obtaining a sequence of closed curves of dΩ-lengths in Ω/Γ converging
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to 0 which is impossible for a closed orbifold. Thus, Âg ⊂ bdΩ. As above, it is a compact
convex subset. Similarly, R̂g is a compact convex subset of bdΩ.

The second item follows from the second item of Proposition 1.3.2 applied to an open
subset of Ω.

Suppose that Ω is strictly convex. Then

dimAg = 0,dim Âg = 0,dimRg = 0,dim R̂g = 0

by the strict convexity. Proposition 5.1 of [22] proves that g is proximal. g−1 is also
proximal by the same proposition. These are positive proximal since g acts on a proper
cone. Hence, g is positive bi-proximal. □

Note here that Âg may contain Ag properly and R̂g may contain Rg properly also.

1.3.3. The higher-convergence-group. For this section, we only work with Sn since
only this version is needed. We considering SL±(n+1,R) as an open subspace of Mn+1(R).
We can compactify SL±(n+1,R) as S(Mn+1(R)). Denote by ((g)) the equivalence class of
g ∈ SL±(n+1,R).

THEOREM 1.3.13 (The higher-convergence-group property). Let gi be any unbounded
sequence of projective automorphisms of a properly convex domain Ω in Sn. We consider
gi ∈ SL±(n+ 1,R) according to convention 1.1.5. Then we can choose a subsequence of
{((gi))}, gi ∈ SL±(n+1,R), converging to ((g∞)) in S(Mn+1(R)) for g∞ ∈ Mn+1(R) where
the following hold :

• g∞ is undefined on S(kerg∞) and the range is S(Img∞).
• dimS(kerg∞)+dimS(Img∞) = n−1.
• For every compact subset K of Sn −S(kerg∞), {gi(K)}→ K∞ for a subset K∞ of
S(Img∞).

• Given a convergent subsequence {gi} as above, {((ggi))} is also convergent to
((gg∞)) and S(kergg∞) = S(kerg∞) and S(Imgg∞) = gS(Img∞)

• {((gig))} is also convergent to ((g∞g)) and

S(kerg∞g) = g−1(S(kerg∞)) and S(Img∞g) = S(Img∞).

PROOF. Since S(Mn+1(R)) is compact, we can find a subsequence of gi converging
to an element ((g∞)). The second item is the consequence of the rank and nullity of g∞. The
third item follows by considering the compact open topology of maps and gi divided by its
maximal norm of the matrix entries.

The two final item are straightforward. □

LEMMA 1.3.14. ((g∞)) can be obtained by taking the limit of gi/m(gi) in Mn+1(R)
first and then taking the direction where m(gi) is the maximal norm of elements of gi in the
matrix form of gi.

PROOF. This follows since gi/m(gi) does not go to zero. □

This definition was suggested by Goldman.

DEFINITION 1.3.15. An unbounded sequence {gi}, gi ∈ SL±(n+1,R), so that {((gi))}
is convergent in S(Mn+1(R)) is called a convseq. In the above g∞ ∈ Mn+1(R) is called
a convergence limit, determined only up to a positive constant. The element ((g∞)) ∈
S(Mn+1(R)) where {((gi))}→ ((g∞)) is called a convergence limit.
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We may also do this for PGL(n+1,R). An unbounded sequence {gi}, gi ∈ PGL(n+
1,R) so that {[gi]} is convergent in P(Mn+1(R)) is called a convseq. Also, the element
[g∞] ∈ P(Mn+1(R)) is {[gi]}→ [g∞] is called called a convergence limit.

We have more interpretations: We use the KAK-decomposition (or polar decomposi-
tion) of Cartan for SL±(n+ 1,R). We may write gi = kidik̂−1

i where ki, k̂i ∈ O(n+ 1,R)
and di is a positive diagonal matrix with a nonincreasing set of elements

a1,i ≥ a2,i ≥ ·· · ≥ an+1,i.

Let S([1,m]) denote the subspace spanned by e⃗1, . . . , e⃗m, and let S([m+ 1,n+ 1]) de-
note the subspace spanned by e⃗m+1, . . . , e⃗n+1. We assume that {ki} converges to k∞, {k̂i}
converges to k̂∞, and {[a1,i,a2,i, · · · ,an+1,i]} is convergent in RPn. We will further require
this for convergence sequences.

For sequence in PGL(n+1,R), we may also write gi = kidik̂−1
i where di is represented

by positive diagonal matrices as above. Then we require as above.

This of course generalized the convergence sequence ideas, without the second set of
requirements above, for PSL(2,R) as given by Tukia (see [2]).

Given a convergence sequence {gi},gi ∈ Aut(Sn), we define

Â∗({gi}) := S(Img∞)(1.3.5)

N̂∗({gi}) := S(kerg∞)(1.3.6)

A∗({gi}) := S(Img∞)∩Cl(Ω)(1.3.7)

N∗({gi}) := S(kerg∞)∩Cl(Ω)(1.3.8)

For a matrix A, we denote by |A| the maximum of the norms of entries of A. Let U be
an orthogonal matrix in O(n+1,R). Then we obtain

(1.3.9)
1

n+1
|A| ≤ |AU | ≤ (n+1)|A|

where the second inequality follows since the entries of AU are dot products of rows of A
with elements of U whose entries are bounded above by 1 and below by −1 and we can
multiply U−1 to AU to obtain the first inequality. Hence, we obtain for g = kDk̂−1 for
k, k̂ ∈ O(n+1,R) and D diagonal as above.

(1.3.10)
1

(n+1)2 |D| ≤ |g| ≤ (n+1)2|D|

Recall Definition 1.3.1, we obtain

THEOREM 1.3.16. Let {gi},gi ∈ Aut(Sn), be a convergence sequence. We consider
gi ∈ SL±(n+1,R) according to convention 1.1.5. Then we may assume that the following
holds up to a choice of subsequence of gi:

• there exists ma, 1≤ma < n+1, where {a j,i/a1,i}→ 0 for j >ma and a j,i/a1,i > ε

for j ≤ ma for a uniform ε > 0.
• there exists mr, 1 ≤ ma < mr ≤ n+ 1, where a j,i/an+1,i < C for j ≥ mr for a

uniform C > 1, and {a j,i/an+1,i}→ ∞ for j < mr.
• N̂∗({gi}) is the geometric limit of k̂i(S([ma +1,n+1])).
• Â∗({gi}) is the geometric limit of Ap(gi) = ki(S([1,ma])).
• {g−1

i } is also a convergent sequence up to a choice of subsequences, and Â∗({g−1
i })⊂

N̂∗({gi}).
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PROOF. We choose a subsequence so that ma and mr are defined respectively and
{ki},{k̂i} form convergent sequences. We denote D∞ as the limit of {Di/|Di|} and k∞ and
k̂∞ as the limit of {ki} and {k̂i}. Then we obtain by (1.3.10),

1
(n+1)3 |k∞ ◦D∞ ◦ k̂−1

∞ (⃗v)| ≤ |g∞(⃗v)| ≤ (n+1)3|ki ◦D∞ ◦ k̂−1
i (⃗v)|

for every v⃗ ∈ Rn+1. Thus, k∞ ◦D∞ ◦ k̂−1
∞ (⃗v) = 0 if and only if g∞(⃗v) = 0 and, moreover,

images and null spaces of k∞ ◦D∞ ◦ k̂−1
∞ and g∞ coincide. Hence, we obtain that

S(Img∞) = k∞S(ImD∞) = k∞S([1,ma]) and

S(kerg∞) = k̂∞(S(kerD∞) = k̂∞((S([ma +1,n+1]))).

Hence, the first four items follow.
The last item follows by considering the third and fourth items and the fact that mr ≥

ma. □

When ma,mr exists for {gi} and {ki} and {k̂i} are convergent for a convergence se-
quence, we say that gi are set-convergent.

We define for each i,

F p(gi) := kiS([1,mr −1]), and Rp(gi) := k̂iS([mr,n+1]).

We define R̂∗({gi}) as the geometric limit of {Rp(gi)}, and F̂∗({gi}) as the geometric limit
of {F p(gi)}. We also define

R∗({gi}) := R̂∗({gi})∩Cl(Ω),F∗({gi}) := F̂∗({gi})∩Cl(Ω).

LEMMA 1.3.17. Suppose that {gi} and {g−1
i } are set-convergent sequences. Then

R̂∗({gi}) = Â∗({g−1
i }) and F̂∗({gi}) = N̂∗({g−1

i }).

PROOF. For gi = kidik̂−1
i , we have g−1

i = k̂−1
i d−1

i ki. Hence Ap(g−1
i ) = k̂iS([mr,n+

1]) = Rp(gi). We also have F p(g−1
i ) = k̂iS([ma +1,n+1]). The result follows. □

LEMMA 1.3.18. We also have Â∗({gi})⊂ Âg and R̂∗({gi})⊂ R̂g for positive bi-semi-
proximal element g with λ1(g)> 1.

PROOF. We consider g in Cn+1. Write g in the coordinate system where the com-
plexification is of the Jordan form. Let V A

g denote Rλ1(g) in Rn+1 which is a g-invariant
subspace from (1.3.1). There is a complementary g which is a direct sum of Rµ(g) for
µ < λ1(g). Then we use Proposition 1.3.2 applied to Π′(V A

g ) and Π′(NA
g ).

For the second part, we use g−1 and argue using obvious facts R̂g = Âg−1 and Â∗({g−i})=
R̂∗({gi}). □

PROPOSITION 1.3.19. A∗({gi}) contains an open subset of Â∗({gi}) and hence ⟨A∗({gi})⟩=
Â∗({gi}). Also, R∗({gi}) contains an open subset of R̂∗({gi}) and hence ⟨R∗({gi})⟩ =
R̂∗({gi}).

PROOF. We write gi = kiDik̂−1
i . By Theorem 1.3.16, Â∗({gi}) is the geometric limit

of ki(S[1,ma]) for some ma as above. gi(U) = kiDi(Vi) for an open set U ⊂ Õ and
Vi = k̂−1

i (U). Since k̂−1
i is a d-isometry, Vi is an open set containing a closed ball Bi of

fixed radius ε . {Di} converges to a diagonal matrix D∞. We may assume without loss of
generality that {Bi} → B∞ where B∞ is a ball of radius ε . We may assume Bi ∩B∞ ⊃ B
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for a fixed ball of radius ε/2 for sufficiently large i. Then {Di(B)}→ D∞(B)⊂ S([1,ma]).
Here, D∞(B) is a subset of S([1,ma]) containing an open set. Since {Di(Bi)} geometrically
converges to a subset containing D∞(B), up to a choice of subsequence. Thus, {kiDi(Vi)}
geometrically converges to a subset containing k∞D∞(B) by Lemma 1.1.8.

For the second part, we use the sequence g−1
i = k̂iD−1

i k−1
i and Lemma 1.3.17. □

LEMMA 1.3.20. Suppose that Γ acts properly discontinuously on a properly convex
open domain Ω and {gi} is a set-convergent sequence in Γ. Suppose that {gi} is not
bounded in SL±(n+1,R) and is a set-convergent sequence. Then the following hold:

(i) R̂∗({gi})∩Ω = /0,
(ii) Â∗({gi})∩Ω = /0,

(iii) F̂∗({gi})∩Ω = /0, and
(iv) N̂∗({gi})∩Ω = /0.

PROOF. (ii) Suppose not. Since Â∗({gi})∩Ω ̸= /0, A∗({gi}) meets Ω. Since A∗({gi})
is the set of points of limits gi(x) for x ∈ Ω, the proper discontinuity of the action of Γ

shows that A∗({gi}) does not meet Ω.
(iv) For each x in Ω, a fixed ball B in Ω centered at x does not meet k̂i(S([ma +1,n+

1])) for infinitely many i. Otherwise {gm
i (B)} converges to a nonproperly convex set in

Cl(Ω) as m → ∞, a contradiction. Hence, the second item follows.
The remainding items follow by changing gi to g−1

i and Lemma 1.3.17. □

THEOREM 1.3.21. Let {gi} be a set-convergence sequence in Γ acting properly dis-
continuously on a properly convex domain Ω. Then

A∗({gi}) = Â∗({gi})∩Cl(Ω) = Â∗({gi})∩bdΩ,(1.3.11)

N∗({gi}) = N̂∗({gi})∩Cl(Ω) = N̂∗({gi})∩bdΩ,(1.3.12)

R∗({gi}) = R̂∗({gi})∩Cl(Ω) = R̂∗({gi})∩bdΩ,(1.3.13)

F∗({gi}) = F̂∗({gi})∩Cl(Ω) = F̂∗({gi})∩bdΩ(1.3.14)

are subsets of bdΩ and they are nonempty sets. Also, we have

Â∗({gi})⊂ F̂∗({gi}), A∗({gi})⊂ F∗({gi}),(1.3.15)

R̂∗({gi})⊂ N̂∗({gi}), R∗({gi})⊂ N∗({gi}).(1.3.16)

PROOF. By Lemma 1.3.20, we only need to show the respective sets are not empty.
By the third item of Theorem 1.3.13, a point x in Â∗({gi})∩Cl(Ω) is a limit of gi(y) for
some y ∈ Ω. Since Γ acts properly discontinuously, x ̸∈ Ω and x ∈ bdΩ. By taking {g−1

i },
we obtain R̂∗({gi})∩Cl(Ω) ̸= /0. Since R̂∗({gi})⊂ N̂∗({gi}) and Â∗({gi})⊂ F̂∗({gi}), the
rest follows. The last collections are from definitions. □

PROPOSITION 1.3.22. For an automorphism g of Ω, and a set-convergence sequence
{gi}, the following hold:

Â∗({ggi}) = g(Â∗({gi})), Â∗({gig}) = Â∗({gi}),(1.3.17)

N̂∗({ggi}) = N̂∗({gi}), N̂∗({gig}) = g−1(N̂∗({gi})),(1.3.18)

F̂∗({ggi}) = g(F̂∗({gi})), F̂∗({gig}) = F̂∗({gi}),(1.3.19)

R̂∗({ggi}) = R̂∗({gi}), R̂∗({gig}) = g−1(R̂∗({gi})).(1.3.20)
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PROOF. The fourth and fifth items of Theorem 1.3.13 imply the first and second lines
here. The third line follows from the second line by Lemma 1.3.17. Also, the fourth line
follows from the first line by Lemma 1.3.17. □

Of course, there are RPn-versions of the results here. However, we do not state these.

1.4. Convexity of real projective orbifolds

1.4.1. Convexity. An RPn-orbifold is convex if it is projectively diffeomorhic to a
projective quotient of a convex domain in an open hemisphere in Sn. (Note that this defi-
nition is more stricter than ones in [46] but conforms to definitions in many literatures.)

In the following, a zero-dimensional sphere S0
∞ denotes a pair of antipodal points.

PROPOSITION 1.4.1.
• A real projective n-orbifold is convex if and only if the developing map sends the

universal cover to a convex domain in RPn (resp. Sn).
• A real projective n-orbifold is properly convex if and only if the developing map

sends the universal cover to a precompact properly convex open domain in an
affine patch of RPn (resp. Sn).

• If a convex real projective n-orbifold is not properly convex and not complete
affine, then its holonomy is reducible in PGL(n+ 1,R) (resp. SL±(n+ 1,R)).
In this case, Õ is foliated by affine subspaces l of dimension i with the common
boundary Cl(l)− l equal to a fixed subspace RPi−1

∞ (resp. Si−1
∞ ) in bdÕ . Fur-

thermore, this holds for any convex domain RPn (resp. Sn) and the projective
group action on it.

PROOF. We prove for Sn first. Since the universal cover is projectively diffeomrophc
to a convex open dpmain, the developing map must be an embedding. The converse is also
trivial. (See Proposition A.2 of [46]. )

The second follows immediately.
For the final item, a convex subset of Sn is a convex subset of an affine subspace An,

isomorphic to an affine space, which is the interior of a hemisphere H. We may assume
that Do ̸= /0 by restricting to a spanning subspace of D in Sn. Let D be a convex subset
of Ho. If D is not properly convex, the closure Cl(D′) must be of the form Si0 ∗K for a
properly convex domain by Proposition 1.1.4.

Since Si0 must be holonomy invariant, the holonomy group is reducible.
For the RPn-version, we use the double covering map pSn mapping an open hemi-

sphere to an affine subspace. [SnT] □

PROPOSITION 1.4.2. Let Ω be a properly convex domain in Sn. The image Ω′ be the
image of Ω under the double covering map pSn . Then the restriction Cl(Ω) → Cl(Ω′) is
one-to-one and onto.

PROOF. This follows since we can find an affine subspaceAn containing Cl(Ω). Since
the covering map restricts to a homeomorphism onAn, this follows. □

1.4.2. Needed convexity facts. We will use the following many times in the mono-
graph.

LEMMA 1.4.3 (Chapter 11 of [148]). Let K be a closed subset of a convex domain
Ω in RPn (resp. Sn) so that each point of bdK has a convex neighborhood. Then K is a
convex domain.
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PROOF. Assume Ω ⊂ Sn. We can connect each pair of points by a broken projective
geodesics. Then local convexity shows that we can make the number of geodesic segments
to go down by one using triangles. Finally, we may obtain a geodesic segment connecting
the pair of points. [SnS] □

LEMMA 1.4.4. Let Ω be a properly convex domain in RPn (resp. in Sn). Let σ be a
convex domain in Cl(Ω)∩P for a subspace P. Then either σ ⊂ bdΩ or σo is in Ω.

PROOF. Assume Ω ⊂ Sn. Suppose that σo meets bdΩ and is not contained in it en-
tirely. Since Ω is convex and bdΩ is closed, s∩Ω for a segment s in σ can have only one
component which must be open. Since the complement of σo ∩ bdΩ is a relatively open
set in σo, we can find a segment s ⊂ σo with a point z so that a component s1 of s−{z} is
in bdΩ and the other component s2 is disjoint from it.

We may perturb s in a 2-dimensional totally geodesic space containing s and so that
the new segment s′ ⊂ Cl(Ω) meets bdΩ only in its interior point. This contradicts the fact
that Ω is convex by Theorem A.2 of [46]. [SnP] □

Where to put this? Right place?

We define Sn∗ := S(Rn+1∗), i.e, the sphericalization of the dual space Rn+1∗.

THEOREM 1.4.5. Suppose that G acts on a convex domain Ω in RPn (resp. in Sn), so
that Ω/G is a compact orbifold. Then if G have only unit-norm eigenvalued elements, then
Ω is complete affine.

PROOF. Theorem 1.3.7 shows that G is orthopotent and has a unipotent group U of
finite index. A unipotent group has a global fixed point in Sn∗, and so does U∗. Thus,
there exists a hyperspace P in Sn where U acts on. P ∩Cl(Ω) ̸= /0 and P ∩Ω = /0 by
Proposition 1.4.13. Thus, Ω is in an affine subspaceA bounded by P. Also, G acts onA as
a group of affine transformations since every projective action on a complete affine space
is affine. (See Berger [26].) Orthopotent groups are distal. Lemma 2 of Fried [80] implies
the conclusion. [SnT]

□

1.4.3. The flexibility of boundary. The following lemma gives us some flexibility of
boundary. A smooth hypersurface embedded in a real projective manifold is called strictly
convex if under a chart to an affine subspace, it maps to a hypersurface which is defined by
a real function with positive Hessians at points of the hypersurface.

LEMMA 1.4.6. Let M be a strongly tame properly convex real projective orbifold with
strictly convex ∂M. We can modify ∂M inward M and the result bound a strongly tame or
compact properly convex real projective orbifold M′ with strictly convex ∂M′

PROOF. Let Ω be a properly convex domain covering M. We may assume that Ω⊂ Sn.
We may modify M by pushing ∂M inward. We take an arbitrary inward vector field defined
on a tubular neighborhood of ∂M. (See Section 4.4 of [51] for the definition of the tubular
neighborhoods.) We use the flow defined by them to modify ∂M. By the C2-convexity
condition, for sufficiently small change the image of ∂M is still strictly convex and smooth.
Let the resulting compact n-orbifold be denoted by M′. M′ is covered by a subdomain Ω′

in Ω.
Since M′ is a compact suborbifold of M, Ω′ is a properly embedded domain in Ω and

thus, bdΩ′∩Ω = ∂Ω′. ∂Ω′ is a strictly convex hypersurface since so is ∂M′. This means
that Ω′ is locally convex. A locally convex closed subset of a convex domain is convex by
Lemma 1.4.3.
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Hence, Ω′ is convex and hence is properly convex being a subset of a properly convex
domain. So is M′. [SnS] □

REMARK 1.4.7. Thus, by choosing one in the interior, we may assume without loss of
generality that a strictly convex boundary component can be pushed out to a strictly convex
boundary component.

1.4.4. The Benoist theory . In late 1990s, Benoist more or less completed the theory
of the divisible action as started by Benzécri, Vinberg, Koszul, Vey, and so on in the series
of papers [22], [21], [23], [24], [18], [17]. The purpose is to generalize these to sweeping
actions with the main result Lemma 1.4.16. The comprehensive theory will aid us much in
this paper.

PROPOSITION 1.4.8 (Corollary 2.13 [23]). Suppose that a discrete subgroup Γ of
SL±(n,R) (resp. PGL(n,R)), n ≥ 2, acts on a properly convex (n− 1)-dimensional open
domain Ω in Sn−1 (resp, RPn−1) so that Ω/Γ is a compact orbifold. Then the following
statements are equivalent.

• Every subgroup of finite index of Γ has a finite center.
• Every subgroup of finite index of Γ has a trivial center.
• Every subgroup of finite index of Γ is irreducible in SL±(n,R) (resp. in PGL(n,R)).

That is, Γ is strongly irreducible.
• The Zariski closure of Γ is semisimple. (simple?)
• Γ does not contain an infinite nilpotent normal subgroup.
• Γ does not contain an infinite abelian normal subgroup.

PROOF. Corollary 2.13 of [23] considers PGL(n,R) and RPn−1. However, the version
for Sn−1 follows from this since we can always lift a properly convex domain in RPn−1 to
one Ω in Sn−1 and the group to one in SL±(n,R) acting on Ω by Theorem 1.1.20. □

The center of a group G is denoted by Z(G). A virtual center of a group G is a
subgroup of G each of whose elements is centralized by a finite index subgroup of G. A
group with properties above is said to be a group with a trivial virtual center.

A group G acts on a space X cocompactly if there is a compact subset Y of X so that
X =

⋃
g∈G gY .

THEOREM 1.4.9 (Theorem 1.1 of [23]). Suppose that a virtual-center-free discrete
subgroup Γ of SL±(n,R) (resp. PGL(n,R)), n ≥ 2, acts on a properly convex (n− 1)-
dimensional open domain Ω ⊂ Sn−1 so that Ω/Γ is a compact orbifold. Then every repre-
sentation of the component of Hom(Γ,SL±(n,R)) (resp. Hom(Γ,PGL(n,R))) containing
the inclusion representation also acts on a properly convex (n−1)-dimensional open do-
main cocompactly.

When Ω/Γ admits a hyperbolic structure and n = 3, Inkang Kim [111] proved this
simultaneously for a union of components.

PROPOSITION 1.4.10 (Theorem 1.1. of Benoist [21]). Suppose that a discrete sub-
group Γ of SL±(n,R) (resp. PGL(n,R)), n≥ 2, acts on a properly convex (n−1)-dimensional
open domain Ω in Sn−1 (resp, RPn−1) so that Ω/Γ is a compact orbifold. Then

• Ω is projectively diffeomorphic to the interior of a strict join K := K1 ∗ · · · ∗Kl0
where Ki is a properly convex open domain of dimension ni ≥ 0 in the subspace
Sni in Sn (resp. RPni in RPn). Ki corresponds to a convex cone Ci ⊂ Rni+1 for
each i.
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• Ω is the image of C1 + · · ·+Cl0 .
• Let Γ′

i be the image of Γ′ to Ki for the restriction map of the subgroup Γ′ of π1(Σ)
acting on each K j, j = 1, . . . , l0. We denote by Γi an arbitrary extension of Γ′

i
by requiring it to act trivially on K j for j ̸= i and to have 1 as the eigenvalue
associated with vectors in their directions.

• The subgroup corresponding to Rl0−1 acts trivially on each K j and form a posi-
tive diagonalizable matrix group.

• The fundamental group π1(Σ) is virtually isomorphic to a subgroup of Rl0−1 ×
Γ1 ×·· ·×Γl0 for (l0 −1)+∑

l0
i=1 ni = n.

• π1(Σ) acts on Ko cocompactly and discretely and in a semisimple manner (The-
orem 3 of Vey [151]).

• The Zariski closure of Γ′ equals Rl0−1 ×G1 × ·· · ×Gl0 . Each Γ j acts on Ko
j

cocompactly, and G j is an simple Lie group (Remark after Theorem 1.1 of [21]),
and G j acts trivially on Km for m ̸= j.

• A virtual center of π1(Σ) of maximal rank is isomorphic to Zl0−1 corresponding
to the subgroup of Rl0−1. (Proposition 4.4 of [21].)

We will often indicate by Zl0−1 the virtual center of π1(Σ). See Example 5.5.3 of
Morris [135] for a group acting properly on a product of two hyperbolic spaces but restricts
to a non-discrete group for each factor space.

COROLLARY 1.4.11. Assume as in Proposition 1.4.10. Then every normal solvable
subgroup of a finite-index subgroup Γ′ of Γ is virtually central in Γ.

PROOF. If Γ is virtually abelian, this is obvious.
Suppose that Ω is properly convex. Let G be a normal solvable subgroup of a finite-

index subgroup Γ′ of Γ. We may assume without loss of generality that Γ′ acts on each Ki
by taking a further finite index subgroup and replacing G by a finite index subgroup of G.
Now, G is a normal solvable subgroup of the Zariski closure Z (Γ′). By Theorem 1.1 of
[21], Z (Γ′) equals G1 ×·· ·×Gl ×Rl−1

+ and K = K1 ∗ · · · ∗Kl where Gi is reductive and
the following holds:

• if Ki is homogeneous, then Gi is simple and Gi is commensurable with Aut(Ki).
• Otherwise, Ko

i is divisible and Gi is a union of components of SL±(Vi)

The image of G into Gi by the restriction homomorphism to Ki is a normal solvable sub-
group of Gi. Since Gi is virtually simple, the image is a finite group. Hence, G must
be virtually a subgroup of the diagonalizable group Rl−1

+ and hence is virtually central in
Γ′. □

If l0 = 1, Γ is strongly irreducible as shown by Benoist. However, the images of these
groups will be subgroups of PGL(m,R) and SL±(m,R) for m ≤ n. If l0 > 1, we say that
such an image in Γ is virtually factorizable. Otherwise, such an image a non-virtually-
factorizable group.

An action of a projective group G on a properly convex domain Ω is sweeping if the
action is cocompact but Ω/G is not required to Hausdorff. A dividing action is sweeping.

Recall the commutant H of a group acting on a properly convex domain is the maximal
diagonalizable group commuting with the group. (See Vey [151].)

We have a useful theorem:

THEOREM 1.4.12 (Proposition 3 of Vey [151]). Suppose that a projective group Γ

acts on a properly convex open domain Ω in RPn (resp. in Sn), with a sweeping action.
Then Ω equals a convex hull of the orbit Γ(x) for any x ∈ Ω.
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We generalize Proposition 1.4.10.

PROPOSITION 1.4.13. Suppose that a projective group G acts on an n-dimensional
properly convex open domain Ω in Sn (resp. RPn) as a sweeping action. Then the following
hold:

• Let L be any subspace where G acts on. Then L∩Cl(Ω) ̸= /0 but L∩Ω = /0.
• If G acts on a compact properly convex set K, then K must meet Cl(Ω)∪A (Cl(Ω)).
• Suppose that G is semi-simple. Then all the items up to the last one in the con-

clusion of Proposition 1.4.10 with G replacing π1(Ẽ) without discreteness hold.
In particular, Cl(Ω) = K1 ∗ · · · ∗Kl0 for properly convex sets K1, . . . ,Kl0 .

• Suppose that G is semi-simple. Then the closure of G has a virtual center con-
taining a group of diagonalizable projective automorphisms isomorphic to Zl0−1

acting trivially on each Ki.

PROOF. Assume Ω ⊂ Sn. Suppose that L∩Cl(Ω) = /0. Then there is a lower bound to
the d-distance from bdΩ to L. Let x ∈ Ω. We denote the space of oriented maximal open
segments containing x and ending in L by LΩ,x. This is a set homeomorphic to SdimL.

Let l+ denote the endpoint of L∩ l ahead of x. Let lΩ,0 denote the endpoint of l ∩Ω

ahead of x, and lΩ,1 denote the endpoint of l∩Ω after x. We define a function f : Ω→ (0,∞)
given by

f (x) = inf{log(l+, lΩ,0,x, lΩ,1)|l ∈ LΩ,x}

where the logarithm measures the Hilbert distance between lΩ,0 and x on the properly
convex segment with endpoints l+ and lΩ,1. This is a continuous positive function. As
x → bdΩ, f (x)→ 0.

Since f (g(x)) = f (x) for all x ∈ Ω and g ∈ G, f induces a continuous map f̄ : Ω/G →
(0,∞). Here, f̄ can take as close value to 0 as one wishes. This contradicts the compactness
of Ω/G.

Suppose that L∩Ω ̸= /0. Then G acts on the convex domain L∩Ω open in L. We
define a function f : Ω → [0,∞) given by measuring the Hilbert distance from L∩Ω. Then
f (x) → ∞ as x → bdΩ− L. Again f (g(x)) = f (x) for all x ∈ Ω,g ∈ G. This induces
f̄ : Ω/G → [0,∞). Since f̄ can take as large value as one wishes for, this contradicts the
compactness of Ω/G.

For the second item, suppose that such a set K exists. K and A (K) are disjoint from
Cl(Ω). For x ∈ Ω, we define KΩ,x to be the space of oriented open segments containing x
and ending in K and A (K). We define l+ to be the first point of K ∩ l ahead of x. Then a
similar argument to the above proof applies and we obtain a contradiction.

Now, we go to the third item. Let G have a G-invariant decomposition Rn = V1 ⊕
·· · ⊕Vl0 where G acts irreducibly. This item follows by Lemma 2 of [151] since any
decomposition of Rn gives rise to a diagonalizable commutant of rank l0.

For the fourth item, we prove for the case when G has a G-invariant decomposition
Rn =V1⊕V2. Then by the second item, G acts on K = K1 ∗K2 for properly convex domain
Ki ⊂ S(Vi) for i = 1,2. G acts cocompactly on Ko and G is a subgroup of G1 ×G2 ×R+

where Gi is isomorphic to G|Ki extended to act trivially on Ki+1 with Gi|Vi+1 = I where
the indices in mod 2.

The closure Ḡ of G in Aut(K) is a subgroup of Ḡ1 × Ḡ2 ×R+ for the closure Ḡi of Gi
in Aut(Ki) for i = 1,2.

Ḡ ⊂ {(g1,g2,r)|gi ∈ Ḡi, i = 1,2,r ∈ R+}.
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For a fixed pair (g1,g2), if there are more than one associated r, then we obtain by taking
differences that (I, I,r) is in the group Ḡ for r ̸= 1. This implies that Ḡ contains a nontrivial
subgroup of R+.

Otherwise, Ḡ is in a graph of homomorphism λ : Ḡ1×Ḡ2 →R+. An orbit of an action
of this on the manifold FKo

1 ×FKo
2 ×R+ is in the orbit of the image of λ . Hence, each

orbit of a compact set meets (y1,y2)× (0,1) for yi ∈ FKo
i , i = 1,2, at a compact set. Thus,

we do not have a cocompact action.
Furthermore, if we have a G-invariant decomposition K1 ∗ · · · ∗Km, we can use the

decomposition K1 ∗ (K2 ∗ · · · ∗Km). Now, we use the induction, to obtain the result. [SnT]
□

PROPOSITION 1.4.14. Assume as in Proposition 1.4.10. Then K is the closure of
the convex hull of

⋃
g∈Zl0−1 Ag for the attracting limit set Ag of g. Also, for any partial

join K̂ := Ki1 ∗ · · · ∗Ki j for a subcollection {i1, . . . , i j}, the closure of the convex hull of⋃
g∈Zl0−1 Ag ∩ K̂ equals K̂.

PROOF. We take a finite-index normal subgroup Γ′ of Γ so that Zl0−1
2 is the center

of Γ. Using Theorem 1.1.19, we may assume that Γ′ is torsion-free. Note that kAg for
any k ∈ Γ′ equals Akgk−1 = Ag since kgk−1 = g. Thus, Γ′ acts on

⋃
g∈Zl0−1 Ag since it is

a Γ′-invariant set. The interior C of the convex hull of
⋃

g∈Zl0−1 Ag is a subdomain in Ko.
Since C/Γ′ → Ko/Γ′ is a homotopy equivalence of closed manifolds, we obtain C = Ko

and Cl(C) = K by Lemma 1.4.16.
For the second part, if the closure of the convex hull of

⋃
g∈Zl0−1 Ag ∩ K̂ is a proper

subset of K̂, then the closure of the convex hull of
⋃

g∈Zl0−1 Ag is a proper subset of K. This
is a contradiction. [SnS] □

THEOREM 1.4.15 (Kobayashi [112]). Suppose that a closed real projective orbifold
has a developing map into a properly convex domain D in RPn (resp. in Sn). Then the
orbifold is projectively diffeomorphic to Ω/Γ for the holonomy group Γ and for the unique,
minimal Γ-invariant open convex domain Ω in Do.

PROOF. This follows since all maximal segments in D are of d-length ≤ π − ε0 for
a uniform ε0 > 0. Hence, the Kobayashi metric is well-defined proving that the orbifold
is properly convex. Hence, the developing image Ω is a convex open domain by [112].
Clearly, Ω is Γ-invariant. It is minimal since for any Γ-invariant domain in U , U/Γ is a
closed orbifold whose orientable manifold finite cover is homotopy equivalent to a mani-
fold finite cover of Ω/Γ. Thus U = Ω by a degree argument. Also, Ω is unique since it
must be that Ω = Do. □

LEMMA 1.4.16 (Domains for holonomy). Suppose that Ω is an open domain in an
open hemisphere in Sn−1 (resp. in RPn−1) where a projective group Γ acts on so that Ω/Γ

is a closed orbifold. Suppose that Γ acts on a compact properly convex domain K where
Ko ̸= /0. Then

• Ko = R(Ω) where R is a diagonalizable projective automorphism commuting
with a finite-index subgroup of Γ with eigenvalues ±1 only and is a composition
of reflections commuting with one-another.

• In fact K = K1 ∗ · · · ∗Kk where K j = K∩Pj, J = 1, . . . ,k, for a virtually invariant
subspace Pj of Γ where R equals I or A .

• Ω has to be properly convex.
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• If Ko meets with Ω, then Ko = Ω.

PROOF. It is sufficient to prove for Sn. We prove by an induction on dimension. For
S1, this is clear.

By Theorem 1.1.19, there is a torsion-free finite-index subgroup Γ′ in Γ. Suppose that
Ω∩Ko ̸= /0. Then (Ω∩Ko)/Γ′ is homotopy equivalent to Ω/Γ′, a closed manifold. Hence,
Ω∩Ko = Ω and Ω ⊂ Ko. Similarly, Ko ⊂ Ω. We obtain Ko = Ω. Also, if Ω∩A (Ko) ̸= /0,
then A (Ko) = Ωo. The lemma is proved for this case.

Proposition 1.1.15 and the second part of Theorem 1.1.19 show that Ko/Γ is again
a closed orbifold. Suppose that Γ is not virtually factorizable with respect to K. Then Γ

is strongly irreducible by Benoist [21]. K contains the attracting fixed points of bi-semi-
proximal element g of Γ. This implies that Cl(Ω)∩Cl(K) ̸= /0 or Cl(Ω)∩A (Cl(K)) ̸= /0
since Ω contains a generic point of Sn. By the above paragraph, we may suppose that the
intersection is in bdΩ∩bdK or bdΩ∩A (bdK). Then this is a compact convex set invariant
under Γ. Hence, Γ is reducible, a contradiction.

Now suppose that Γ is virtually factorizable. Then there exists a diagonalizable free
abelian group D of rank k−1 for some k ≥ 2 in the virtual center of Γ by Proposition 1.4.10.
D acts trivially on a finite set of minimal subspace P1, . . . ,Pk by Proposition 1.4.10. Since
Γ permutes these subspaces, a torsion-free finite-index subgroup Γ′ of Γ acts on P1, . . . ,Pk.
Let’s denote P̂j := P1 ∗ · · · ∗Pj−1 ∗Pj+2 ∗ · · · ∗Pk. Then Ω is disjoint from P̂j for each j
since otherwise (P̂j ∩Ω)/Γ′ → Ω/Γ′ is a homotopy equivalence of different dimensional
manifolds.

However, Pj ∩Cl(Ω) ̸= /0 since we can choose a sequence {gi} of elements gi ∈ D so
that the associated eigenvalues for Pj goes to zero and the other eigenvalues goes to infinity
while their ratios are uniformly bounded as i → ∞.

Again, define K j := K ∩Pj. Since K is properly convex, K1 ∗ · · · ∗Kk ⊂ K. Since the
action of Γ on Ko is cocompact and proper, Proposition 1.4.10 shows that K = K1 ∗· · ·∗Kk.
We have a projection for Ko → Ko

j for each j obtained from the join structure. Then the
action of Γ on K j is cocompact since otherwise Ko/Γ cannot be compact. Also, the action
of Γ′ on Pj is irreducible by Benoist [21]. The scond item is proved.

We can find a sequence in D converging to a projection Π j to each Pj with the unde-
fined space P̂ j, We define domains Ω j := Cl(Π j(Ω)) in Pj. Since Ω is in an open subset in
a hemisphere, there exists a convex hull of Cl(Ω), and hence so has Ω j for each j = 1, . . .m.
Then Ω j is properly convex by the third item of Proposition 1.4.1 and the irreducibilty of
the action in each factor K j in Proposition 1.4.10. Hence Ω is in a properly convex domain
Ω1 ∗ · · · ∗Ωm.

By Theorem 1.4.15 of Kobayashi, Ω equals the interior of Ω1 ∗ · · · ∗Ωm. Since Γ

acts cocompactly on Ω, it acts on its projection Ω j in a sweeping manner. Suppose that
Ωo

j ∩ Ko
j ̸= /0 or Ω j ∩A (Ko

j ) ̸= /0. Theorem 1.4.12 shows that Ko
j = Ωo

j or A (Ko
j ) =

Ωo
j since Γ acts on a convex domain Ωo

j as a sweeping action. Suppose that Ωo
j ∩ Ko

j
or Ωo

j ∩A (Ko
j ) are empty for all j. Then Cl(Ω j)∩K j ̸= /0 or Cl(Ω j)∩A (K j) ̸= /0 by

Proposition 1.4.13. Since such intersection has a unique minimal subspace containing it,
this contradicts the irreducibility of Γ′-action on Pj.

Hence, it follows that K′ := (K′
1∗· · ·∗K′

k)
o is a subset of Ω for K′

j =K j or K′
j =A (K j).

Again K′/Γ′ → Ω/Γ′ is a homotopy equivalence and hence K′ = Ω. Hence, the first item
is proved.

The action of projective automorphisms restricting to I or A on each Pj gives us the
final part. (See Theorem 4.1 of [61] also.) [SnT] □
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We have the following useful result.

COROLLARY 1.4.17. . Let {hi : Γ → SL±(n,R)} be a sequence of faithful discrete
representations so that Oi := Ωi/hi(Γ) is a closed real projective orbifold for a properly
convex domain Ωi in Sn for each i. Suppose that {hi} → h∞ algebraically, h∞ is faithful
with discrete image, and {Cl(Ωi)} geometrically converges to a properly convex domain
Cl(Ω∞) with nonempty interior Ω∞. Then h∞(Γ) acts on the interior Ω∞ so that the follow-
ing hold:

• Ω∞/h∞(Γ) is a closed real projective orbifold.
• Ω∞/h∞(Γ) is diffeomorphic to Oi for sufficiently large i.
• If U is a properly convex domain where h∞(Γ) acts so that U/h∞(Γ) is an orb-

ifold, then U = Ω∞ or J(Ω∞) where J is a projective automorphism commuting
with h∞(Γ). In particular, if Γ is non-virtually-factorizable, then J = I or A .

PROOF. By Proposition 1.1.15, the quotient Ω∞/h∞(Γ) is an orbifold. For the second
item, see the proof of Theorem 4.1 of [61]. The third item follows from Lemma 1.4.16. □

1.4.5. Technical propositions. By the following, the first assumption of Theorem
5.4.3 are needed only for the conclusion of the theorem to hold.

PROPOSITION 1.4.18. If a group G of projective automorphisms acts on a strict join
A = A1 with A1 ∗A2 for two compact convex sets A1 and A2 in Sn (resp. in RPn) with
dimA1 +dimA2 = n−1, then G is virtually reducible.

PROOF. We prove for Sn. Let x1, . . . ,xn+1 denote the homogeneous coordinates.
There is at least one set of strict join sets A1,A2. We choose a maximal number collec-
tion of compact convex sets A′

1, . . . ,A
′
m so that A is a strict join A′

1 ∗ · · · ∗A′
m. Here, we have

A′
i ⊂ Si for a subspace Si corresponding to a subspace Vi ⊂ Rn+1 that form an independent

set of subspaces.
We claim that g ∈ G permutes the collection {A′

1, . . . ,A
′
m}: Suppose not. We give

coordinates so that for each i, there exists some index set Ii so that elements of A′
i satisfy

x j = 0 for j ∈ Ii and elements of A satisfy xi ≥ 0. Then we form a new collection of
nonempty sets

J′ := {A′
i ∩g(A′

j)|0 ≤ i, j ≤ n,g ∈ G}
with more elements. Since

A = g(A) = g(A′
1)∗ · · · ∗g(A′

l),

we can show that each A′
i is a strict join of nonempty sets in

J′i := {A′
i ∩g(A′

j)|0 ≤ j ≤ l,g ∈ G}

using coordinates. A is a strict join of the collection of the sets in J′, a contraction to the
maximal property.

Hence, by taking a finite index subgroup G′ of G acting trivially on the collection, G′

is reducible. [SnT] □

PROPOSITION 1.4.19. Suppose that a set G of projective automorphisms in Sn (resp.
in RPn) acts on subspaces S1, . . . ,Sl0 and a properly convex domain Ω ⊂ Sn (resp. ⊂RPn),
corresponding to independent subspaces V1, . . . ,Vl0 so that Vi ∩Vj = {0} for i ̸= j and
V1 ⊕·· ·⊕Vl0 = Rn+1. Let Ωi := Cl(Ω)∩ Si for each i, i = 1, . . . , l0. Let λi(g) denote the
largest norm of the eigenvalues of g restricted to Vi. We assume that

• for each Si, Gi := {g|Si|g ∈ G} forms a bounded set of automorphisms, and
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• for each Si, there exists a sequence {gi, j ∈ G} which has the property{
λi(gi, j)

λk(gi, j)

}
→ ∞ for each k,k ̸= i as j → ∞.

Then Cl(Ω) = Ω1 ∗ · · · ∗Ωl0 for Ω j ̸= /0, j = 1, . . . , l0.

PROOF. First, Ωi ⊂ Cl(Ω) by definition. Each element of a strict join has a vector that
is a linear combination of elements of the vectors in the directions of Ω1, . . . ,Ωl0 , Hence,
we obtain

Ω1 ∗ · · · ∗Ωl0 ⊂ Cl(Ω)

since Cl(Ω) is convex.
Let z = [⃗vz] for a vector v⃗z in Rn+1. We write v⃗z = v⃗1 + · · ·+ v⃗l0 , v⃗ j ∈ Vj for each j,

j = 1, . . . , l0, which is a unique sum. Then z determines zi = [⃗vi] uniquely.
Let z be any point. We choose a subsequence of {gi, j} so that {gi, j|Si} converges to a

projective automorphism gi,∞ : Si → Si and λi, j → ∞ as j → ∞. Then gi,∞ also acts on Ωi.
By Proposition 1.3.2, {gi, j(zi)}→ gi,∞(zi) = zi,∞ for a point zi,∞ ∈ Si. We also have

(1.4.1) zi = g−1
i,∞(gi,∞(zi)) = g−1

i,∞(limj
gi, j(zi)) = g−1

i,∞(zi,∞).

Now suppose z ∈ Cl(Ω). We have {gi, j(z)}→ zi,∞ by the eigenvalue condition. Thus,
we obtain zi,∞ ∈ Ωi as zi,∞ is the limit of a sequence of orbit points of z. Hence we also
obtain zi ∈ Ωi by (1.4.1). We obtain Ωi ̸= /0. This also shows that Cl(Ω) = Ω1 ∗ · · · ∗Ωl0
since z ∈ {z1}∗ · · · ∗ {zl0}.

For the RPn-version, we lift Ω to an open hemisphere in Sn. Then the Sn-version
implies the RPn-version. [SnT] □

1.5. The Vinberg duality of real projective orbifolds

The duality is a natural concept in real projective geometry and it will continue to play
an essential role in this theory as well.

1.5.1. The duality. We start from linear duality. Let Γ be a group of linear transfor-
mations GL(n+1,R). Let Γ∗ be the dual group defined by {g∗−1|g ∈ Γ}.

Suppose that Γ acts on a properly convex cone C in Rn+1 with the vertex O.
• An open convex cone C∗ in Rn+1,∗ is dual to an open convex cone C in Rn+1 if

C∗ ⊂Rn+1∗ is the set of linear functionals taking positive values on Cl(C)−{O}.
C∗ is a cone with the origin as the vertex again. Note (C∗)∗ =C, and C must be
properly convex since otherwise Co cannot be open. We generalize the notion in
Section 1.5.4.

• Now Γ∗ will acts on C∗. A central dilatational extension Γ′ of Γ by Z is given
by adding a scalar dilatation by a scalar s > 1 for the set R+ of positive real
numbers.

• The dual Γ′∗ of Γ′ is a central dilatation extension of Γ∗. Also, if Γ′ is cocompact
on C if and only if Γ′∗ is on C∗. (See [86] for details.)

• Given a subgroup Γ in PGL(n+1,R), the dual group Γ∗ is the image in PGL(n+
1,R) of the dual of the inverse image of Γ in SL±(n+1,R).

• We define RPn∗ as P(Rn+1,∗)).
• A properly convex open domain Ω in P(Rn+1) is dual to a properly convex open

domain Ω∗ in P(Rn+1,∗) if Ω corresponds to an open convex cone C and Ω∗ to its
dual C∗. We say that Ω∗ is dual to Ω. We also have (Ω∗)∗ = Ω and Ω is properly
convex if and only if so is Ω∗.
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• We call Γ a dividing group if a central dilatational extension acts cocompactly
on C with a Hausdorff quotient. Γ is dividing if and only if so is Γ∗.

• Define Sn∗ := S(Rn+1∗). For an open properly convex subset Ω in Sn, the dual
domain is defined as the quotient in Sn∗ of the dual cone of the cone CΩ cor-
responding to Ω. The dual set Ω∗ is also open and properly convex but the
dimension may not change. Again, we have (Ω∗)∗ = Ω.

• If Ω is a compact properly convex domain but not necessarily open, then we
define Ω∗ to be the closure of the dual domain of Ωo. This definition agrees with
the definition given in Section 1.5.4 for any compact convex domains since a
sharply supporting hyperspace can be perturbed to a supporting hyperspace that
is not sharply supporting. (See Berger [26].)

• Given a properly convex domain Ω in Sn (resp. RPn), we define the augmented
boundary of Ω

(1.5.1) bdAg
Ω := {(x,H)|x ∈ bdΩ,x ∈ H,

H is an oriented sharply supporting hyperspace of Ω} ⊂ Sn ×Sn∗.

Define the projection

Π
Ag
Ω

: bdAg
Ω → bdΩ

by (x,H) 7→ x. Each x ∈ bdΩ has at least one oriented sharply supporting hy-
perspace. An oriented hyperspace is an element of Sn∗ since it is represented as
a linear functional. Conversely, an element of Sn represents an oriented hyper-
space in Sn∗. (Clearly, we can do this for RPn and the dual space RPn∗ but we
consider only nonoriented supporting hyperspaces.)

THEOREM 1.5.1. Let A be a subset of bdΩ. Let A′ := Π
Ag,−1
Ω

(A) be the subset of
bdAg(A). Then Π

Ag
Ω
|A′ : A′ → A is a quasi-fibration.

PROOF. We take a Euclidean metric on an affine subspace containing Cl(Ω). The
sharply supporting hyperspaces at x can be identified with unit normal vectors at x. Each
fiber Π

Ag,−1
Ω

(x) is a properly convex compact domain in a sphere of unit vectors through
x. We find a continuous section defined on bdΩ by taking the center of mass of each fiber
with respect to the Euclidean metric. This gives a local coordinate system on each fiber by
giving the origin, and each fiber is a compact convex domain containing the origin. Then
the quasi-fibration property is clear now. [SnT] □

REMARK 1.5.2. We notice that for properly convex open or compact domains Ω1 and
Ω2 in Sn (resp. in RPn) we have

(1.5.2) Ω1 ⊂ Ω2 if and only if Ω
∗
2 ⊂ Ω

∗
1

REMARK 1.5.3. A proper-subspace dual K†
X with respect to X =RPk or Si0 of a prop-

erly convex domain K in X = RPk or Si0 is the dual domain as obtained from considering
X and corresponding vector subspace only.

We are given a strict join A∗B for a properly convex compact k-dimensional domain
A in RPk ⊂ RPn and a properly convex compact n− k− 1-dimensional domain B in the
complementary RPn−k−1 ⊂ RPn. Let A†

RPk denote the proper-subspace dual in RPk∗ of A

in RPk and B†
RPn−k−1 the proper-subspace dual domain in RPn−k−1∗ of B in RPn−k−1. RPk∗

embeds into RPn∗ as P(V1) for the subspace V1 of linear functionals cancelling vectors in
directions of RPn−k−1 and RPn−k−1∗ embeds into RPn∗ as P(V2) for the subspace V2 of
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linear functionals nullifying the vectors in directions of RPk. These will be denoted by
RPk† and RPn−k−1† respectively.

Then we have

(1.5.3) (A∗B)∗ = A†
RPk ∗B†

RPn−k−1 .

This follows from the definition and realizing every linear functional as a nonnegative sum
of linear functionals in the direct-sum subspaces.

Suppose that A ⊂ Sk and B ⊂ Sn−k−1 respectively are k-dimensional and (n− k−1)-
dimensional domains where Sk and Sn−k−1 are complementary subspaces in Sn. Suppose
that A and B have respective dual sets A†

Sk ⊂ Sk∗,B†
Sn−k−1 ⊂ Sn−k−1∗. We embed Sk∗ and

Sn−k−1∗ to Sn∗ as above. We denote the images by Sk† and Sn−k−1† respectively. Then the
above equation also holds with the subscripts exchanged appropriately.

An element (x,H) is bdAg
Ω if and only if x ∈ bdΩ and h is represented by a linear

functional αH so that αH (⃗y) > 0 for all y⃗ in the open cone C(Ω) corresponding to Ω and
αH (⃗vx) = 0 for a vector v⃗x representing x.

Let (x,H) ∈ bdAg
Ω. The dual cone C(Ω)∗ consists of all nonzero 1-form α so that

α (⃗y)> 0 for all y⃗ ∈ Cl(C(Ω))−{O}. Thus, α (⃗vx)> 0 for all α ∈C∗ and αH (⃗vx) = 0, and
αH ̸∈C(Ω)∗ since v⃗x ∈ Cl(C(Ω))−{O}. But H ∈ bdΩ∗ as we can perturb αH so that it is
in C∗. Thus, x is a sharply supporting hyperspace at H ∈ bdΩ∗. We define a duality map

DAg
Ω

: bdAg
Ω → bdAg

Ω
∗

given by sending (x,H) to (H,x) for each (x,H) ∈ bdAg
Ω.

PROPOSITION 1.5.4. Let Ω and Ω∗ be dual open domains in Sn and Sn∗ (resp. RPn

and RPn∗).
(i) There is a proper map ΠAg : bdAg

Ω → bdΩ given by sending (x,H) to x.
(ii) A projective automorphism group Γ acts properly on a properly convex open

domain Ω if and only if so Γ∗ acts on Ω∗ (Vinberg’s Theorem 1.5.8 ).
(iii) There exists a duality map

DAg
Ω

: bdAg
Ω → bdAg

Ω
∗

which is a homeomorphism.
(iv) Let A ⊂ bdAg

Ω be a subspace and A∗ ⊂ bdAg
Ω∗ be the corresponding dual

subspace DAg
Ω

(A). A group Γ acts on A so that A/Γ is compact if and only if Γ∗

acts on A∗ and A∗/Γ∗ is compact.

PROOF. We will prove for Sn first. (i) Each fiber is a closed set of hyperspaces at
a point forming a compact set. The set of sharply supporting hyperspaces at a compact
subset of bdΩ is closed. The closed set of hyperspaces having a point in a compact subset
of Sn+1 is compact. Thus, ΠAg is proper. Clearly, ΠAg is continuous, and it is an open map
since bdAg

Ω is given the subspace topology from Sn ×Sn∗ with a product topology where
ΠAg extends to a projection.

(ii) See Chapter 4 of [86] or Vinberg [152].
(iii) DAg

Ω
has the inverse map DAg

Ω∗ .
(iv) The item is clear from (iii). [SnT] □

DEFINITION 1.5.5. The two subgroups G1 of Γ and G2 of Γ∗ are dual if sending
g 7→ g−1,T gives us an isomorphism G1 → G2. A set in A ⊂ bdΩ is dual to a set B ⊂ bdΩ∗

if DAg
Ω

: Π
−1
Ag(A)→ Π

−1
Ag(B) is a one-to-one and onto map.
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REMARK 1.5.6. For an open subspace A ⊂ bdΩ that is C1 and strictly convex, DAg
Ω

induces a well-defined map
A ⊂ bdΩ → A′ ⊂ bdΩ

∗

since each point has a unique sharply supporting hyperspace for an open subspace A′. The
image of the map A′ is also smooth and strictly convex by Lemma 1.5.7. We will simply
say that A′ is the image of D .

Let RPn−1
x denote the space of concurrent lines to a point x where two lines are equiv-

alent if they agree in a neighborhood of x. Now, RPn−1
x is projectively diffeomorphic to

RPn−1. The real projective transformations fixing x induce real projective transformations
of RPn−1

x . Let x ∈ Sn. The space Sn−1
x denotes the space of equivalence classes of con-

curent lines ending at x with orientation away from x where two are considered equivalent
if they agree on an open subset with a common boundary point x. An equivalence class
here is called a direction from x. Note that Sn−1

x is well-defined on RPn as well for x ∈RPn.

For a subset K in a convex domain Ω in RPn or Sn, let x be a boundary point. We
define Rx(K) for a subset K of Ω the space of directions of open rays from x in Ω. We
defined Rx(K)⊂ Sn−1

x . Any projective group fixing x induces an action on Sn−1
x .

We say that a two-sided open hypersurface is convex polyhedral if it is a union of
locally finite collection of compact polytopes in hyperspaces meeting one another in strictly
convex angles where the convexity is towards one-side.

LEMMA 1.5.7. Let Ω∗ be the dual of a properly convex open domain Ω in RPn (resp.
in Sn). Then

(i) bdΩ is C1 and strictly convex at a point p ∈ bdΩ if and only if bdΩ∗ is C1 and
strictly convex at the unique corresponding point p∗.

(ii) Ω is an ellipsoid if and only if so is Ω∗.
(iii) bdΩ∗ contains a properly convex domain D = P∩ bdΩ∗ open in a totally geo-

desic hyperspace P if and only if bdΩ contains a vertex p with Rp(Ω) a properly
convex domain. In this case, DAg

Ω
sends the pair of p and the associated sharply

supporting hyperspace of Ω to the pairs of the totally geodesic hyperspace con-
taining D and points of D. Moreover, D and Rp(Ω) are properly convex, and the
projective dual of D is projectively diffeomorphic to Rp(Ω).

(iv) Let S be a convex polyhedral open subspace of bdΩ. Then S is dual to a convex
polyhedral open subspace of bdΩ∗.

PROOF. We first prove for Sn. (i) The one-to-one map DAg
Ω

sends each pair (x,H) of
a point of bdΩ and the sharply supporting hyperplane to a pair of (H,x) where H is a point
of bdΩ∗ and x is a sharply supporting hyperplane at H of Ω∗.

The fact that bdΩ is C1 and strictly convex implies that for x ∈ bdΩ, H is unique, and
for H, there is only one point of bdΩ where H meets bdΩ. Also, this is equivalent to the
fact that for each H ∈ bdΩ∗, the supporting hyperspace x is unique and for each x, there is
one point of bdΩ∗ where x meets bdΩ∗. This shows that bdΩ∗ is strictly convex and C1.

(ii) Let Rn+1 have the standard Lorentz inner product B. Let C be the open positive
cone. Then the space of linear functionals positive on C is in one-to-one correspondence
with vectors in C using the isomorphism C∗ → C given by φ 7→ v⃗φ so that φ = B(⃗vφ , ·).
(See [86].)

(iii) Suppose that Rp(Ω) is properly convex. We consider the set of hyperspaces
sharply supporting Ω at p. This forms a properly convex domain: Let v⃗ be the vector
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in Rn+1 in the direction of p. Then we find the set of linear functionals positive on C(Ω)
but being zero on v⃗. Let V be a complementary space of v⃗ in Rn+1. Let A be given as the
affine subspace V+ {⃗v} of Rn+1. We choose V so that C⃗v := C(Cl(Ω))∩A is a bounded
convex domain in A. We give A a linear structure so that v⃗ corresponds to the origin. We
identify this space with V. The set of linear functionals positive on C(Ω) and 0 at v⃗ is
identical with that of linear functionals on Rn′ positive on C⃗v: we define

C(D) :=
{

f ∈ Rn+1∗∣∣ f |C(Cl(Ω))−{t⃗v|t ≥ 0}> 0, f (⃗v) = 0
}

∼= Ĉ∗
v⃗ :=

{
g ∈ V∗∣∣g|C⃗v −{O}> 0

}
⊂ Rn+1∗.

Here ∼= indicates a linear isomorphism, which follows by the decomposition Rn+1 = {t⃗v|t ∈
R}⊕V. Define R′

v⃗(C⃗v) as the equivalence classes of properly convex segments in C⃗v ending
at v⃗ where two segments are equivalent if they agree in an open neighborhood of v⃗. Rp(Ω)

is identical with R′
v⃗(C⃗v) by the projectivization S : Rn+1 −{O} → Sn. Hence R′

v⃗(C⃗v) is
a properly convex open domain in S(V). Since R′

v⃗(C⃗v) is properly convex, the interior
of the spherical projectivization S(Ĉ∗

v⃗ ) ⊂ S(V∗) is dual to the properly convex domain
R′

v⃗(C⃗v)⊂ S(V).
Again we have a projection S :Rn+1∗−{O}→ Sn∗. Define D := S(C(D))⊂ Sn∗. Since

R′
v⃗(C⃗v) corresponds to Rp(Ω), and S(Ĉ∗

v⃗ ) corresponds to D, the duality follows. Also, D ⊂
bdΩ∗ since points of D are oriented sharply supporting hyperspaces to Ω by Proposition
1.5.4 (iii). (Here, we can also use Proposition 5.2.2.)

(iv) From (iii) each vertex of a convex polyhedral subspace of S correspond to a com-
pact convex polytope in the dual subspace. Also, we can check that each side of dimension
i correspond to a side of dimension n− i−1. [SnT] □

1.5.2. The duality of convex real projective orbifolds with strictly convex bound-
ary. Since O = Ω/Γ for an open properly convex domain Ω in RPn (resp. in Sn) the dual
orbifold O∗ = Ω∗/Γ∗ is a properly convex real projective orbifold. The dual orbifold is
well-defined up to projective diffeomorphisms.

THEOREM 1.5.8 (Vinberg). Let O be a strongly tame properly convex real projective
open or closed orbifold. The dual orbifold O∗ is diffeomorphic to O .

For proof, see Thereom 4.4. 10 in Chapter 4 of [89].
The map given by Vinberg [152] is called the Vinberg duality diffeomorphism. For

an orbifold O with boundary, the map is a diffeomorphism in the interiors Oo → O∗o.
Let Õ denote the properly convex projective domain coveringO . Also, DAg

Õo gives us the
diffeomorphism ∂O → ∂O∗. (We conjecture that they form a diffeomorphism O →O∗ up
to isotopies. We also remark that DO∗ ◦DO may not be identity as shown by Vinberg.)

For each p ∈ Ω, let p⃗V,Ω denote the vector in C(Ω) with f−1
V (p⃗V,Ω) = 1 for the Koszul-

Vinberg function fV,Ω for C(Ω). (See (11.2.1).) Define p⃗∗V,Ω as the 1-form D fV,Ω(p⃗V ),
and also define p∗ as ((D fV,Ω(p⃗V,Ω))). We obtain a compactification of Ω by defining
ClAg(Ω) := Ω∪ bdAg

Ω by defining for any sequence pi ∈ Ω, we form a pair (p⃗i, p⃗∗i,V )
where p⃗∗i,V is the 1-form in Rn∗ given by

D fV (p⃗i,V ).

Clearly, a limit point of {p⃗∗i,V,Ω} is a supporting 1-form of C(Ω) since it supports a properly
convex domain f−1

V (1,∞)⊂C(Ω). We say that pi converges to an element of bdAg if this
augmented sequence converges to it.
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THEOREM 1.5.9. Let Ω be a properly convex domain in RPn (resp. in Sn), and let Ω∗

be its dual in RPn∗ (resp. in Sn∗). Then the Vinberg duality diffeomorphism DΩ : Ω → Ω∗

extends to a homeomorphism D̄Ag
Ω

: ClAg(Ω) → ClAg(Ω). Moreover for any projective
group Γ acting on it, D̄Ag

Ω
is equivariant with respect to the duality map Γ → Γ∗ given by

g 7→ g∗−1.

PROOF. We assume Ω ⊂ Sn. The continuity follows from the paragraph above the
theorem since DÕ is induced by (p, p∗V,Ω) → (p∗V,Ω, p), and DAg

Õ
is a map switching the

orders of the pairs also.
Proposition 1.5.4 shows the injectivity of D̄Ag

Ω
. The map is surjective since so is DΩ

and DAg
Ω

.
The equivariance follows since so are DΩ and DAg

Ω
. [SnT] □

1.5.3. Sweeping actions. The properly convex open set D in RPn (resp. Sn) has a
Hilbert metric. Also the group Aut(K) of projective automorphisms of K in SL±(n+1,R)
is a locally compact closed group.

LEMMA 1.5.10. Let D be a properly convex open domain in RPn (resp. Sn) with
Aut(D) of smooth projective automorphisms of D. Let a group G act isometrically on
an open domain D faithfully with G → Aut(D) is an embedding. Suppose that D/G is
compact. Then the closure Ḡ of G is a Lie subgroup acting on D properly, and there exists
a smooth Riemannian metric on D that is Ḡ-invariant.

PROOF. Assume D ⊂ Sn. Since Ḡ is in SL±(n+1,R), the closure Ḡ is a Lie subgroup
acting on D properly. Suppose that D ⊂ Sn.

One can construct a Riemannian metric µ with bounded entries. Let φ be a func-
tion supported on a compact set F so that G(F) ⊃ D where φ |F > 0. Given a bounded
subset of Ḡ, the elements are in a bounded subset of the projective automorphism group
SL±(n+ 1,R). A bounded subset of projective automorphisms have uniformly bounded
set of derivatives on Sn up to the m-th order for any m. We can assume that the derivatives
of the entries of φ µ up to the m-th order are uniformly bounded above. Let dη be the
left-invariant measure on Ḡ.

Then {g∗φ µ|g ∈ Ḡ} is an equicontinuous family on any compact subset of Do up to
any order. For J ⊂ Do, supp(g∗φ µ)∩ J ̸= /0 for g in a compact set of Ḡ. Thus the integral∫

g∈Ḡ
g∗φ µdη

of g∗φ µ for g ∈ Ḡ is a C∞-Riemannian metric and that is positive definite. This bestows us
a C∞-Riemannian metric µD on D invariant under Ḡ-action. [SnT] □

By Lemma 1.5.10, there exists a Riemannian metric on a properly convex domain Ω

invariant under Aut(Ω). Hence, we can define a frame bundle FΩ where Aut(Ω) acts
freely.

PROPOSITION 1.5.11 (Lemma 1 of Vey [151]). Suppose that a projective group G acts
on an (n−1)-dimensional properly convex open domain Ω as a sweeping action. Then the
dual group G∗ acts on Ω∗ as a sweeping action also.

PROOF. The Vinberg duality map in Theorem 1.5.8 is a diffeomorphism Ω → Ω∗.
This map is equivariant under the duality homomorphism g 7→ g∗−1 for each g ∈ G. Here,
G does not need to be a dividing action. □
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THEOREM 1.5.12 (Generalizes1.4.15). Suppose that a projective group G sweepingly
acts on a properly convex open domain D in RPn (resp. in Sn). Then for any properly
convex open domain Ω with Ω/G is compact and Ω∩D ̸= /0, Ω = D.

PROOF. Suppose not. Then G acts on D∩Ω as a sweeping manner and D∩Ω is a
proper subset of D. Let x ∈ D∩Ω. By Theorem 1.4.12, the convex hull of Gx must equal
both D∩Ω and D. Hence, D ⊂ Ω. The converse also holds by the same reason. □

1.5.4. Extended duality. We can generalize the duality for convex domains as was
done at the beginning of Section 1.5; however, we don’t generalize for RPn. Given a closed
convex cone C1 in Rn+1, consider the set of linear functionals in Rn+1∗ taking nonnegative
values in C1. This forms a closed convex cone. We call this the dual cone of C1 and denote
it by C∗

1 .
A closed cone C2 in Rn+1∗ is dual to a closed convex cone C1 in Rn+1 if C2 is the set

of linear functionals taking nonnegative values in C1.
For a convex compact set U in Sn, we form a corresponding convex cone C(U). Then

we form C(U)∗ and the image of its projection a convex compact set U∗ in Sn∗. Clearly,
(U∗)∗ =U for a compact convex set U by definition.

Also, the definition agrees with the previous definition defined for properly convex
domains. This is straightforward: Functions in C(U)∗ can be approximated arbitrarily by
functions strictly positive on C(U).

Also, for subspaces such as great sphere Si0 in Sn its dual in Sn∗ is a great sphere
Sn−i0−1∗. For these subspaces, we can give an orientation on Si0 so that we can give the
orientation on Sn−i0−1∗ so that under a fixed metric a basis in the orientation of Si0 and
the dual basis of Sn−i0−1∗ form the orientation of Rn+1 inducing the given one on Sn. In
particular, since S0 is a pair of antipodal points, an orientation is a choice of a point. The
orientations on Si0 and Sn−i0−1∗ are said to be dual ones. and the oriented Si0 is dual to the
oriented Sn−i0−1∗.

Recall the classification of compact convex sets in Proposition 1.1.4.

PROPOSITION 1.5.13.
• Let Si0 be a great sphere of dimension i0.
• Let S j0 be a one of dimension j0 with i0 + j0 +1 ≤ n independent of Si0 .
• We also have the join Si0+ j0+1 of Si0 and S j0 and its complementary subspace

Sn−i0− j0−2.
• Let Sn−i0−1 be one of dimension n−i0−2 complementary to Si0 where Sn−i0− j0−2 ⊂

Sn−i0−1.
• Let us identify Si0† as Sn−i0−1∗ by taking restrictions of linear maps and Sn−i0− j0−2†

as Si0+ j0+1∗.
Let U be a convex compact proper set in Sn. Then the following hold:

(i): U is a great i0-sphere if and only if U∗ is a great n− i0 − 1-sphere. U∗ is not
convex if and only if i0 = n−1.

(ii): If U is a strict join of a properly convex domain K of dimension i0 in a great
sphere Si0 and a complementary great sphere S j0 for i0, j0 ≥ 0, then
• U∗ is a strict join of Sn−i0− j0−2† = Si0+ j0+1∗ and a properly convex domain

K† in Si0† =Sn−i0−1∗ of dimension i0 properly dual to K in Si0 if i0+ j0+1<
n.

• U∗ is K† ⊂ Si0† if i0 + j0 +1 = n.
(iii): If U is a properly convex domain K in a great sphere Si0 of dimension i0, i0 <

n, then U∗ is a strict join of the proper-subspace dual K† of K in Si0† = Sn−i0−1∗
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and a great sphere Si0∗ of dimension n− i0 −1 for any choice of the complement
Sn−i0−1 of Si0 .

(iv): U is a properly convex compact n-dimensional domain if and only if so is U∗.
(v): If U is not properly convex and has a nonempty interior, then U∗ has an empty

interior.
(vi): If U has an empty interior, then U∗ is not properly convex and has a nonempty

interior provided U is properly convex.
(vii): In particular, if U is an n-hemisphere, then U∗ is a point and vice versa.
(viii): If Uo ̸= /0 and U∗o ̸= /0, then U and U∗ are both properly convex domains in

Sn.
(xi): U is contained in a hemisphere if and only if U∗ is contained in a hemisphere.

PROOF. (i) Suppose that U is a great i0-sphere. Then C(U) is a subspace of dimension
i0 +1. The set of linear functionals taking 0 values on C(U) form a subspace of dimension
n− i0. Hence, U∗ = S(C(U)∗) is a great sphere of dimension n− i0 − 1. The converse is
also true.

(ii) Suppose that U is not a great sphere. Proposition 1.1.4 shows us that U is contained
in an n-hemisphere.

Let Sm0 be the span of U . Here, m0 = i0+ j0+1. Then U = S j0 ∗Ki0 for a great sphere
S j0 and a properly convex domain Ki0 in a great sphere of dimension i0 in Sm0 independent
of the first one by Proposition 1.1.4.

C(U) is a closed cone in the vector subspace Rm0+1. Then C(U) = R j0+1 +C(Ki0)
where C(Ki0) ⊂ Ri0+1 for independent subspaces R j0+1 and Ri0+1. Let C(U)′ denote the
dual of C(U) in Rm0+1∗. For f ∈C(U)′, f = 0 on R j0+1, and f |Ri0+1 takes a value ≥ 0 in
C(Ki0). Hence,

f : Rm0+1 = R j0+1 ⊕Ri0+1 → R is in {0}⊕C(Ki0)∗.

Denote the projection of C(U)′ in Sm0 by U ′.
Suppose m0 = n. Then we showed the second case of (ii).
Suppose m0 < n. Then decompose Rn+1 =Rn−m0 ⊕Rm0+1. We obtain that f ∈C(U)∗

is a sum f1 + f2 where f1 is an element of C(U)′ extended by setting f1|Rn−m0 ⊕{O}= 0
and f2 is any linear functional satisfying f2|{O}⊕Rm0+1 = 0 where we indicate by {O}
the trivial subspaces of the complements. Hence, (( f2)) ∈ Sm0∗ = Sn−i0− j0−2†. Hence, U∗

is a strict join of U ′ and a great sphere Sn−i0− j0−2†.
(iii) This is obtained by taking the dual of the second case of (ii).
(iv) Since the definition agrees with classical one for properly convex domains, this

follows. Also, one can derive this as contrapositive of (ii) and (iii) since domains and their
duals not covered by (ii) and (iii) are the properly convex domains.

(v) U is as in the second case of (ii).
(vi) If U has the empty interior, then U is covered by (ii) and (iii) or is a great sphere

of dimension < n. (iii) corresponds to the case when the dual of K has nonempty interior.
(vii) The forward part is given by (iii) where K is a singleton in S0 and i0 = 0. The

converse part is the second case of (ii) where K is of dimension zero and j0 = n−1.
(viii) The item (v) shows this using (U∗)∗ =U .
(xi) Proposition 1.1.4 shows that (ii), (iii), and (iv) cover all compact convex sets that

are not great spheres. □

We also note that for any properly convex domain K, K ⊂ Hk ⊂ Sk for a open hemi-
sphere Hk, and a great sphere S j in an independent space, the interior of K ∗S j ⊂ Hk ∗S j is
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in an affine space Hk+ j+1 = Hk ×H j+1 ⊂ Sn. Hence, a join is really a product of a certain
form. We call this an affine form of a strict join.

1.5.5. Duality and geometric limits. Define the thickness of a properly convex do-
main ∆ is given as

min{max{d(x,bd∆)|x ∈ ∆},max{d(y,bd∆
∗)|y ∈ ∆

∗}}
for the dual ∆∗ of ∆.

z'

z
y

FIGURE 1. The diagram for Lemma 1.5.14.

LEMMA 1.5.14. Let ∆ be a properly convex open (resp. compact) domain in RPn

(resp. Sn ) and its dual ∆∗ in RPn∗ (resp. Sn∗ ). Let ε be a positive number less than the
thickness of ∆ and less than 1

2 d(∆′,A (∆′)) and 1
2 d(∆′∗,A (∆′∗)) for a lift ∆′ of ∆ to Sn

(resp. ∆′ = ∆). Then the following hold:
• Nε(∆)⊂ (∆∗−Cl(Nε(bd∆∗)))∗.
• If two properly convex open domains ∆1 and ∆2 are of Hausdorff distance < ε

for ε less than the thickness of each ∆1 and ∆2, then ∆∗
1 and ∆∗

2 are of Hausdorff
distance < ε .

• Furthermore, if ∆2 ⊂ Nε ′(∆1) and ∆1 ⊂ Nε ′(∆2) for 0 < ε ′ < ε , then we have
∆∗

2 ⊃ ∆∗
1 −Cl(Nε ′(bd∆∗

1)) and ∆∗
1 ⊃ ∆∗

2 −Cl(Nε ′(bd∆∗
2)).

PROOF. Using the double covering map pSn and pSn∗ : Sn∗ → RPn∗ of unit spheres in
Rn+1 and Rn+1∗, we take components of ∆ and ∆∗. It is easy to show that the result for
properly convex open domains in Sn and Sn∗ is sufficient.

For elements φ ∈ Sn∗, and x ∈ Sn, we say φ(x) < 0 if f (v) < 0 for φ = [ f ],x = [⃗v]
for f ∈ Rn+1∗, v⃗ ∈ Rn+1. Also, we say φ(x) > 0 if f (v) > 0 for φ = [ f ],x = [⃗v] for f ∈
Rn+1∗, v⃗ ∈ Rn+1.

For the first item, let y ∈ Nε(∆). Suppose that φ(y)< 0 for

φ ∈ Cl((∆∗−Cl(Nε(bd∆
∗))) ̸= /0.

Since φ ∈ ∆∗, the set of positive valued points of Sn under φ is an open hemisphere H
containing ∆ but not containing y. The boundary bdH of H has a closest point z ∈ bd∆ of
distance < ε . The closest point z′ to z on bdH is in Nε(∆) since y is in Nε(∆)−H and z′

is closest to bd∆. The great circle S1 containing z and z′ are perpendicular to bdH since
zz′ is minimizing lengths. Hence S1 passes the center of the hemisphere. One can push
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the center of the hemisphere on S1 until it becomes a sharply supporting hemisphere to ∆.
The corresponding φ ′ is in bd∆∗ and the distance between φ and φ ′ is less than ε . This is
a contradiction. Thus, the first item holds (See Figure 1.)

For the final item, we have that

∆2 ⊂ Nε ′(∆1),∆1 ⊂ Nε ′(∆2) for 0 < ε
′ < ε.

Hence, ∆2 ⊂ (∆∗
1−Cl(Nε ′(bd∆∗

1)))
∗, and ∆∗

2 ⊃∆∗
1−Cl(Nε ′(bd∆∗

1)) by (1.5.2), which proves
the third item where we need to switch 1 and 2 also. We obtain Nε(∆

∗
2)⊃∆∗

1 and conversely.
The second item follows. [SnP] □

The following may not hold for RPn:

PROPOSITION 1.5.15. Suppose that {Ki} is a sequence of properly convex domains
in Sn geometrically converging to a compact convex set K. Then {K∗

i } geometrically con-
verges to the compact convex set K∗ dual to K.

PROOF. Recall the compact metric space of all compact subsets of Sn with the Haus-
dorff metric dH . (See p.280-281 of Munkres [136].) Ki is a Cauchy sequence under the
Hausdorff metric dH . By Lemma 1.5.14, K∗

i is also a Cauchy sequence under the Haus-
dorff metric of dH of Sn∗. The Hausdorff metric of the space of all compact subsets of Sn∗

is a compact metric space.
Since each Ki is contained in an n-hemisphere corresponding to the linear functional

φi with φi|C(Ki)≥ 0, we deduce that K is contained in an n-hemisphere.
Let K∞ denote the limit of the Cauchy sequence {K∗

i }. We will show K∞ = K∗.
First, we show K∞ ⊂ K∗: Let φ∞ be a limit of a sequence φi for φi ∈C(K∗

i ) for each i.
By Proposition 1.1.7, it will be sufficient to show ((φ∞)) ∈ K∗ for every such φ∞. We may
assume that their Euclidean norms are 1 always with the standard Euclidean metric on Rn.
We will show that φ∞|C(K)≥ 0.

Let Sn
1 denote the unit sphere in Rn+1 with a Fubini-Study path-metric d1. The pro-

jection Sn → Sn
1 is an isometry from d to d1. Then C(Ki)∩ Sn

1 → C(K)∩ Sn
1 geomet-

rically under the Hausdorff metric dH,1 associated with d1. Let Nε(U) denote the ε-
neighborhood of a subset U of Sn

1 under d1. Since Ki → K, we find a sequence εi so
that Nεi(C(Ki))∩Sn

1 ⊃C(K)∩Sn
1 and εi → 0 as i → ∞.

For any φ in Rn+1∗ of unit norm, for every pair of points x,y ∈ Sn
1 with φ(x)≥ 0,

(1.5.4) d1(x,y)≤ δ implies φ(y)≥−δ :

This follows by integrating along the geodesic from x to y considering φ as a 1-form of
norm 1.

Since min{φi|Nεi(C(Ki))∩ Sn
1} ≥ −εi by (1.5.4), we obtain φi|C(K)∩ Sn

1 ≥ −εi for
sufficiently large i. Since εi → 0, we obtain φ∞|C(K)∩Sn

1 ≥ 0, and φ∞ ∈C(K)∗.
Conversely, we show K∗ ⊂ K∞. Let φ ∈ C(K)∗. Then φ |C(K)∩ Sn

1 ≥ 0. Define
εi = min{φ(C(Ki)∩Sn

1)}. If εi ≥ 0 for sufficiently large i, then φ ∈C(Ki)
∗ for sufficiently

large i and ((φ)) ∈ K∞ by Proposition 1.1.7, and we are finished in this case.
Suppose εi < 0 for infinitely many i. By taking a subsequence if necessary, we assume

that εi < 0 for all i. Let Hφ , Hφ ⊂ Sn, be the hemisphere determined by the nonnegative
condition of φ . Then Ki −Hφ ̸= /0 for every i. Choose a point yi in Ki of the maximal
distance from Hφ . Then d1(yi,Hφ ) ≤ δi for 0 < δi ≤ π/2. Since {Ki} → K, we deduce
{δi}→ 0 as i → ∞ obviously. Assume δi < π/4 without loss of generality.

Define a distance function f1(·) := d1(·,Hφ ) : Sn → R+. Then yi is contained in a
smooth sphere Sδi at the level δi with a fixed center xφ . Also, Ki is contained in the com-
plement of the convex open ball Bδi bounded by Sδi .
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Now, we will use convex affine geometry. Let Hi denote the hemisphere whose bound-
ary contains yi and is tangent to Sδi and disjoint from Bδi . Then yi is a unique maximum
point of f1|Ki since otherwise we will have a point with smaller f1 by the convexity of
Ki and Bδi . And Ki is disjoint from Bδi as yi is the unique maximum point. Since Ki and
Cl(Bδi) are both convex and meets only at yi, ∂Hi supports Ki and Cl(Bδi) by the hyper-
plane separation theorem applied to C(Ki) and C(Cl(Bδi)).

We obtained Ki ⊂ Hi. Let φi be the linear functional of unit norm corresponding to Hi.
Then φi|C(Ki) ≥ 0. Let si be the shortest segment from yi to ∂Hi with the other endpoint
xi ∈ ∂Hi. The center A (xφ ) of Hφ is on the great circle ŝi containing si. The center of Hi
is on ŝi and of distance δi from A (xφ ) since d1(yi,xi) = δi.

This implies that d(φ ,φi) = δi. Since δi → 0, we obtain {φi} → φ and K∗ ⊂ K∞ by
Proposition 1.1.7. □



CHAPTER 2

Examples of properly convex real projective orbifolds with
ends: cusp openings

We give examples where our theory applies to. We explain the theory of convex pro-
jective structures on Coxeter orbifolds and the orderability theory for Coxeter orbifolds.
Our work jointly done with Gye-Seon Lee and Craig Hodgson generalizing the work of
Benoist and Vinberg will be discussed. We also explain the vertex orderable Coxeter orb-
ifolds. We state the work of Heusner-Porti on projective deformations of the hyperbolic
link complement and the subsequent work by Ballas. Also, we state some nice results on
finite volume convex real projective structures by Cooper-Long-Tillmann and Crampon-
Marquis on horospherical ends and thick and thin decomposition.

How, these examples fit into this monograph is explained in Chapter 12.

2.1. History of examples

Originally, Vinberg [153] investigated convex real projective Coxeter orbifolds as lin-
ear groups acting on convex cones. The groundbreaking work also produced many exam-
ples of real projective orbifolds and manifolds O suitable to our study. For example, see
Kac and Vinberg [107] for the deformation of triangle groups. However, the work was re-
duced to studying some Cartan forms with rank equal to n+1 for n = dimO . The method
turns out to be a bit hard in computing actual examples.

Later, Benoist [24] worked out some examples on prisms. Generalizing this, Choi
[50] studied the orderability of Coxeter orbifolds after conversing with Kapovich about
the deformability. This produced many examples of noncompact orbifolds with properly
convex projective structures by the work of Vinberg. Later, Marquis [125] generalized the
technique to study the convex real projective structures based on Coxeter orbifolds with
truncation polytopes as base spaces. These are compact orbifolds, and so we will not
mention these.

For compact hyperbolic 3-manifolds, Cooper-Long-Thistlethwaite [64] and [65] pro-
duced many examples with deformations using numerical methods. Some of these are
exact computations.

We now discuss the noncompact strongly tame orbifolds with convex real projective
structures.

Also, Choi, Hodgson, and Lee [58] computed the deformation spaces of convex real
projective structures of some complete hyperbolic Coxeter orbifolds with or without ideal
vertices, and Choi and Lee [60] showed that all compact hyperbolic weakly orderable
Coxeter orbifolds have the local deformation spaces of dimension e+− 3 where e+ is the
number of ridges with order ≥ 2. These Coxeter orbifolds form a large class of Coxeter
orbifolds.

We can generalize these to complete hyperbolic Coxeter orbifolds that are weakly or-
derable with respect to ideal vertices. Lee, Marquis, and I will prove in later papers related

47
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ideal-vertex-orderable Coxeter 3-orbifolds have smooth deformation spaces of computable
dimension.

For noncompact hyperbolic 3-manifolds, Porti and Tillmann [139], Cooper-Long-
Tillmann [67], and Crampon-Marquis [68] made theories where the ends were restricted
to be horospherical. Ballas [4] and [5] made initial studies of deformations of complete
hyperbolic 3-manifolds to convex real projective ones. Cooper, Long, and Tillmann [66]
have produced a deformation theory for convex real projective manifolds parallel to ours
with different types of restrictions on ends, such as requiring the end holonomy group to be
abelian. They also concentrate on the openness of the deformation spaces. We will provide
our theory in Part 3.

2.2. Examples and computations

We will give some series of examples due to the author and many other people. Here,
we won’t give compact examples since we already gave a survey in Choi-Lee-Marquis
[61].

Given a polytope P, a face is a codimension-one side of P. A ridge is the codimension-
two side of P. When P is 3-dimensional, a ridge is called an edge.

We will concentrate on n-dimensional orbifolds whose base spaces are homeomorphic
to convex Euclidean polyhedrons and whose faces are silvered and each ridge is given an
order. For example, a hyperbolic polyhedron with edge angles of form π/m for positive
integers m will have a natural orbifold structure like this.

DEFINITION 2.2.1. A Coxeter group Γ is an abstract group defined by a group pre-
sentation of form

(Ri;(RiR j)
ni j), i, j ∈ I

where I is a countable index set, ni j ∈ N is symmetric for i, j and nii = 1, ni j ≥ 2 for i ̸= j.

The fundamental group of the orbifold will be a Coxeter group with a presentation

Ri, i = 1,2, . . . , f ,(RiR j)
ni j = 1

where Ri is associated with silvered sides and RiR j has order ni j associated with the edge
formed by the intersection of the i-th and j-th sides.

Let us consider only the 3-dimensional orbifolds for now. Let P be a fixed convex
3-polyhedron. Let us assign orders at each edge. We let e be the number of edges and e2
be the numbers of edges of order-two. Let f be the number of sides.

For any vertex of P, we will remove the vertex unless the link in P form a spherical
Coxeter 2-orbifold of codimension 1. This make P into a 3-dimensional orbifold.

Let P̂ denote the differentiable orbifold with sides silvered and the edge orders realized
as assigned from P with the above vertices removed. We say that P̂ has a Coxeter orbifold
structure.

In this chapter, we will exclude a cone-type Coxeter orbifold whose polyhedron has a
side F and a vertex v where all other sides are adjacent triangles to F and contains v and all
ridge orders of F are 2. Another type we will not study is a product-type Coxeter orbifold
whose polyhedron is topologically a polygon times an interval and ridge orders of top and
the bottom sides are all 2. These are essentially lower-dimensional orbifolds. Finally, we
will not study Coxeter orbifolds with finite fundamental groups. If P̂ is none of the above
type, then P̂ is said to be a normal-type Coxeter orbifold.

A huge class of examples are obtainable from complete hyperbolic 3-polytopes with
dihedral angles that are submultiples of π . (See Andreev [3] and Roerder [140].)
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DEFINITION 2.2.2. The deformation space D(P̂) of projective structures on a Coxeter
orbifold P̂ is the space of all projective structures on P̂ quotient by isotopy group actions
of P̂.

This definition was also used in a number of papers [50], [59], and [58]. The topology
on D(P̂) is given by as follows: D(P̂) is a quotient space of the space of the development
pairs (dev,h) with the compact open Cr-topology, r ≥ 2, for the maps dev : P̃ → RPn.

We will explain that the space is identical with CDefE (P̂) in Proposition 9.5.1. Also,
CDefE (P̂) = CDefE ,u,lh(P̂) by Corollary 12.1.5.

A point p of D(P̂) gives a fundamental polyhedron P in RP3, well-defined up to
projective automorphisms. By Proposition 9.5.1, D(P̂) can be identified with CDefE (P̂).
We concentrate on the space of p ∈D(P̂) giving a fundamental polyhedron P fixed up to
projective automorphisms. This space is called the restricted deformation space of P̂ and
denoted by DP(P̂). A point t in DP(P̂) is said to be hyperbolic if a hyperbolic structure
on P̂ induces the projective structure; that is, it is projectively diffeomorphic to B/Γ for a
standard unit ball B and a discrete group Γ ⊂ Aut(B). A point p of D(P̂) always deter-
mines a fundamental polyhedron P up to projective automorphisms because p determines
reflections corresponding to sides up to conjugations also. We wish to understand the space
where the fundamental polyhedron is always projectively equivalent to P. We call this the
restricted deformation space of P̂ and denote it by DP(P̂).

The work of Vinberg [153] implies that each element of D(P̂) gives a convex projec-
tive structure (see Theorem 2 of [50]). That is, the image of the developing map of the
orbifold universal cover of P̂ is projectively diffemorphic to a convex domain in RP3, and
the holonomy is a discrete faithful representation.

Now, we state the key property in this chapter:

DEFINITION 2.2.3. We say that P is orderable if we can order the sides of P so that
each side meets sides of higher index in less than or equal to 3 edges.

A pyramid with a complete hyperbolic structure and dihedral angles that are submul-
tiples of π is an obvious example. See Proposition 4 of [50] worked out with J. R. Kim.

An example is a drum-shaped convex polyhedron which has top and bottom sides of
the same polygonal type and each vertex of the bottom side is connected to two vertices on
the top side and vice versa. Another example will be a convex polyhedron where the union
of triangles separates each pair of the interiors of nontriangular sides. In these examples,
since nontriangular sides are all separated by the union of triangular sides, the sides are
either level 0 or level 1, and hence they satisfy the trivalent condition. A dodecahedron
would not satisfy the condition.

If P is compact, then Marquis [125] showed that P is a truncation polytope; that is,
one starts from a tetrahedron and cut a neighborhood of a vertex so as to change the combi-
natorial type near that vertex only. Many of these can be realized as a compact hyperbolic
polytope with dihedral angle submultiples of π by the Andreev theorem [140]. If P is not
compact, we do not have the classification. Also, infinitely many of these can be realized
as a complete hyperbolic polytope with dihedral angles that are submultiples of π . (D.
Choudhury was first to show this.)

DEFINITION 2.2.4. We denote by k(P) the dimension of the projective group acting
on a convex polyhedron P.

The dimension k(P) of the subgroup of G acting on P equals 3 if P is a tetrahedron and
equals 1 if P is a cone with base a convex polyhedron which is not a triangle. Otherwise,
k(P) = 0.
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THEOREM 2.2.5. Let P be a convex polyhedron and P̂ be given a normal-type Coxeter
orbifold structure. Let k(P) be the dimension of the group of projective automorphisms act-
ing on P. Suppose that P̂ is orderable. Then the restricted deformation space of projective
structures on the orbifold P̂ is a smooth manifold of dimension 3 f − e− e2 − k(P) if it is
not empty.

If we start from a complete hyperbolic polytope with dihedral angles that are submul-
tiples of π , we know that the restricted deformation space is not empty.

If we assume that P is compact, then we refer to Marquis [125] for the complete theory.
However, the topic is not within the scope of this monograph.

DEFINITION 2.2.6. Let P be a 3-dimensional hyperbolic Coxeter polyhedron, and let
P̂ denote its Coxeter orbifold structure. Suppose that t is the corresponding hyperbolic
point of DP(P̂). We call a neighborhood of t in DP(P̂) the local restricted deformation
space of P. We say that P̂ is projectively deformable relative to the mirrors, or simply
deforms rel mirrors, if the dimension of its local restricted deformation space is positive.
Conversely, we say that P̂ is projectively rigid relative to the mirrors, or rigid rel mirrors,
if the dimension of its local restricted deformation space is 0.

The following theorem describes the local restricted deformation space for a class of
Coxeter orbifolds arising from ideal hyperbolic polyhedra, i.e. polyhedra with all vertices
on the sphere at infinity.

THEOREM 2.2.7 (Choi-Hodgson-Lee [58]). Let P be an ideal 3-dimensional hyper-
bolic polyhedron whose dihedral angles are all equal to π/3, and suppose that P̂ is given
its Coxeter orbifold structure. If P is not a tetrahedron, then a neighborhood of the hyper-
bolic point in DP(P̂) is a smooth 6-dimensional manifold.

The main ideas in the proof of Theorem 2.2.7 are as follows. We first show that
DP(P̂) is isomorphic to the solution set of a system of polynomial equations following
ideas of Vinberg [153] and Choi [50]. Since the faces of P are fixed, each projective
reflection in a face of the polyhedron is determined by a reflection vector bi. We then
compute the Jacobian matrix of the equations for the bi at the hyperbolic point. This
reveals that the matrix has exactly the same rank as the Jacobian matrix of the equations
for the Lorentzian unit normals of a hyperbolic polyhedron with the given dihedral angles.
By the infinitesimal rigidity of the hyperbolic structure on P̂, this matrix is of full rank and
has the kernel of dimension six; the result then follows from the implicit function theorem.
In fact, we can interpret the infinitesimal projective deformations as applying infinitesimal
hyperbolic isometries to the reflection vectors

We can generalize the above theorem slightly as Hodgson pointed out.

DEFINITION 2.2.8. Given a hyperbolic n-orbifold X with totally geodesic boundary
component diffeomorphic to an (n− 1)-orbifold Σ. Let X̃ denote the universal cover in
the Klein model B in Sn. Let Γ be the group of deck transformations considered as
projective automorphisms of Sn. Then a complete hyperbolic hyperspace Σ̃ covers Σ.
Every component of the inverse image of Σ is of form g(Σ̃) for g ∈ π1(X). A point
v

Σ̃
∈ Sn −B−A (B) is projectively dual to the hyperspace containing Σ̃ with respect to

the bilinear form B. (See Section 3.1.4.) Then we form the join C := {v
Σ̃
} ∗ Σ̃−{v

Σ̃
}.

Then we form Ĉ := X ∪
⋃

g∈Γ g(C). Ĉ/Γ is an n-orbifold with radial ends. We call the ends
the hyperideal ends.
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A point of DP(P̂) corresponding to a hyperbolic n-orbifold with hyperideal ends added
will be called a hyperbolic point again. An 3-dimensional hyperbolic polyhedron with pos-
sibly hyperideal vertices is a compact convex polyhedron with vertices outside B removed
where no interior of a 1-dimensional edge is outside B. We will generalize this further in
Section 3.2.1.

COROLLARY 2.2.9 (Choi-Hodgson-Lee). Let P be an ideal 3-dimensional hyperbolic
polyhedron with possibly hyperideal vertices whose dihedral angles are of form π/p for
integers p≥ 3, and suppose that P̂ is given its Coxeter orbifold structure. If P is not a tetra-
hedron, then a neighborhood of the hyperbolic point in DP(P̂) is a smooth 6-dimensional
manifold.

We did not give proof for the case when some edges orders are greater than equal to 4
in the article [58]. We can allow any of our end orbifold to be a (p,q,r)-triangle reflection
orbifold for p,q,r ≥ 3. The same proof will apply as first observed by Hodgson: We modify
the proof of Theorem 1 of the article in Section 3.3 of [58]. Let ∂∞P̂ denote the union of
end orbifolds of P̂ which are orbifolds based on 2-sphere with singularities admiting either
a Euclidean or hyperbolic structures. Let h : π1(P̂) → PO(3,1) ⊂ PGL(4,R) denote the
holonomy homomorphism associated with the convex real projective structure induced
from the hyperbolic structure. We just need to show

H1(P̂,so(3,1)Adh) = 0,H1(∂∞P,so(3,1)Adh) = 0.

Recall that a (p,q,r)-triangle reflection orbifold for 1/p+1/q+1/r < 1 has a rigid hyper-
bolic and conformal structure. By Corollary 2 of [146], the representation to PO(3,1) is
rigid. The first part of the equation follows. The second part also follows by Corollary 2 of
[146]. These examples are convex by the work of Vinberg [153]. Corollary 12.1.4 implies
the proper convexity.

We comment that we are using Theorem 7 (Sullivan rigidity) of [146] as the general-
ization of the Garland-Raghunathan-Weil rigidity [83] [154].

2.2.1. Vertex orderable Coxeter orbifolds.
2.2.1.1. Vinberg theory. Let P̂ be a Coxeter orbifold of dimension n. Let P be the

fundamental convex polytope of P̂. The reflection is given by a point, called a reflection
point, and a hyperplane. Let Ri be a projective reflection on a hyperspace Si containing a
side of P. Then we can write

Ri := I−αi ⊗ v⃗i

where αi is zero on Si and v⃗i is the reflection vector and αi(⃗vi) = 2.
Given a reflection group Γ. We form a Cartan matrix A(Γ) given by ai j := αi(⃗v j).

Vinberg [153] proved that the following conditions are necessary and sufficient for Γ to be
a linear Coxeter group:

(C1) ai j ≤ 0 for i ̸= j, and ai j = 0 if and only if a ji = 0.
(C2) aii = 2;and
(C3) for i ̸= j, ai ja ji ≥ 4 or ai ja ji = 4cos2( π

ni j
) an integer ni j.

The Cartan matrix is a f × f -matrix when P has f sides. Also, ai j = a ji for all i, j if Γ is
conjugate to a reflection group in O+(1,n). This condition is the condition of P̂ to be a
hyperbolic Coxeter orbifold.

The Cartan matrix is determined only up to an action of the group D f , f of nonsingular
diagonal matrices:

A(Γ)→ DA(Γ)D−1 for D ∈ D f , f .
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This is due to the ambiguity of choices

αi 7→ ciαi, v⃗i 7→
1
ci

v⃗i,ci > 0.

Vinberg showed that the set of all cyclic invariants of form ai1i2ai2i3 · · ·air i1 classifies the
isomorphic linear Coxeter group generated by reflections up to the conjugation.

2.2.1.2. The classification of convex real projective structures on triangular reflection
orbifolds. We will follow Kac-Vinberg [107]. Let T̂ be a 2-dimensional Coxeter orbifold
based on a triangle T . Let the edges of T be silvered. Let the vertices be given orders
p,q,r where 1/p+1/q+1/r ≤ 1. If 1/p+1/q+1/r ≤ 1, then the universal cover T̃ of T̂
is a properly convex domain or a complete affine plane by Vinberg [153]. We can find the
topology of D(T̂ ) as Goldman did in his senior thesis [85]. We may put T as a standard
triangle with vertices e⃗1 := [1,0,0], e⃗2 := [0,1,0], e⃗3 := [0,0,1].

Let Ri be the reflection on a line containing [⃗ei−1], [⃗ei+1] and with a reflection vertex
[⃗vi]. Let αi denote the linear function on R3 taking zero values on e⃗i−1 and e⃗i+1. We choose
v⃗i to satisfy αi(⃗vi) = 2.

When 1/p+ 1/q+ 1/r = 1, the triangular orbifold admits a compatible Euclidean
structure. When 1/p+1/q+1/r < 1, the triangular orbifold admits a hyperbolic structure
not necessarily compatible with the real projective structure.

A linear Coxeter group Γ is hyperbolic if and only if the Cartan matrix A of Γ is
indecomposable, of negative type, and equivalent to a symmetric matrix of signature (1,n).

Assume that no p,q,r is 2 and 1/p+1/q+1/r < 1. Let ai j denote the entries of the
Cartan matrix. It satisfies

a12a21 = 4cos2
π/p,a23a32 = 4cos2

π/q,a13a31 = 4cos2
π/r.

There are only two cyclic invariants a12a23a31 and a13a32a21 satisfying

a12a23a31a13a32a21 = 64cos2
π/pcos2

π/qcos2
π/r.

Then the triple invariant a12a23a31 ∈ R+ classifies the conjugacy classes of Γ. A single
point of R+ corresponds to a hyperbolic structure. For different points, they are properly
convex by [56].

Since ai j = a ji for geometric cases, we obtain that

a12a23a31 = 23 cos(π/p)cos(π/q)cos(π/r)

gives the unique hyperbolic points.
We define for this orbifold D(T̂ ) := R+ the space of the triple invariants. A unique

point correspond to a Euclidean or hyperbolic structure.

EXAMPLE 2.2.10 (Lee’s example). Consider the Coxeter orbifold P̂ with the underly-
ing space on a polyhedron P with the combinatorics of a cube with all sides mirrored and
all edges given order 3 but with vertices removed. By the Mostow-Prasad rigidity and the
Andreev theorem, the orbifold has a unique complete hyperbolic structure. There exists a
six-dimensional space of real projective structures on it by Theorem 2.2.7 where one has a
projectively fixed fundamental domain in the universal cover.

There are eight ideal vertices of P corresponding to eight ends of P̂. Each end orbifold
is a 2-orbifold based on a triangle with edges mirrored, and vertex orders are all 3. Each
end orbifold has a real projective structure and hence is characterized by the triple invariant.
Thus, each end has a neighborhood diffeomorphic to the 2-orbifold multiplied by (0,1).
The eight triple invariants are related when we are working on the restricted deformation
space since the deformation space is only six-dimensional.
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2.2.1.3. The end mappings. We will give some explicit conjectural class of examples
where we can control the end structures. We worked this out with Greene, Gye-Seon Lee,
and Marquis starting from the workshop at the ICERM in 2014.

Let F be the set of faces of C and give a total order ⩽ on F . A face F ′ is E2-greater
than F if F < F ′ and F ∩F ′ is an edge of label 2.

A flexible vertex of a Coxeter orbifold is a vertex of the base polytope where there is
no edge of order 2 ending there. Let V f be a set of flexible vertices in C, and let V be a
subset of V f . A face F ′ is V -greater than F if F < F ′ and there exists a face F ′′ such that
F < F ′′ and F ∩F ′∩F ′′ is a vertex in V .

A combinatorial polyhedron C is V -orderable if there is no triangular face all vertices
of which are in V and the faces of C can be ordered so that for each face F of C, the
number of faces which are E2-greater and V -greater than F is less than or equal to 3.

Let ∂V O denote the disjoint union of end orbifolds corresponding to the set of ideal
vertices V .

CONJECTURE 2.2.11 (Choi-Greene-Lee-Marquis [57]). Suppose that P with a set of
vertices V is V -orderable, and P admits a Coxeter orbifold structure with a convex real
projective structure. Then the function D(O)→D(∂V O) is onto.

A combinatorial polyhedron C is weakly V -orderable if there is no triangular face all
vertices of which are in V and the faces of C can be ordered so that for each face F of C,
the number of faces which are E2-greater or V -greater than F is less than or equal to 3.
Notice we change the last ”and” with ”or” from the definition for V -orderable.

CONJECTURE 2.2.12 (Choi-Greene-Lee-Marquis [57]). Suppose that P with a set of
vertices V is weakly V -orderable. Suppose P admits a Coxeter orbifold structure with an
ideal or hyperideal end structure. Then the function D(O)→D(∂V O) is locally surjective
at the hyperbolic point.

2.3. Some relevant results

For closed hyperbolic manifolds, the deformation spaces of convex structures on man-
ifolds were extensively studied by Cooper-Long-Thistlethwaite [64] and [65].

2.3.1. The work of Heusener-Porti.

DEFINITION 2.3.1. Let N be a closed hyperbolic manifold of dimension equal to 3.
We consider the holonomy representation of N

ρ : π1(N)→ PSO(3,1) ↪→ PGL(4,R).
A closed hyperbolic three manifold N is called infinitesimally projectively rigid if

H1(π1(N),sl(4,R)Adρ) = 0.

DEFINITION 2.3.2. Let M denote a compact three-manifold with boundary a union
of tori and whose interior is hyperbolic with finite volume. M is called infinitesimally
projectively rigid relative to the cusps if the inclusion ∂M → M induces an injective ho-
momorphism

H1(π1(M),sl(4,R)Adρ)→ H1(∂M,sl(4,R)Adρ).

THEOREM 2.3.3 (Heusener-Porti [99]). Let M be an orientable 3-manifold whose
interior has a complete hyperbolic metric with finite volume. If M is infinitesimally projec-
tively rigid relative to the cusps, then infinitely many Dehn fillings on M are infinitesimally
projectively rigid.
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THEOREM 2.3.4 (Heusener-Porti [99]). Let M be an orientable 3-manifold whose
interior has a complete hyperbolic metric of finite volume. If a hyperbolic Dehn filling N
on M satisfies:

(i) N is infinitesimally projectively rigid,
(ii) the Dehn filling slope of N is contained in the (connected) hyperbolic Dehn filling

space of M ,
then infinitely many Dehn fillings on M are infinitesimally projectively rigid.

The complete hyperbolic manifold M that is the complement of a figure-eight knot
in S3 is infinitesimally projectively rigid. Then infinitely many Dehn fillings on M are
infinitesimally projectively rigid.

They showed the following:
• For a sufficiently large positive integer k, the homology sphere obtained by

1
k –Dehn filling on the figure eight knot is infinitesimally not projectively rigid.
Since the Fibonacci manifold Mk is a branched cover of S3 over the figure eight
knot complements, for any k ∈ N, the Fibonacci manifold Mk is not projectively
rigid.

• All but finitely many punctured torus bundles with tunnel number one are in-
finitesimally projectively rigid relative to the cusps. All but finitely many twist
knots complements are infinitesimally projectively rigid relative to the cusps.

2.3.2. Ballas’s work on ends. The following are from Ballas [4] and [5].
• Let M be the complement in S3 of 41 (the figure-eight knot), 52, 61, or 52

1 (the
Whitehead link). Then M does not admit strictly convex deformations of its
complete hyperbolic structure.

• Let M be the complement of a hyperbolic amphichiral knot, and suppose that M
is infinitesimally projectively rigid relative to the boundary and the longitude is
a rigid slope. Then for sufficiently large n, there is a one-dimensional family of
strictly convex deformations of the complete hyperbolic structure on M(m/0) for
m ∈ Z.

• Let M be the complement in S3 of the figure-eight knot. There exists ε such that
for each s ∈ (−ε,ε), ρs is the holonomy of a finite volume properly convex pro-
jective structure on M for a parameter ρs of representations π1(M)→PGL(4,R).
Furthermore, when s ̸= 0, this structure is not strictly convex.

We also note the excellent work of Ballas, Danciger, and Lee [6] experimenting with more
of these and finding a method to glue along tori for deformed hyperbolic 3-manifolds to
produce convex real projective 3-manifolds that does not admit hyperbolic structures.

2.3.3. Finite volume strictly convex real projective orbifolds with ends. We sum-
marize the main results of two independent groups. The Hilbert metric is a complete
Finsler metric on a properly convex set Ω. This is the hyperbolic metric in the Klein model
when Ω is projectively diffeomorphic to a standard ball. A simplex with its Hilbert metric
is isometric to a normed vector space, and appears in a natural geometry on the Lie algebra
sl(n,R). A singular version of this metric arises in the study of certain limits of projec-
tive structures. The Hilbert metric has a Hausdorff measure and hence a notion of finite
volume. (See [67].)

THEOREM 2.3.5 (Choi [45], Cooper-Long-Tillmann [67], Crampon-Marquis [68]).
For each dimension n ≥ 2 there is a Margulis constant µn > 0 with the following property.
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If M is a properly convex projective n-manifold and x is a point in M, then the subgroup of
π1(M,x) generated by loops based at x of length less than µn is virtually nilpotent. In fact,
there is a nilpotent subgroup of index bounded above by m = m(n). Furthermore, if M is
strictly convex and finite volume, this nilpotent subgroup is abelian. If M is strictly convex
and closed, this nilpotent subgroup is trivial or infinite cyclic.

THEOREM 2.3.6 (Cooper-Long-Tillmann [67], Crampon-Marquis [68]). Each end of
a strictly convex projective manifold or orbifold of finite volume is horospherical.

THEOREM 2.3.7 ((Relatively hyperbolic). Cooper-Long-Tillmann [67], Crampon–
Marquis [68]). Suppose that M = Ω/Γ is a properly convex manifold of finite volume
which is the interior of a compact manifold N, and the holonomy of each component of ∂N
is topologically parabolic. Then the following are equivalent:

1 Ω is strictly convex,
2 ∂Ω is C1,
3 π1(N) is hyperbolic relative to the subgroups of the boundary components.

Here, the definition of the term “topologically parabolic” is according to [67]. This
is not a Lie group definition but a topological definition. We have found a generalization
Theorem 10.3.1 and its converse Theorem 10.3.4 in Chapter 10.





Part 2

The classification of radial and totally
geodesic ends.



The purpose of this part is to understand the structures of ends of real projective n-
dimensional orbifolds for n ≥ 2. In particular, we consider the radial or totally geodesic
ends. Hyperbolic manifolds with cusps and hyperideal ends are examples. For this, we
will study the natural conditions on eigenvalues of holonomy representations of ends when
these ends are manageably understandable. This is the most technical part of the mono-
graph containing a large number of results useful in other two parts.

We begin the study of radial ends in Chapter 3. We will divide the class of radial ends
into the class of complete affine radial ends, the class of properly convex ends, and the
class of convex but not properly convex and non-complete affine ends. We define lens and
horospherical conditions for these ends. We give some examples of these radial ends.

In Chapter 4, we study the theory of affine actions. This is the major technical section
in this part. We consider the case when there is a discrete affine action of a group Γ acting
cocompactly on a properly convex domain Ω in the boundary of the affine subspace An

in RPn or Sn. We study the convex domain U in an affine space An whose closure meets
with bdAn in Ω. We can find a domain U having asymptotic hyperspaces at each point
of bdΩ if and only if Γ satisfies the uniform middle eigenvalue condition with respect to
bdAn. To prove, we study the flow on the affine bundle over the unit tangent space over
Ω generalizing parts of the work of Goldman-Labourie-Margulis on complete flat Lorentz
3-manifolds [91]. We end with showing that a T-end has a CA-lens neighborhood if it
satisfies the uniform middle eigenvalue condition.

In Chapter 5, we study the properly convex R-end theory. Tubular actions and the dual
theory of affine actions are discussed. We show that distanced actions and asymptotically
nice actions are dual. We explain that the uniform middle eigenvalue condition implies the
existence of the distanced action. The main result here is the characterization of R-ends
whose end holonomy groups satisfy uniform middle eigenvalue conditions. That is, they
are generalized lens-shaped R-ends. We also discuss some important properties of lens-
shaped R-ends. Finally, we show that lens-shaped T-ends and lens-shaped R-ends are dual.
We end with discussing the properties of T-ends as obtained by this duality.

In Chapter 6, we investigate the applications of the radial end theory such as the stabil-
ity condition. We discuss the expansion and shrinking of the end neighborhoods. We will
show the openness of the lens condition in Theorem 6.1.1, which is one of the central result
needed in Part III. We will also prove Theorem 6.0.4, the strong irreducibility of strongly
tame properly convex orbifolds with generalized-lens shaped ends or horospherical R- or
T -ends.

In major technical Chapter 7, we discuss the R-ends that are NPNC. First, we show
that the end holonomy group for an NPNC-end E will have an exact sequence

1 → N → h(π1(Ẽ))−→ NK → 1

where NK is in the projective automorphism group Aut(K) of a properly convex compact
set K, N is the normal subgroup of elements mapping to the trivial automorphism of K, and
Ko/NK is compact. We show that ΣẼ is foliated by complete affine subspaces of dimension
≥ 1. We explain that an NPNC-end satisfying the transverse weak middle eigenvalue
condition for NPNC-ends is a quasi-joined R-end under some natural conditions. A quasi-
joined end is an end with an end-neighborhood covered by the join of a properly convex
action and a horoball action twisted by translations (see Definition 7.1.2.) For virtually
abelian groups, Ballas-Cooper-Leitner [8], [9] had covered much of these material but not
in our generality.

We will also classify the complete affine ends in the final chapter 8 of this part.



CHAPTER 3

Introduction to the theory of convex radial ends

In Section 3.1, we will discuss the convex radial ends of orbifolds, covering most el-
ementary aspects of the theory. For a properly convex real projective orbifold, the space
of rays for each R-end gives us a closed real projective orbifold of dimension n− 1. The
orbifold is convex. The universal cover can be a complete affine subspace (CA) or a prop-
erly convex domain (PC) or a convex domain that is neither (NPNC). We discuss objects
associated with R-ends, and examples of ends; horospherical ones, totally geodesic ones,
and bendings of ends to obtain more general examples of ends.

In Section 3.2, we discuss some examples of these.

3.1. End structures

3.1.1. End fundamental groups. Let O be a strongly tame real projective orbifold
with the universal cover Õ and the covering map pÕ . A compact smooth orbifold Ō whose
interior is O is called a compactification of O . There might be more than one compactifi-
cations. A strongly tame orbifold O in our paper always will come with a compactification
Ō which is a smooth orbifold with boundary. When we say O , we really mean O with Ō .
Each boundary component of Ō is the ideal boundary component of O and is an end of O .

An end neighborhood U of O is an open set U where ΣE ∪U forms a neighborhood
of an ideal boundary component ΣE corresponding to an end E.

Let Ô denote the universal cover or Ō with the covering map p̂Õ . Let Γ be the deck
transformation group of Ô → Ō which also restricts to the deck transformation group of
Õ → O .

Each end neighborhood U , diffeomorphic to SE × (0,1) for an (n− 1)-orbifold SE ,
of an end E lifts to a connected open set Ũ in Õ . We choose U and the diffeomorphism
fU U → SE × (0,1) that SE × (0,1] is also diffeomorphic to a tubular neighborhood of a
boundary component of Ō corresponding to U . A subgroup ΓΓΓŨ of Γ acts on Ũ where

p−1
Õ
(U) =

⋃
g∈π1(O)

g(Ũ).

Each component Ũ is said to be a proper pseudo-end neighborhood.

• An super-exiting sequence of sets U1,U2, · · · in Õ is a sequence so that for each
compact subset K of O there exists an integer N satisfying p−1

O (K)∩Ui = /0 for
i > N.

• A pseudo-end neighborhood sequence is a super-exiting sequence of proper pseudo-
end neighborhoods

{Ui|i = 1,2,3, . . .}, where Ui+1 ⊂Ui for every i.

59
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• Two pseudo-end sequences {Ui} and {Vj} are compatible if for each i, there
exists J such that Vj ⊂ Ui for every j, j > J and conversely for each j, there
exists I such that Ui ⊂Vj for every i, i > I.

• A compatibility class of a proper pseudo-end sequence is called a p-end of Õ .
Each of these corresponds to an end of O under the universal covering map pO .

• For a pseudo-end Ẽ of Õ , we denote by ΓΓΓẼ the subgroup ΓΓΓŨ where U and Ũ is
as above. We call ΓΓΓẼ a pseudo-end fundamental group. We will also denote it by
π1(Ẽ). They are independent of the choice of U up to natural canonical inclusion
homomorphisms by following Proposition 3.1.1.

• A pseudo-end neighborhood U of a pseudo-end Ẽ is a ΓΓΓẼ -invariant open set
containing a proper pseudo-end neighborhood of Ẽ. A proper pseudo-end neigh-
borhood is an example.

(From now on, we will replace “pseudo-end” with the abbreviation “p-end”.)
As a summary, the set of boundary components of Ō has a one-to-one correspondence

with the set of p-ends of O .

PROPOSITION 3.1.1. Let Ẽ be a p-end of a strongly tame orbifold O . The p-end
fundamental group ΓΓΓẼ of Ẽ is independent of the choice of U.

PROOF. Given U and U ′ that are end-neighborhoods for an end E, let Ũ and Ũ ′ be p-
end neighborhoods for a p-end Ẽ that are components of p−1(U) and p−1(U ′) respectively.
Let Ũ ′′ be the component of p−1(U ′′) that is a p-end neighborhood of Ẽ. Then ΓΓΓŨ ′′ injects
into ΓΓΓŨ since both are subgroups of Γ. Any G -path in U in the sense of Bridson-Haefliger
[32] is homotopic to a G -path in U ′′ by a translation in the I-factor. Thus, π1(U ′′) →
π1(U) is surjective. Since Ũ is connected, any element γ of ΓΓΓŨ is represented by a G -path
connecting x0 to γ(x0). (See Example 3.7 in Chapter III.G of [32].) Thus, ΓΓΓŨ is isomorphic
to the image of π1(U)→ π1(O). Since ΓΓΓŨ ′′ is surjective to the image of π1(U ′′)→ π1(O),
it follows that ΓΓΓŨ ′′ is isomorphic to ΓΓΓŨ and ΓŨ ′ . □

3.1.2. Totally geodesic ends. Suppose that an end E of a real projective orbifold O
of dimension n ≥ 2 satisfies the following:

• The end has an end neighborhood homeomorphic to a closed connected (n−1)-
dimensional orbifold B times a half-open interval (0,1).

• The end neighborhood completes to an orbifold U ′ diffeomorphic to B× (0,1]
in the compactification orbifold Ō . Here, U ′ is an end-neighborhood of E com-
patible with Ō . This is the compatiblity condition with the compactifiction Ō .
(We assumed that O always comes as the interior of some compact manifold O ′

with a diffeomorphism to Ō here where the the diffeomorphism restricted to O
is isotopic to the identity. )

• The subset of U ′ corresponding to B×{1} is the ideal boundary component.
• Each point of the added boundary component has a neighborhood projectively

diffeomorphic to the quotient orbifold of an open set V in an affine half-space P
so that V ∩∂P ̸= /0 by a projective action of a finite group. This implies that the
developing map extends to the universal cover of the orbifold with U ′ attached.

The completion is called a compactified end neighborhood of the end E. The boundary
component SE is called the ideal boundary component of the end. Such ideal boundary
components may not be uniquely determined as there are two projectively nonequivalent
ways to add boundary components of elementary annuli (see Section 1.4 of [44]). Two
compactified end neighborhoods of an end are equivalent if the end neighborhood con-
tains a common end neighborhood whose compactification projectively embed into the
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compactified end neighborhoods. (See Definition 9.1.1 for more detail.) The equivalence
class of compactified end-neighborhoods is called a totally geodesic end structure (T-end
structure) for an end E.

We also define as follows:

• The equivalence class of the chosen compactified end neighborhood is called a
totally geodesic end-structure of the totally geodesic end. The choice of the end
structure is equivalent to the choice of the ideal boundary component.

• We will also call the ideal boundary SE the end orbifold (or end ideal boundary
component) of the end.

RPn has a Riemannian metric of constant curvature called the Fubini-Study metric.
Recall that the universal cover Õ of O has a path-metric induced by dev : Õ → RPn. We
can Cauchy complete Õ of this path-metric. The Cauchy completion is called the Kuiper
completion of Õ . (See [46].) Note we may sometimes use a lift dev : Õ → Sn lifting the
developing map and use the same notation.

A T-end is an end equipped with a T-end structure. A T-p-end is a p-end Ẽ correspond-
ing to a T-end E. There is a totally geodesic (n−1)-dimensional domain S̃Ẽ in the Cauchy
completion of Õ in the closure of a p-end neighborhood of Ẽ. Of course, S̃Ẽ covers SE .
We call S̃Ẽ the p-end ideal boundary component. We will identify it with a domain in a
hyperspace in RPn (resp. Sn) when dev is a fixed map to RPn (resp. Sn).

DEFINITION 3.1.2. A lens is a properly convex domain L in RPn so that ∂L is a union
of two smooth strictly convex open disks. A properly convex domain L is a generalized
lens if ∂L is a union of two open disks, one of which is strictly convex and smooth and the
other is allowed to be just a topological disk. A lens-orbifold (or lens) is a compact quotient
orbifold of a lens by a properly discontinuous action of a projective group Γ acting on each
boundary component as well. Also, the domains or an orbifold projectively diffeomorphic
to a lens or lens-orbifolds are called lens.

(Lens condition for T-ends): The ideal boundary is identified by as a totally geo-
desic suborbifold in the interior of a lens-orbifold in the ambient real projective
orbifold containing Ō where f is a map from a neighborhood of the ideal bound-
ary to a one-sided neighborhood in the lens-orbifold of the image.

If the lens condition is satisfied for a T-end, we will call it the lens-shaped T-end. The inter-
section of a lens with O is called a lens end neighborhood of the T-end. A corresponding
T-p-end is said to be a lens-shaped T-p-end.

In these cases, S̃Ẽ is a properly convex (n−1)-dimensional domain, and SE is a (n−1)-
dimensional properly convex real projective orbifold. We will call the cover L of a lens
orbifold containing SE the CA-lens of S̃Ẽ where we assume that π1(Ẽ) acts properly and
cocompactly on the lens. L∩ Õ is said to be lens p-end neighborhood of Ẽ or S̃Ẽ .

We remark that for each component ∂iL for i= 1,2 of L, ∂iL/Γ is compact and both are
homotopy equivalent up to a virtual manifold cover L/Γ′ of L/Γ for a finite index subgroup
Γ′. Also, the ideal boundary component of L/Γ′ has the same homotopy type as L/Γ′ and
is a compact manifold. (See Selberg’s Theorem 1.1.19.)

3.1.2.1. p-end ideal boundary components. We recall Section 3.1.2. Let E be an end
of a strongly tame real projective orbifold O . Given a totally geodesic end of O and
an end neighborhood U diffeomorphic to SE × [0,1) with an end-completion by a totally
geodesic orbifold SE , we take a component U1 of p−1(U) and a convex domain S̃Ẽ , the
ideal boundary component, developing to a totally geodesic hypersurface under dev. Here
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Ẽ is the p-end corresponding to E and U1. There exists a subgroup ΓΓΓẼ acting on S̃Ẽ . Again
SẼ := S̃Ẽ/ΓΓΓẼ is projectively diffeomorphic to the end orbifold to be denote by SE or SẼ .

• We call S̃Ẽ a p-end ideal boundary component of Õ .
• We call SẼ an ideal boundary component of O .

We may regard S̃Ẽ as a domain in a hyperspace in RPn or Sn.

3.1.3. Radial ends. A segment is a convex arc in a 1-dimensional subspace of RPn

or Sn. We will denote the closed segment by xy if x and y are endpoints. It is uniquely
determined by x and y if x and y are not antipodal. In the following, all the sets are required
to be inside an affine subspaceAn and its closure to be either in RPn or Sn.

Let Õ denote the universal cover of O with the developing map dev. Suppose that an
end E of a real projective orbifold satisfies the following:

• The end has an end neighborhood U foliated by properly embedded projective
geodesics.

• Choose any map f : R× [0,1]→O so that f |R×{t} for each t is a geodesic leaf
of such a foliation of U . Then f lifts to f̃ : R× [0,1]→ Õ where dev◦ f̃ |R×{t}
for each t, t ∈ [0,1], maps to a geodesic in RPn ending at a point of concurrency
common for every t.

The foliation is called a radial foliation and leaves radial lines of E. Two such radial folia-
tions F1 and F2 of radial end neighborhoods of an end are equivalent if the restrictions of
F1 and F2 in an end neighborhood agree. A radial end structure is an equivalence class
of radial foliations.

Remember that O always comes with a smooth compact orbifold Ō with boundary
so that O is its boundary. We will fix a radial end structure for each end of O coming
from a smooth foliation whose leaves end transversely to the boundary of Ō . This is the
compatibility condition of the R-end structure to Ō .

To explain further, an end neighborhood U is compatible to Ō if it a product form ΣE ×
(0,1) where each ΣE ×{t} is transverse to the radial foliation for sufficiently small t and
the diffeomorphism f : U → ΣE × (0,1) extends to U union the ideal boundary component
corresponding to E as a diffeomorphism to ΣE × (0,1].

A R-end is an end with a radial end structure. A R-p-end is a p-end with a p-end
neighborhood covering a radial end neighborhood with induced foliation. Each lift of the
radial foliation has a finite path-length induced from dev. A pseudo-end (p-end) vertex
of a radial p-end neighborhood or a radial p-end is the common endpoint of concurrent
lift of leaves of the radial foliation, which we obtain by Cauchy completion along the
leaves. Note that dev always extends to the pseudo-end vertex. The p-end vertex is defined
independently of the choice of dev. We will identify with a point of RPn (resp. Sn) if dev
is an embedding to RPn (resp. Sn).

(See Definition 9.1.1 for more detail.)

REMARK 3.1.3. (End-compactification structures) If we have a compactification Ō ′

of O not diffeomorphic to Ō , and choose Ō ′ instead of Ō , all these discussions have to
take place with respect to Ō ′. By the s-cobordism theorem of Mazur [128], Barden [12]
and Stallings and the existence theorem 11.1 of Milnor [130], there are tame manifolds
with more than one compactifications. (This is due to Benoit Kloeckner in the mathemat-
ics overflow. See also Section 9.3.) However, notice that the radial structure determine the
diffeomorphism type of Ō since each flow line determines the unique boundary points and
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the set of flow lines passing a codimension-one transversal ball determines the diffeomor-
phism types. However, the converse is true up to isotopies by the isotopy uniqueness part
of the tubular neighborhood theorem, which also holds for orbifolds (See [?].)

Two rays l and m with some arclength-parameterizations in Ω is asymptotic if

dΩ(l(t),m(t))<C for a constant C for all t ≥ 0

(See Section 3.11.3 of [74]). problem.. I keep switch-
ing between length pa-
rameterization and other-
wise.. Wierd.. CHeck
this..

LEMMA 3.1.4 (Benoist [22]). Let l be a line in a properly convex open domain Ω in
RPn (resp. Sn), n ≥ 2, ending at x ∈ bdΩ. Let m be a line ending at x also. Then for a
parametrization l(t) of l there is a parametrization m(t) of m so that dΩ(m(t), l(t))<C for
a constant C independent of t. Furthermore, m and l are asymptotic rays.

PROOF. We will prove for Sn. We choose a supporting hyperplane P at x. Then
P∩Cl(Ω) is a properly convex domain. We choose a codimension-one subspace Q of P
disjoint from P∩Cl(Ω) and a parameter of hyperplanes Pt passing l(t) and containing Q.
We denote m(t) = m∩Pt . For convenience, we may suppose our interval is [0,1) and that
l(0) and m(0) are the beginning point of l and m. Let J denote the 2-dimensional subspace
containing l and m. Now, m(t), l(t) are on a line Pt ∩ J. The function t 7→ dΩ(l(t),m(t))
is eventually decreasing by the convexity of the 2-dimensional domain Ω∩ J since we can
draw four segments from x to l(t),m(t) and the endpoints of m(t)l(t)∩Ω and the segments
to the endpoints always moves outward and the the segments to l(t),m(t) are constant.
Hence, dΩ(l(t),m(t))≤C′dΩ(l(0),m(0)) for a constant C′ ≥ 1. (See also Section 3.2.6 and
3.2.7 of [22] For eventual decreasing property, we don’t need the C1-boundary property of
Ω.)

Finally, we may use the arclength parameterizations by taking discrete equidistantly
places elements in l and m respectively and a triangle inequality argument: We can show
that the parameterizations are related by constants. Then we increase the intervals. [SnS]

□

Following Lemma 3.1.5 gives us another characterization of R-end and the condition
Rx(Ũ) = Rx(Ω).

LEMMA 3.1.5. Let Ω be a properly convex open domain in RPn (resp. Sn), n ≥ 2.
Suppose that O = Ω/Γ is a noncompact strongly tame orbifold. Let U be a proper end
neighborhood and let Ũ be a connected open set in Ω covering U. Let ΓŨ denote the
subgroup of Γ acting on Ũ. Suppose that Ũ is foliated by segments with a common endpoint
x in bdΩ. Suppose that ΓŨ fixes x. Then the following hold:

• ΓŨ acts properly on Rx(Ũ) if and only if every radial ray in Ũ ending at x maps
to a properly embedded arc in U.

• If the above item holds, then Rx(Ω) = Rx(Ũ) and x is an R-p-end vertex of Õ .

PROOF. It is sufficient to prove for Sn. The forward direction of the first item is clear:
If a leaf l does not embedd properly, then there exists a sequence gi ∈ ΓŨ so that the
direction of gi(l) accumulates to a point of Rx(Ũ). The properness of the action of ΓŨ
contradicts this.

For converse, suppose that gi(K)∩K ̸= /0 for infinitely many mutually distinct gi ∈ ΓŨ
for a compact set K ⊂ Rx(Ũ). Then there exists a sequence pi ∈ K so that gi(pi) → p∞,
p∞ ∈ K. We can choose a compact set K̂ ⊂ Ω so that the ray li ending at x in direction pi
has an endpoint p̂i ∈ K̂i for each i.
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We can choose qi on li so that gi(qi)→ q∞ for q∞ in Ω since the direction of gi(li) is
in K and its endpoint is uniformly bounded away from x.

By Lemma 3.1.4, we can choose a point q̄i on l1 so that dΩ(qi, q̄i) < C for a uniform
constant C. Thus, dΩ(gi(qi),gi(q̄i))<C. We can choose a subsequence so that gi(q̄i)→ q′∞
for a point q′∞ in Ω with dΩ(q∞,q′∞)≤C. This implies that l1 is not properly embedded in
U . This is a contradiction.

For the second item, we have Rx(Ũ) ⊂ Rx(Ω) clearly. Let l be a line from x in
U , and let m be any line from x in Ω. For a parametrization of l by [0,1), we obtain
dΩ(l(t),m(t))<C, t ∈ [0,1), for a uniform constant C > 0 and a parameterization m(t) of
m by Lemma 3.1.4. Since l maps to a properly embedded arc in U , and bdOU is compact,
it follows that dΩ(l(t),bdŨ ∩ Ω) → ∞ as t → 1. This implies that m(t) ∈ Ũ for suffi-
ciently large t. Therefore m has a direction in Rx(Ũ). Hence, we showed Rx(Ũ) = Rx(Ω).
[SnT] □

Let Ω be a properly convex domain in RPn so that O = Ω/Γ for a discrete subgroup
Γ of automorphisms of Ω. The space of radial lines in an R-end lifts to a space Rx(Ω)
of lines in Ω ending at a point x of bdΩ. By above Lemma 3.1.5, Γx acts properly on
Rx(Ω) since we assume that we have radial ends only. The quotient space Rx(Ω)/Γx has
an (n− 1)-orbifold structure by Lemma 3.1.5. The end orbifold ΣE associated with an
R-end is defined as the space of radial lines in O . It is clear that ΣE can be identified
with Rx(Ω)/Γx. By the compatibility condition from the beginning of Section 3.1.3, ΣE is
diffeomorphic to the component of Ō −O corresponding to E. The space of radial lines
in an R-end has the local structure of RPn−1 since we can lift a local neighborhood to Õ ,
and these radial lines lift to lines developing into concurrent lines. The end orbifold has an
induced real projective structure of one dimension lower.shorten here...

For the following, we may assume that all subsets here are bounded subsets of an
affine subspaceAn.

• An n-dimensional submanifold L ofAn is said to be a pre-horoball if it is strictly
convex, and the boundary ∂L is diffeomorphic to Rn−1 and bdL−∂L is a single
point. The boundary ∂L is said to be a pre-horosphere.

• Recall that an n-dimensional subdomain L ofAn is a lens if L is a convex domain
and ∂L is a disjoint union of two smoothly strictly convex embedded open (n−
1)-cells ∂+L and ∂−L.

• A cone is a bounded domain D in an affine patch with a point in the boundary,
called an end vertex v so that every other point x ∈ D has an open segment vxo ⊂
D. A trivial one-dimensional cone is an open half-space in R1 given by x > 0 or
x < 0. A cone D is a join {v}∗A for a subset A of D if D is a union of segments
starting from v and ending at A. (See Definition 1.1.2.)

• The cone {p}∗L over a lens-shaped domain L inAn, p ̸∈ Cl(L) is a lens-cone if
it is a convex domain and satisfies

– {p}∗L = {p}∗∂+L for one boundary component ∂+L of L and
– every segment from p to ∂+L meets the other boundary component ∂−L of

L at a unique point.
• As a consequence, each line segment from p to ∂+L is transverse to ∂+L. L is

called the lens of the lens-cone. (Here different lenses may give the identical
lens-cone.) Also, {p}∗L−{p} is a manifold with boundary ∂+L.

• Each of two boundary components of L is called a top or bottom hypersurface
depending on whether it is further away from p or not. The top component is
denoted by ∂+L and the bottom one by ∂−L.
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• An n-dimensional subdomain L of An is a generalized lens if L is a convex
domain and ∂L is a disjoint union of a strictly convex smoothly embedded open
(n−1)-cell ∂−L and an embedded open (n−1)-cell ∂+L, which is not necessarily
smooth.

• A cone {p}∗L is said to be a generalized lens-cone if
– {p}∗L = {p}∗∂+L, p ̸∈ Cl(L) is a convex domain for a generalized lens L,

and
– every segment from p to ∂+L meets ∂−L at a unique point.

A lens-cone will of course be considered a generalized lens-cone.
• We again define the top hypersurface and the bottom one as above. They are

denoted by ∂+L and ∂−L respectively. ∂+L can be non-smooth; however, ∂−L is
required to be smooth.

• A totally-geodesic submanifold is a convex domain in a subspace. A cone-over
a totally-geodesic submanifold D is a union of all segments with one endpoint a
point x not in the subspace spanned by D and the other endpoint in D. We denote
it by {x}∗D.

We apply these to ends:

DEFINITION 3.1.6.
Pre-horospherical R-end: An R-p-end Ẽ of Õ is pre-horospherical if it has a pre-

horoball in Õ as a p-end neighborhood, or equivalently an open p-end neigh-
borhood U in Õ so that bdU ∩ Õ = bdU −{v} for a boundary fixed point v. Ẽ
is pre-horospherical if it has a pre-horoball in Õ as a p-end neighborhood. We
require that the radial foliation of Ẽ is the one where each leaf ends at v.

Lens-shaped R-end: An R-p-end Ẽ is lens-shaped (resp. generalized-lens-shaped ),
if it has a p-end neighborhood that is projectively diffeomorphic to the interior
of L∗{v} under dev where
• L is a lens (resp. generalized lens) and
• h(π1(Ẽ)) acts properly and cocompactly on L,

and every leaf of the radial foliation of the p-end neighborhood ends corresponds
to a radial segment ending at v. In this case, the image L is said to be a CA-lens
(resp. gCA-lens) of such a p-end. A p-end end neighborhood of Ẽ is (general-
ized) lens-shaped if it is a (generalized) lens-cone p-end neighborhood of Ẽ.

An R-end of O is lens-shaped (resp. totally geodesic cone-shaped, generalized lens-
shaped ) if the corresponding R-p-end is lens-shaped (resp. totally geodesic cone-shaped,
generalized lens-shaped ). An end neighborhood of an end E is (generalized) lens-shaped
if so is a corresponding p-end neighborhood Ẽ.

An end neighborhood is lens-shaped if it is a lens-shaped R-end neighborhood or T-
end neighborhood. A p-end neighborhood is lens-shaped if it is a lens-shaped R-p-end
neighborhood or T-p-end neighborhood. Of course it is redundant to say that R-end or
T-end satisfies the lens condition dependent on its radial or totally geodesic end structure.

DEFINITION 3.1.7. A real projective orbifold with radial or totally geodesic ends is
a strongly tame orbifold with a real projective structure where each end is an R-end or a
T-end with an end structure given for each. An end of a real projective orbifold is (resp.
generalized ) lens-shaped or pre-horospherical if it is a (resp. generalized) lens-shaped or
pre-horospherical R-end or if it is a lens-shaped T-end.

3.1.3.1. p-end vertices. Let O be a real projective orbifold with the universal cover Õ .
We fix a developing map dev in this subsection and identify with its image. Given a radial
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end of O and an end neighborhood U of a product form E × [0,1) with a radial foliation,
we take a component U1 of p−1(U) and the lift of the radial foliation. The developing
images of leaves of the foliation end at a common point x in RPn.

• Recall that a p-end vertex of Õ is the ideal point of leaves of U1. (See Section
3.1.3.) When dev is fixed, we can identify it with its image under dev. It will be
denoted by vẼ if its p-end neighborhoods correspond to a p-end Ẽ.

• Let Sn−1
vẼ

denote the space of equivalence classes of rays from vẼ diffeomorphic
to an (n− 1)-sphere where π1(Ẽ) acts as a group of projective automorphisms.
Here, π1(Ẽ) acts on vẼ and sends leaves to leaves in U1.

• Given a p-end Ẽ corresponding to vẼ , we define Σ̃Ẽ := RvẼ
(Õ) the space of

directions of developed leaves under dev oriented away from vẼ into a p-dend
neighborhood of Õ corresponding to Ẽ. The space develops to Sn−1

x by dev as
an embedding to a convex open domain.

• Recall that Σ̃Ẽ/ΓΓΓẼ is projectively diffeomorphic to the end orbifold to be denoted
by ΣE or by ΣẼ . (See Lemma 3.1.5.)

• We may use the lifting of dev to Sn. The endpoint x′ of the lift of radial lines will
be identified with the p-end vertex also when the lift of dev is fixed. Here, we
can canonically identify Sn−1

x′ and Sn−1
x and the group actions of ΓΓΓẼ on them.

3.1.4. Cusp ends. A parabolic algebra p is an algebra in a semi-simple Lie algebra
g whose complexification contains a maximal solvable subalgebra of g (p. 279–288 of
[150]). A parabolic group P of a semi-simple Lie group G is the full normalizer of a
parabolic subalgebra.

An ellipsoid in RPn = P(Rn+1) (resp. in Sn = S(Rn+1)) is the projection C−{O} of
the null cone

C := {⃗x ∈ Rn+1|B(⃗x, x⃗) = 0}
for a nondegenerate symmetric bilinear form B : Rn+1 ×Rn+1 → R of signature (1,n).
Ellipsoids are always equivalent by projective automorphisms of RPn. An ellipsoid ball is
the closed contractible domain in an affine subspace An of RPn (resp. Sn) bounded by an
ellipsoid contained in An. A horoball is an ellipsoid ball with a point p of the boundary
removed. An ellipsoid with a point p on it removed is called a horosphere. The vertex of
the horosphere or the horoball is defined as p.

Let U be a horoball with a vertex p in the boundary of B. A real projective orbifold that
is projectively diffeomorphic to an orbifold U/Γp for a discrete subgroup Γp ⊂ PO(1,n)
fixing a point p ∈ bdB is called a horoball orbifold. A cusp or horospherical end is an
end with an end neighborhood that is such an orbifold. A cusp group is a subgroup of a
parabolic subgroup of an isomorphic copy of PO(1,n) in PGL(n+1,R) or in SO+(1,n) in
SL±(n+1,R). A cusp group is a unipotent cusp-group if it is unipotent as well.

By Corollary 8.1.1, an end is pre-horospherical if and only if it is a cusp end. We will
use the term interchangeably but not in Chapter 3 where we will prove this fact.

3.1.4.1. Lie group invariant p-end neighborhoods. We need the following lemma
later.

A p-end holonomy group is the image of a p-end fundamental group under the holo-
nomy homomorphism. If its universal cover Õ embeds to Sn or RPn, then h is injective
and hence p-end holonomy group is isomorphic to the p-end fundamental group. A end
holonomy group is the image of an end fundamental group.

LEMMA 3.1.8. Let O be a convex strongly tame real projective n-orbifold, and let
Õ be its universal cover in RPn (resp. in Sn). Let U be a p-R-end neighborhood of a
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p-end Ẽ in Õ where a p-end holonomy group ΓΓΓẼ acts on. Let Q be a discrete subgroup of
ΓΓΓẼ . Suppose that G is a connected Lie group virtually containing Q so that G/G∩Q is
compact. Assume that G acts on the p-R-end vertex vẼ and Σ̃Ẽ . Then

⋂
g∈G g(U) contains

a non-empty G-invariant p-end neighborhood of Ẽ.

PROOF. We first assume that Õ ⊂ Sn and Q ⊂ G. Let F be the compact fundamental
domain of G under G ∩ Q. It is sufficiently to prove for the case when U is a proper
p-end neighborhood since for any open set V containing U ,

⋂
g∈G g(V ) contains a p-end

neighborhood
⋂

g∈G g(U). Hence, we assume that bdÕU/ΓΓΓẼ is a smooth compact surface.
Let FU denote the fundamental domain of bdÕU .

Let F be a compact fundamental domain of G with respect to Q. Let L be a compact
subset of Σ̃Ẽ and let L̂ denote the union of all maximal open segments with endpoints vẼ
and vẼ− in the direction of L.

We claim that
⋂

g∈F g(U) =
⋂

g∈G g(U) contains an open set in L̂. We show this by
proving that

⋂
g∈F g(U)∩ l for any maximal l in L̂ has a lower bound on its d-length. The

lower bound is uniform for L.
Suppose not. Then there exists sequence gi ∈F and maximal segment li in L̂ so that the

sequence of d-length of gi(U)∩ li from vẼ goes to 0 as i → ∞. The endpoint of gi(U)∩ li
equals gi(yi) for yi ∈ bdÕU . This implies that {gi(yi)}→ vẼ .

Now, yi corresponds to a direction ui ∈ Σ̃Ẽ . Since F is a compact set, ui corresponds
to a point of a compact set F−1(L), which corresponds to a compact set F̂U of bdÕU with
directions in F−1(L). Hence, yi ∈ F̂U , a compact set. Since vẼ is a fixed point of G,
and yi ⊂ F̂U for a compact subset F̂U of Sn not containing vẼ , this shows that gi form an
unbounded sequence in SL±(n+1,R). This is a contradiction to gi ∈ F .

We have a nonempty set

Û :=
⋂

g∈G

g(U) =
⋂

g∈F

g(U)

containing an open set in U . G acts on Û clearly. We take the interior of Û . If G only
virtually contains ΓΓΓẼ , we just need to add finitely many elements to the above arguments.
[SnS] □

LEMMA 3.1.9. A p-end vertex of a horospherical p-end cannot be an endpoint of a
segment in bdÕ .

PROOF. Suppose that bdÕ contains a segment s ending at the p-end vertex vẼ . Then
s is on an invariant hyperspace of ΓΓΓẼ . Now conjugating ΓΓΓẼ into an (n− 1)-dimensional
parabolic or cusp subgroup P of SO(n,1) fixing (1,−1,0, . . . ,0) ∈Rn+1 by say an element
h of SL±(n+ 1,R). By simple computations using the matrix forms of ΓΓΓẼ , we can find
a sequence {gi},gi ∈ hΓΓΓẼh−1 ⊂ P so that {gi(h(s))} geometrically converges to a great
segment. Thus, for h−1gih ∈ ΓΓΓẼ , the sequence {h−1gih(s)} geometrically converges to a
great segment in Cl(Õ). This contradicts the proper convexity of Õ . [SnT] □

3.1.5. Unit-norm eigenvalued actions on ends. Here, we will collect useful results
on unit-normed actions resulting in Proposition 3.1.14 and Lemma 3.1.15.

LEMMA 3.1.10.
• Suppose that a closed connected projective group G acts properly and cocom-

pactly on a convex domain Ω in Sn (resp. RPn). Then G acts transitively on Ω.
(Benoist [21]).
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• Suppose that Γ is a uniform lattice in a closed connected group G acting on
a convex domain Ω in Sn ( resp. RPn ). Suppose that Γ acts properly and
cocompactly on Ω. Then G acts transitively on Ω.

PROOF. For the second item, we claim that G acts properly also. Let F̂ be the funda-
mental domain of G with Γ action. Let x ∈ Ω. Let F ′ be the image F(x) := {g(x)|g ∈ F}
in Ω. This is a compact set. Define

ΓF ′ := {g ∈ Γ|g(F(x))∩F(x) ̸= /0}.

Then ΓF ′ is finite by the properness of the action of Γ. Since an element of G is a product
of an element g′ of Γ and f ∈ F , and g′ f (x) = x, it follows that g′F(x)∩F(x) ̸= /0 and
g′ ∈ ΓF ′ . Hence the stabilizer Gx is a subset of ΓF ′F , and Gx is compact. G becomes a
Riemannian isometry group with respect to a metric on Ω. The second part follows from
the first part since G must act properly and cocompactly. [SnT] □

LEMMA 3.1.11. Suppose that a simply connected isometry Lie group G acts smoothly
on a simply connected manifold M with a metric so that each stabilizer is trivial. Suppose
that dimG = dimM and G is a closed subgroup of the isometry group of M. Then G acts
transtiviely on M.

PROOF. This follows since the orbit should be an open and a closed set. □

PROPOSITION 3.1.12. Let N be a discrete group or an n− 1-dimensional connected
Lie group where all the elements have only eigenvalues of unit norms acting on a convex
n− 1-domain Ω in Sn (resp. RPn) projectively and properly and cocompactly. Then Ω

is a complete affine space. If N is a connected Lie group, then N is a simply-connected
orthopotent solvable group.

PROOF. Again, we first prove for the Sn-version. First consider when N is discrete. By
Theorem 1.3.7, N is an orthopotent Lie group. Theorem 1.4.5 proved that Ω is a complete
affine space.

Now, consider the case when N is a connected Lie group. By Lemma 3.1.10, N acts
transitively on Ω. N has an N-invariant metric on Ω by the properness of the action.
Consider an orbit map N → N(x) for x ∈ Ω. If a stabilizer of a point x of Ω contains a
group of dimension ≥ 1, then dimN > dimΩ. The stabilizer is a finite group. Hence, N
covers Ω finitely. Since Ω is contractible, the orbit map is a diffeomorphism. Hence, N is
contractible.

By Theorem 1.3.7, N is a solvable Lie group.
Now, Ω cannot be properly convex: Otherwise, By Fait 1.5 of [21], N either acts

irreducibly on Ω or Ω is a join of domain Ω1, . . . ,Ωn where N acts irreducibly on each Ωi.
Since a solvable group never acts irreducibly unless the domain is 0-dimensional by the
Lie-Kolchin theorem, Ω is a simplex or a point. (See Theorem 17.6 of [102].) Then N has
to be diagonalizable and this is a contradiction to the unit-norm-eigenvalued property since
N acts cocompactly unless n−1 = 0. If n−1 = 0, the conclusion is true.

Now suppose that Ω is not properly convex but not complete affine. Then Ω is foliated
by i0-dimensional complete affine spaces for i0 < n. The space of affine leaves is a properly
convex domain K by discussions on R-ends in Section 3.1.6. Hence, N acts on K. The
stabilizer Nl is i0-dimensional since the N-action is simply transitive. Hence, N/Nl acts on
a properly convex set Ko satisfying the premises. Again, this is a contradiction.

Hence, Ω is complete affine. [SnS] □
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Given a subgroup G of an algebraic Lie group, a syndetic hull S (G) of G is a solvable
Lie group with finitely many components so that S (G)/G is compact. (See Fried and
Goldman [82] and D. Witte [156].)

LEMMA 3.1.13. Let N be a closed orthopotent Lie group in SL±(n,R) acting on Rn

inducing a proper action on an n−1-dimensional affine spaceAn−1 that is the upper half-
space of Rn quotient by the scalar multiplications. Suppose that N acts cocompactly on
An−1. Then there is a connected group Nu with the following properties:

• N/N ∩Nu and Nu/N ∩Nu are compact.
• Nu is homeomorphic to a cell,
• Nu acts simply transitively onAn−1,
• Nu is the unipotent subgroup in SL±(n,R) of dimension n− 1 of N normalized

by N.

PROOF. Since N is orthopotent, there is a flag of vector subspaces {0} = V0 ⊂ V1 ⊂
·· · ⊂ Vm = Rn preserved by N where N acts as an orthogonal group on Vi+1/Vi for each
i = 1, . . . ,m− 1. Here, An−1 is parallel to the vector subspace Vm−1 of dimension n− 1.
(See Chapter 2 of Berger [26].)

Hence, there is a homomorphism N →
⊕m−1

i=0 O(Vi+1/Vi). Let N′
u denote the kernel.

Then N′
u is a unipotent group with compact N/N′

u.
We define Nu to be the Zariski closure of N′

u in SL±(n,R). Now, Nu is a unipotent Lie
group, and Nu/N′

u is compact by Malcev [123].
Since Nu also acts on An−1, Nu/N′

u is compact, and N′
u acts properly, it follows that

Nu acts properly onAn−1. By Lemma 3.1.10, Nu acts transitively onAn−1. The action has
trivial stabilizer since Nu is unipotent. This implies Nu is homeomorphic toAn−1. □

PROPOSITION 3.1.14. Let U is in an open domain in Sn (resp. RPn) radially foliated
from a point p ∈ bdU with smooth bdU −{p}. Suppose U is in a properly convex domain.
and let N be an n−1-dimensional a connected Lie group with only unit norm eigenvalues
acting on U and fixing p. Suppose that it acts on Rp(U) properly and cocompactly. Then
U is the interior of an ellipsoid and N is a unipotent cusp group and acts transitively and
freely on bdU −{p}

PROOF. We first assume U ⊂ Sn. By Proposition 3.1.12, Rp(U) = A is complete
affine. N acts on Rp(U) as a unipotent Lie group. Thus, N is a simply-connected unit-
norm-eigenvalued solvable Lie group by Proposition 3.1.12.

By Lemma 3.1.13, there is a unipotent group Nu where N/N ∩Nu and Nu/N ∩Nu are
compact. Since Nu is isomorphic to a unipotent subgroup, and N ∩Nu is a lattice in N and
one in Nu.

It follows that each element of geodesic in N passing an element of N ∩Nu is also
unipotent being an exponential of a nilpotent element. The compactness of Nu/N ∩Nu
implies that these tangent vectors form a dense set in the tangent space the identity at Nu
as we can see from the central series extension by free abelian groups. It follows that
N ∩Nu = Nu and so Nu ⊂ N. Since they have the same dimensions and are connected,
Nu = N.

We will now show that U is the interior of an ellipsoid. We identify p with [1,0, . . . ,0].
Let W denote the hyperspace in Sn containing p sharply supporting U . Here, W cor-
responds to a supporting hyperspace in Sn−1

p of the set of directions of an open hemi-
sphere Rp(U) and hence is unique supporting hyperplane at p and, thus, N-invariant. Also,
W ∩Cl(U) is a properly convex subset of W .
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Let y be a point of U . Suppose that N contains a sequence {gi} so that

{gi(y)}→ x0 ∈W ∩Cl(Õ) and x0 ̸= p;

that is, x0 in the boundary direction of A from p. Let U1 =Cl(U)∩W . Let V be the smallest
subspace containing p and U1. The dimension of V is ≥ 1 as it contains x0 and p.

Again the unipotent group N acts on V . Now, V is divided into disjoint open hemi-
spheres of various dimensions where N acts on: By Theorem 3.5.3 of [150], N preserves a
full flag structure V0 ⊂V1 ⊂ ·· · ⊂Vk =V . We take components of complement Vi −Vi−1.
Let HV :=V −Vk−1.

Suppose that dimV = n− 1 for contradiction. Then HV ∩U1 is not empty since oth-
erwise, we would have a smaller dimensional V . Let hV be the component of HV meeting
U1. Since N is unipotent, hV has an N-invariant metric by Theorem 3 of Fried [80].

We claim that the orbit of the action of N is of dimension n− 1 and hence locally
transitive on HV : If not, then a one-parameter subgroup N′ fixes a point of hV . This group
acts trivially on hV since the unipotent group contains a trivial orthogonal subgroup. Since
N′ is not trivial, it acts as a group of nontrivial translations on the affine subspace Ho. We
obtain that N′(U) is not properly convex. This is absurd. Hence, an orbit of N is open in
hV , and N acts locally simply-transitively without fixed points.

Since N has trivial stabilizers on hV , there is an N-invariant Riemannian metric on hV .
The orbit of N in hV is closed since hV has an N-invariant metric, and N is closed in the
isometry group of hV . Thus, N acts transitively on hV since dimN = dimhV .

Hence, the orbit N(y) of N for y ∈ HV ∩U1 contains a component of HV . This contra-
dicts the assumption that Cl(U) is properly convex (compare with arguments in [68].)

Suppose that the dimension of ⟨V ⟩ is ≤ n− 2. Let J be a subspace of dimension 1
bigger than dimV and containing V and meeting U . Let JA denote the subspace of An−1

corresponding to the directions in J. Then JA is sent to disjoint subspaces or to itself under
N. Since N acts on A transitively, a nilpotent subgroup NJ of N acts on JA transitively.
Hence,

dimNJ = dimJA = dimV,

and we are in a situation immediately above. The orbit NJ(y) for a limit point y ∈ HV
contains a component of V −Vk−1 as above. Thus, NJ(y) contains the same component, an
affine subspace. As above, we have a contradiction to the proper convexity since the above
argument applies to NJ .

Therefore, points such as x0 ∈W ∩bd(Õ)−{p} do not exist. Hence for any sequence
of elements gi ∈ ΓΓΓẼ , we have {gi(y)}→ p. Hence,

bdU = (bdU ∩ Õ)∪{p}.

Clearly, bdU is homeomorphic to an (n−1)-sphere.
Since U is radial, this means that U is a pre-horospherical p-end neighborhood. (See

Definition 3.1.6.) Since N acts transitively on a complete affine space Rp(U), and there is
a 1 to 1 radial correspondence of Rp(U) and bdU −{p}, it acts so on bdU − p. Since N is
unipotent and acts transitively on bdU −{p}, Lemma 7.12 of [68] shows that U is bounded
by an ellipsoid. Choose x∈U , then N(x)⊂U is an horospherical p-end neighborhood also.
Since Aut(U) is the group of hyperbolic isometry group of U with the Hilbert metric, it
follows that N is the cusp group. [SnT] □

LEMMA 3.1.15. Assume that O is a properly convex real projective orbifold with an
end E with the universal cover Õ in Sn (resp. RPn). Suppose that E is a convex end with a
corresponding p-end Ẽ. Suppose that eigenvalues of elements of ΓΓΓẼ have unit norms only.
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Then ΓΓΓẼ is conjugate to a subgroup of a parabolic subgroup in SO(n,1) (resp. PO(n,1)),
and a finite-index subgroup of ΓΓΓẼ is unipotent and Ẽ is horospherical, i.e., cuspidal.

PROOF. We will assume first Õ ⊂ Sn. By Theorem 1.3.7, ΓΓΓẼ is virtually orthopotent.
By Proposition 3.1.12, Σ̃Ẽ is complete affine, and ΓΓΓẼ acts on it as an affine transformation
group. By Theorem 3 in Fried [80], ΓΓΓẼ is virtually unipotent. Since Σ̃Ẽ/ΓΓΓẼ is a compact
complete-affine manifold, a finite-index subgroup F of ΓΓΓẼ is contained in a unipotent Lie
subgroup acting on Σ̃Ẽ . Now, by Malcev [123], it follows that the same group is contained
in a simply connected unipotent group N acting on Sn since F is unipotent. The dimension
of N is n−1 = dim Σ̃Ẽ by Theorem 3 of [80].

Let U be a component of the inverse image of a p-end neighborhood so that vẼ ∈ bdU .
Assume that U is a radial p-end neighborhood of vẼ . The group N acts on a smaller open
set covering a p-end neighborhood by Lemma 3.1.8. We let U be this open set from now
on. Consequently, bdU ∩ Õ is smooth.

Now N acts transitively and properly on Σ̃Ẽ by Lemma 3.1.10 since F acts properly
on it and N/F is compact. N acts cocompactly on Σ̃Ẽ since so does F , F ⊂ N.

By Proposition 3.1.14, N is a cusp group, and U is a p-end neighborhood bounded by
an ellipsoid.

Since ΓΓΓẼ has a finite extension of N as the Zariski closure, the connected identity
component N is normalized by ΓΓΓẼ .

Also, for element g ∈ ΓΓΓẼ −F , suppose g(x) ∈U . Now, g(bdU −{vẼ}) is an orbit of
g(x) for x ∈ bdU −{vẼ}). Hence, g(bdU −{vẼ})) ⊂U . Hence gn is not in F for all n, a
contradiction. Also, g(x) cannot be outside Cl(U) similarly. Hence, ΓΓΓẼ acts on U . Also,
ΓΓΓẼ is in a conjugate of a parabolic subgroup. [SnT] □

3.1.6. R-Ends. We classify R-ends into three classes: complete affine ends, properly
convex ends, and nonproperly convex and not complete affine ends. We also introduce
T-ends. This should be a theo-

rem. I think...Recall that an R-p-end Ẽ is convex if Σ̃Ẽ is convex. Since Σ̃Ẽ is a convex open do-
main, it is contractible by Proposition 1.1.4, and it always lifts to Sn as an embedding. By
Proposition 1.1.4, a convex R-end is either

(i): complete affine (CA),
(ii): properly convex (PC), or

(iii): convex but not properly convex and not complete affine (NPNC).

We follow mostly the article [52] with slight modifications.

3.2. Examples

EXAMPLE 3.2.1. The interior of a finite-volume hyperbolic n-orbifold with rank n−
1 horospherical ends and totally geodesic boundary forms an example of a noncompact
strongly tame properly convex real projective orbifold with radial or totally geodesic ends.
For horospherical ends, the end orbifolds have Euclidean structures. (Also, we could allow
hyperideal ends by attaching radial ends. See Section 3.2.1.)

move these examples at
the end here?EXAMPLE 3.2.2. For examples, if the end orbifold of an R-end E is a 2-orbifold based

on a sphere with three singularities of order 3, then a line of singularity is a leaf of a radial
foliation. End orbifolds of Porti-Tillmann orbifold [139] and the the double of a tetrahedral
reflection orbifold are examples. A double orbifold of a cube with edges having orders 3
only has eight such end orbifolds. (See Proposition 4.6 of [52] and their deformations are
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computed in [58]. Also, see Ryan Greene [93] for the theory. These are explained again in
Section 12.2.)

3.2.1. Examples of ends. We will present some examples here, which we will fully
justify later.

Recall the Klein model of hyperbolic geometry: It is a pair (B,Aut(B)) where B is the
interior of an ellipsoid in RPn or Sn and Aut(B) is the group of projective automorphisms
of B. Now, B has a Hilbert metric which in this case is the hyperbolic metric times a
constant. Then Aut(B) is the group of isometries of B. (See Section 1.1.6.)

From hyperbolic manifolds, we obtain some examples of ends. Let M be a complete
hyperbolic manifold with cusps. M is a quotient space of the interior B of an ellipsoid in
RPn or Sn under the action of a discrete subgroup ΓΓΓ of Aut(B). Then some horoballs are
p-end neighborhoods of the horospherical R-ends.

We generalize Definition 2.2.8. Suppose that a noncompact strongly tame convex real
projective orbifold M has totally geodesic embedded surfaces S1, ..,Sm homotopic to the
ends. Let M be covered by a properly convex domain M̃ in an affine subspace of Sn.

• We remove the outside of S js to obtain a properly convex real projective orbifold
M′ with totally geodesic boundary. Suppose that each S j can be considered a
lens-shaped T-end.

• Each Si corresponds to a disjoint union of totally geodesic domains
⋃

j∈J S̃i, j in
M̃ for a collection J. For each S̃i, j ⊂ M̃, a group Γi, j acts on it where S̃i, j/Γi, j is
a closed orbifold projectively diffeomorphic to Si.

• Suppose that Γi, j fixes a point pi, j outside M̃.
• Hence, we form the cone Mi, j := {pi, j}∗ S̃i, j.
• We obtain the quotient Mi, j/Γi, j −{pi, j} and identify S̃i, j/Γi, j to Si, j in M′ to

obtain the examples of real projective manifolds with R-ends.
• ({pi, j} ∗ S̃i, j)

o is an R-p-end neighborhood and the end is a totally geodesic R-
end.

The result is convex by Lemma 10.1.2 since we can think of S j as an ideal boundary com-
ponent of M′ and that of Mi, j/Γi, j −{pi, j}. This orbifold is called the hyperideal extension
of the convex real projective orbifold as a convex real projective orbifold. When M is hy-
perbolic, each S j is lens-shaped by Proposition 3.2.3. Hence, the hyperideal extensions of
hyperbolic orbifolds are properly convex.

We will fully generalize the following in Chapter 5. We remark that Proposition 3.2.3
also follows from Lemma 12.1.2. However, we used more elementary results to prove it
here.

PROPOSITION 3.2.3. Suppose that M is a strongly tame convex real projective orb-
ifold. Let Ẽ be an R-p-end of M. Suppose that

• the p-end holonomy group of π1(Ẽ)
– is generated by the homotopy classes of finite orders or
– is simple or
– satisfies the unit middle eigenvalue condition

and
• Ẽ has a π1(Ẽ)-invariant n−1-dimensional totally geodesic properly convex do-

main D in a p-end neighborhood and not containing the p-end vertex in the
closure of D.

Then the R-p-end Ẽ is lens-shaped.
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PROOF. Let M̃ be the universal cover of M in Sn. Ẽ is an R-p-end of M, and Ẽ has
a π1(Ẽ)-invariant n− 1-dimensional totally geodesic properly convex domain D. Since
D/π(Ẽ) is homotopy equivalent to R⃗vẼ

(Ũ) for the end vertex v⃗Ẽ , D cannot just project
to a subspace of codimension higher than 1. Hence, D projects to an open domain. By
Theorem 1.4.15, D projects onto Σ̃Ẽ , and hence D is transverse to radial lines from vẼ .

Under the first assumption, since the end holonomy group ΓΓΓẼ is generated by elements
of finite order, the eigenvalues of the generators corresponding to the p-end vertex vẼ equal
1 and hence every element of the end holonomy group has 1 as the eigenvalue at vẼ .

Now assume that the the end holonomy groups fix the p-end vertices with eigenvalues
equal to 1.

Then the p-end neighborhood U can be chosen to be the open cone over the totally
geodesic domain with vertex vẼ . Now, U is projectively diffeomorphic to the interior of a
properly convex cone in an affine subspace An. The end holonomy group acts on U as a
discrete linear group of determinant 1. The theory of convex cones applies, and using the
level sets of the Koszul-Vinberg function, we obtain a one-sided convex neighborhood N
in U with smooth boundary (see Lemmas 4.1.5 and 4.1.6 of Goldman [86]). Let F be a
fundamental domain of N with a compact closure in Õ .

We obtain a one-sided neighborhood in the other side as follows: We take R(N) for
by a reflection R fixing each point of the hyperspace containing Σ̃ and the p-end vertex.
Then we choose a diagonalizable transformation D fixing the p-end vertex and every point
of Σ̃ so that the image D ◦R(F) is in Õ . It follows that D ◦R(N) ⊂ Õ as well. Thus,
N ∪D ◦R(N) is the CA-lens we needed. The interior of the cone {vẼ}∗ (N ∪D ◦R(N)) is
the lens-cone neighborhood for Ẽ. [SnS] □

A more specific example is below. Let S3,3,3 denote the 2-orbifold with base space
homeomorphic to a 2-sphere and three cone-points of order 3. The 3-orbifolds satisfying
the following properties are the example of Porti-Tillman [139] or the hyperbolic Coxeter
3-orbifolds based on an ideal 3-polytopes of dihedral angles π/3. (See Choi-Hodgson-Lee
[58].)

The following is more specific version of Lemma 12.1.2. We give a much more ele-
mentary proof not depending on the full theory of this monograph.

PROPOSITION 3.2.4. Let O be a strongly tame convex real projective 3-orbifold with
R-ends where each end orbifold is diffeomorphic to a sphere S3,3,3 or a disk with three
silvered edges and three corner-reflectors of orders 3,3,3. Assume that the holonomy
group of π1(O) is strongly irreducible. Then the orbifold has only lens-shaped R-ends or
horospherical R-ends.

PROOF. Again, it is sufficient to prove this for the case Õ ⊂ S3. Let Ẽ be an R-p-end
corresponding to an R-end whose end orbifold is diffeomorphic to S3,3,3. It is sufficient to
consider only S3,3,3 since it double-covers the disk orbifold. Since ΓΓΓẼ is generated by finite
order elements fixing a p-end vertex vẼ , every holonomy element has the eigenvalue equal
to 1 at vẼ . Take a finite-index free abelian group A of rank two in ΓΓΓẼ . Since ΣE is convex, a
convex projective torus T 2 covers ΣE finitely. Therefore, Σ̃Ẽ is projectively diffeomorphic
either to

• a complete affine subspace or
• the interior of a properly convex triangle or
• a half-space

by the classification of convex tori by Nagano-Yagi [137] found in many places including
[86] and [16] and Proposition 1.4.1. Since there exists a holonomy automorphism of order
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3 fixing a point of Σ̃Ẽ , it cannot be a quotient of a half-space with a distinguished foliation
by lines. Thus, the end orbifold admits a complete affine structure or is a quotient of a
properly convex triangle.

Suppose that ΣẼ has a complete affine structure. Since λvẼ
(g) = 1 for all g ∈ ΓΓΓẼ ,

the only possibility from Theorem 8.1.4 is when ΓΓΓẼ is virtually nilpotent and we have a
horospherical p-end for Ẽ.

Suppose that ΣẼ has a properly convex open triangle T ′ as its universal cover. A acts
with an element g′ with the largest eigenvalue > 1 and the smallest eigenvalue < 1 as a
transformation in SL±(3,R) the group of projective automorphisms at S2

vẼ
. As an element

of SL±(4,R), we have λvẼ
(g′) = 1 and the product of the remaining eigenvalues is 1, the

corresponding the largest and smallest eigenvalues are > 1 and < 1. Thus, an element of
SL±(4,R), g′ fixes v1 and v2 other than vẼ in directions of vertices of T ′. Since ΓΓΓẼ has an
order three element exchanging the vertices of T ′, there are three fixed points of an element
of A different from vẼ ,vẼ−. By commutativity, there is a properly convex compact triangle
T ⊂ S3 with these three fixed points where A acts on. Hence, A is diagonalizable over the
reals.

We can make any vertex of T to be an attracting fixed point of an element of A. Each
element g ∈ ΓΓΓẼ conjugates elements of A to A. Therefore g sends the attracting fixed points
of elements of A to those of elements of A. Hence g(T ) = T for all g ∈ ΓΓΓẼ .

Each point of the edge E of Cl(T ) is an accumulation point of an orbit of A by tak-
ing a sequence gi so that the sequence of the largest norm of eigenvalues λ1(gi) and the
sequence of second largest norm of the eigenvalue λ2(gi) are going to +∞ while the se-
quence log |λ1(gi)/λ2(gi)| is bounded. Since λvẼ

= 1, writing every vector as a linear
combination of vectors in the direction of the four vectors, this follows. Hence ∂T ⊂ bdÕ
and T ⊂ Cl(O).

If T o ∩bdO ̸= /0, then T ⊂ bdO by Lemma 1.4.4. Then each segment from vẼ ending
in bdO has the direction in Cl(ΣẼ) = T ′. It must end at a point of T . Hence, Õ = (T ∗vẼ)

o,
an open tetrahedron σ . Since the holonomy group acts on it, we can take a finite-index
group fixing each vertex of σ . Thus, the holonomy group is virtually reducible. This is a
contradiction.

Therefore, T ⊂ O as T ∩bdO = /0. We have a totally geodesic R-end, and by Proposi-
tion 3.2.3, the end is lens-shaped. (See also [37].) [SnS] □

The following construction is called “bending” and was investigated by Johnson and
Millson [106]. These give us examples of R-ends that are not totally geodesic R-ends. See
Ballas and Marquis [7] for other examples.

EXAMPLE 3.2.5 (Bending). Let O have the usual assumptions. We will concentrate on
an end and not take into consideration of the rest of the orbifold. Certainly, the deformation
given here may not extend to the rest. (If the totally geodesic hypersurface exists on the
orbifold, the bending does extend to the rest.)

Suppose that O is an oriented hyperbolic manifold with a hyperideal end E. Then E
is a totally geodesic R-end with an R-p-end Ẽ. Let the associated orbifold ΣE for E of
O be a closed 2-orbifold and let c be a two-sided simple closed geodesic in ΣE . Suppose
that E has an open end neighborhood U in O diffeomorphic to ΣE × (0,1) with totally
geodesic boundary bdU ∩O diffeomorphic to ΣE . Let Ũ be a p-end neighborhood in Õ
corresponding to Ẽ bounded by Σ̃Ẽ covering ΣE . Then U has a radial foliation whose
leaves lift to radial lines in Ũ from vẼ .
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Let A be an annulus in U diffeomorphic to c× (0,1), foliated by leaves of the radial
foliation of U . Now a lift c̃ of c is in an embedded disk A′, covering A. Let gc be the deck
transformation corresponding to c̃ and c. Suppose that gc is orientation-preserving. Since
gc is a hyperbolic isometry of the Klein model, the holonomy gc is conjugate to a diagonal
matrix with entries λ ,λ−1,1,1, where λ > 1 and the last 1 corresponds to the vertex vẼ .
We take an element kb of SL±(4,R) of form in this system of coordinates

(3.2.1)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 b 1


where b ∈ R. kb commutes with gc. Let us just work on the end E. We can “bend” E by
kb:

Now, kb induces a diffeomorphism k̂b of an open neighborhood of A in U to another
one of A since kb commutes with gc. We can find tubular neighborhoods N1 of A in U and
N2 of A. We choose N1 and N2 so that they are diffeomorphic by a projective map k̂b. Then
we obtain two copies A1 and A2 of A by completing U −A.

Give orientations on A and U . Let N1,− denote the left component of N1 −A and let
N2,+ denote the right component of N2 −A.

We take a disjoint union (U −A)⊔N1 ⊔N2 and
• identify the projectively diffeomorphic copy of N1,− in N1 with N1,− in U −A by

the identity map and
• identify the projectively diffeomorphic copy of N2,+ in N2 with N2,+ in U −A by

the identity also.
We glue back N1 and N2 by the real projective diffeomorphism k̂b of a neighborhood of N1
to that of N2. Then N1 − (N1,−∪A) is identified with N2,+ and N2 − (N2,+∪A) is identified
with N1,−. We obtain a new manifold.

For sufficiently small b, we see that the end is still lens-shaped. and it is not a totally
geodesic R-end. (This follows since the condition of being a lens-shaped R-end is an open
condition. See Section 11.2.)

For the same c, let ks be given by

(3.2.2)


s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 1/s3


where s ∈ R+. These give us bendings of the second type. For s sufficiently close to 1, the
property of being lens-shaped is preserved and being a totally geodesic R-end. (However,
these will be understood by cohomology.)

If sλ < 1 for the maximal eigenvalue λ of a closed curve c1 meeting c odd number of
times, we have that the holonomy along c1 has the attracting fixed point at vẼ . This implies
that we no longer have lens-shaped R-ends if we have started with a lens-shaped R-end.





CHAPTER 4

The affine action on a properly convex domain whose
boundary is in the ideal boundary

In this chapter, we will show the asymptotic niceness of the affine actions when the
affine group Γ acts on a convex domain Ω inAn and a properly convex domain in the ideal
boundary of An. We will find a properly convex domain in An with boundary in Ω. The
main tools will be Anosov flows on the affine bundles over the unit tangent bundles as in
Goldman-Labourie-Margulis [91]. We will introduce a flat bundle and decompose it in an
Anosov-type manner. Then we will find an invariant section. We will prove the asymptotic
niceness using the sections. In Section 4.1, we will define asymptotic niceness and flow
decomposition of the vector bundles over UΩ/Γ. In Section 4.2, we begin with a strictly
convex domain Ω with a hyperbolic Γ and the main result Theorem 4.1.1. We define
proximal flows and decompose the vector bundle flows into contracting and repelling and
neutral subbundles. In Section 4.2.2, we show that contracting and expansion properties of
the contracting and repelling subbundles, with a somewhat technical argument involving
pulling-back. However, the neutral subbudles here are more of a generalized type than what
they had. We obtain the neutralized sections as Goldman-Labourie-Margulis did. We will
prove the main result for strictly convex Ω at the end of this section using the neutralized
sections to obtain asymptotic hyperspaces. In Section 4.3, we will generalize these results
to the case when Ω is not necessarily strictly convex. They are Theorems 4.3.1 and 4.3.8.
A basic technique here is to make the unit tangent bundle larger to an augmented unit
tangent bundle by blowing up using the compact sets of hyperspaces at the endpoints of
geodesics. The strategy to prove the second main result is analogous to the strictly convex
case for Ω. In Section 4.4, we discuss the lens condition for T-ends obtained by the uniform
middle eigenvalue condition. We will end by finding strictly convex smooth hypersurfaces
approximating any convex boundary components for these types of domains. Except for
Section 4.4, we will work only in Sn for simplicity.

4.1. Affine actions

Let Γ be an affine group acting on the affine subspaceAn with boundary bdAn = Sn−1
∞

in Sn, An is an open n-hemisphere. Let U be a properly convex invariant Γ-invariant
domain with the property in An:

Cl(U)∩bdAn = Cl(Ω)⊂ bdAn

for a properly convex open domain Ω. To begin with, we assume only that Ω is properly
convex. We also assume that Ω/Γ is a closed orbifold. The action of Γ on Sn or RPn is
said to be a properly convex affine action. Also, (Γ,U,Ω) is said to be a properly convex
affine triple.

A sharply supporting hyperspace P at x ∈ ∂Cl(Ω) is asymptotic to U if there are no
other sharply supporting hyperplane P′ at x so that P′ ∩An separates U and P∩An. In

77
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this case, we say that hyperspace P is asymptotic to U . We will use the abbreviation AS-
hyperspace to indicate for asymptotic sharply supporting hyperspace.

Let (Γ,U,Ω) be a properly convex affine triple. A properly convex affine action of Γ

is said to be asymptotically nice if with respect to U if Γ acts on a compact subset

J := {H|H is an AS- hyperspace in Sn at x ∈ ∂Cl(Ω),H ̸⊂ Sn−1
∞ }

where we require that every sharply supporting (n−2)-dimensional space of Ω in Sn−1
∞ is

contained in at least one of the element of J. As a consequence, for any sharply supporting
(n−2)-dimensional space Q of Ω, the set

HQ := {H ∈ J|H ⊃ Q}

is compact and bounded away from bdAn in the Hausdorff metric dH .

THEOREM 4.1.1. We assume that Γ is a hyperbolic group with a properly convex
affine action. Let Γ have an affine action on the affine subspace An, An ⊂ Sn, acting on
a properly convex domain Ω in bdAn. Suppose that Ω/Γ is a closed n− 1-dimensional
orbifold, and suppose that Γ satisfies the uniform middle-eigenvalue condition. Then Γ

acts on a properly convex open domain U with following properties:

• (Γ,U,Ω) is a properly convex triple, and Γ is asymptotically nice with the prop-
erly convex open domain U, and

• if any open set U ′ so that (Γ,U ′,Ω) is a properly convex triple, then the AS-
hyperspace at each point of ∂Cl(Ω) exists and is the same as that of U. That is
Γ is also asymptotically nice with respect to U ′.

DEFINITION 4.1.2. A subspace U of Rn is expanding under a linear map L if ||L(u)|| ≥
C ||u|| for every u ∈ Rn for a fixed norm ||·|| of Rn and C > 1.

A subspace U of Rn is contracting under a linear map L if ||L(u)|| ≤ C ||u|| for every
u ∈ Rn for a fixed norm ||·|| of Rn and 0 <C < 1.

The expanding condition is equivalent to the condition that all the norms of eigenval-
ues of L|U are strictly larger than 1. (See Corollary 1.2.3 of Katok and Hasselblatt [110].)

In this section, we will work with Sn only, while the RPn versions of the results follows
from the results here in an obvious manner by Results in Section 1.1.8 and then projecting
back to RPn.

For each element of g ∈ Γ,

(4.1.1) h(g) =

(
1

λẼ (g)
1/n ĥ(g) b⃗g

0⃗ λẼ(g)

)
where b⃗g is n×1-vector and ĥ(g) is an n×n-matrix of determinant ±1 and λẼ(g)> 0. In
the affine coordinates, it is of the form

(4.1.2) x 7→ 1

λẼ(g)
1+ 1

n
ĥ(g)x+

1
λẼ(g)

b⃗g.

Let λ1(g) denote the maximal norm of the eigenvalue of g, g ∈ Γ. If there exists a uniform
constant C > 1 so that

(4.1.3) C−1lengthΩ(g)≤ log
λ1(g)
λẼ(g)

≤ClengthΩ(g), g ∈ ΓΓΓẼ −{I},

then Γ is said to satisfy the umec with respect to the boundary hyperspace.
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By taking g−1 instead, we obtain the equivalent condition:

(4.1.4) C−1lengthΩ(g)≤
∣∣∣∣log

λn(g)
λẼ(g)

∣∣∣∣≤ClengthΩ(g), g ∈ ΓΓΓẼ −{I},

This implies that

(4.1.5) λ1(g)/λẼ(g)> 1 and λn(g)/λẼ(g)< 1

as we can see by taking the inverse of g.
We denote by L : Aff(An)→ GL(n,R) the homomorphism g 7→ Mg taking the linear

part of an affine transformation g : x 7→ Mgx+ b⃗g to Mg ∈ GL(n,R).

LEMMA 4.1.3. Let Γ be an affine group acting on the affine subspaceAn with bound-
ary bdAn in Sn satisfying the uniform middle eigenvalue condition with respect to bdAn.
Then the linear part of g equal to 1

λẼ (g)
1+ 1

n
ĥ(g) has a nonzero expanding subspace and a

contracting subspace in Rn. □

4.1.1. Flow setup. The following flow setup will be applicable in the following. A
slight modification is required later in Section 4.3.

We generalize the work of Goldman-Labourie-Margulis [91] using Anosov flows: We
assume that Γ has a properly convex affine action with the triple (Γ,U,Ω) for U ⊂ An.
Since Ω is properly convex, Ω has a Hilbert metric. Let T Ω denote the tangent space of Ω.
Let UΩ denote the unit tangent bundle over Ω. This has a smooth structure as a quotient
space of T Ω−O/∼ where

• O is the image of the zero-section, and
• v⃗ ∼ w⃗ if v⃗ and w⃗ are over the same point of Ω and v⃗ = sw⃗ for a real number s > 0.

Let An be the n-dimensional affine subspace. Let h : Γ → Aff(An) denote the repre-
sentation as described in (4.1.2). We form the product UΩ×An that is an affine bundle
over UΩ. We take the quotient Ã := UΩ×An by the diagonal action

g(x, u⃗) = (g(x),h(g)⃗u) for g ∈ Γ,x ∈ UΩ, u⃗ ∈An.

We denote the quotient by A which fibers over the smooth orbifold UΩ/Γ with fiberAn.
Let V n be the vector space associated with An. Then we can form Ṽ := UΩ×V n and

take the quotient under the diagonal action:

g(x, u⃗) = (g(x),L (h(g))⃗u) for g ∈ Γ,x ∈ UΩ, u⃗ ∈V n

where L is the homomorphism taking the linear part of g. We denote by V the fiber bundle
over UΩ/Γ with fiber V n.

There exists a flow Φ̂t : UΩ/Γ → UΩ/Γ for t ∈ R given by sending v⃗ to the unit
tangent vector to at α(t) where α is a geodesic tangent to v⃗ with α(0) equal to the base

point of v⃗. This flow is induced from the geodesic flow ˜̂
Φt : UΩ → UΩ.

We define a flow on Φ̃t : Ã → Ã by considering a unit-speed-geodesic flow-line l⃗ in
UΩ and considering l⃗ ×An and acting trivially on the second factor as we go from v⃗ to
Φ̂t (⃗v) (See remarks in the beginning of Section 3.3 and equations in Section 4.1 of [91].)
Each flow line in UΣ lifts to a flow line on A from every point in it. This induces a flow
Φt : A → A.

We define a flow on L (Φ̃t) : Ṽ → Ṽ by considering a unit-speed geodesic-flow line l⃗
in UΩ and and considering l⃗ ×V n and acting trivially on the second factor as we go from
v⃗ to ˜̂Φt (⃗v) for each t. This induces a flow L (Φt) : V → V. (This generalizes the flow on
[91].)
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We let ||·||fiber denote some metric on these bundles over UΣ/Γ defined as a fiberwise
inner product: We chose a cover of Ω/Γ by compact sets Ki and choosing a metric over
Ki×An and use the partition of unity. This induces a fiberwise metric on V as well. Pulling
the metric back to Ã and Ṽ, we obtain a fiberwise metric to be denoted by ||·||fiber.

We recall the trivial product structure. UΩ×An is a flat An-bundle over UΩ with a
flat affine connection ∇Ã, and UΩ×V n has a flat linear connection ∇Ṽ. The above action
preserves the connections. We have a flat affine connection ∇A on the bundle A over UΣ

and a flat linear connection ∇V on the bundle V over UΣ.

REMARK 4.1.4. In [91], the authors uses the term ”recurrent geodesic”. A geodesic
is “recurrent” in their sense if it accumulates to compact subsets in both directions. They
work in a compact subsurface where geodesics are recurrent in both directions. In our
work, since Ω/Γ is a closed orbifold, every geodesic is recurrent in their sense. Hence,
their theory generalizes here.

4.2. The proximal flow.

We will start with the case when Γ is hyperbolic and hence when Ω must be strictly
convex with ∂Cl(Ω) being C1 by Theorem 1.1 of [22].

In the case when the linear part of the affine maps are unimodular, Theorem 8.2.1 of
Labourie [117] shows that such a domain U exists but without showing the asymptotic
niceness of the group. Also, when the linear part of Γ is a geometrically finite Kleinian
group in SO(n,1), Barbot showed this result in Theorem 4.25 of [11] in the context of
globally hyperbolic Lorentzian spacetimes. We believe our theory also generalize to the
case when L (Γ) is convex cocompact. Fried also found a solution using cocyles [81] with
informal notes in the same context but in the dual picture of R-ends as in Chapter 5.

The hyperbolicity of Γ shows that Ω is strictly convex by Benoist [22]. We will gener-
alize the theorem to Theorem 4.3.1 without the hyperbolicity condition of Γ. Furthermore,
we will show that the middle eigenvalue condition actually implies the existence of the
properly convex domain U in Theorem 4.3.1. Also, the uniqueness of the set of asymptotic
hyperspaces is given by Theorem 4.3.8.

The reason for presenting weaker Theorem 4.1.1 is to convey the basic idea of the
proof of the generalized theorem.

4.2.1. The decomposition of the flow. We are assuming that Γ is hyperbolic. Since
Σ := Ω/Γ is a closed strictly convex real projective orbifold, UΣ := UΩ/Γ is a compact
smooth orbifold again. A geodesic flow on UΩ/Γ is Anosov and hence topologically
mixing. Hence, the flow is nonwandering everywhere. (See [20].) Γ acts irreducibly on Ω,
and ∂Cl(Ω) is C1. Denote by ΠΩ : UΩ → Ω the projection to the base points.

We can identify bdAn = S(V n) = Sn−1 where g acts by L (g) ∈ GL(n,R). We give a
decomposition of Ṽ into three parts Ṽ+, Ṽ0, Ṽ−:

• For each vector u⃗ ∈ UΩ, we find the maximal oriented geodesic l ending at the
backward endpoint ∂+l and the forward endpoint ∂−l ∈ ∂Cl(Ω). They corre-
spond to the 1-dimensional vector subspaces Ṽ+(⃗u) and Ṽ−(⃗u)⊂V .

• Recall that ∂Cl(Ω) is C1 since Ω is strictly convex (see [22]) There exists a
unique pair of sharply supporting hyperspheres H+ and H− in bdAn at each of
∂+l and ∂−l. We denote by H0 = H+∩H−. It is a codimension 2 great sphere in
bdAn and corresponds to a vector subspace Ṽ0(⃗u) of codimension-two in Ṽ.
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• For each vector u⃗, we find the decomposition of V as Ṽ+(⃗u)⊕ Ṽ0(⃗u)⊕ Ṽ−(⃗u)
and hence we can form the subbundles Ṽ+, Ṽ0, Ṽ− over UΩ where

Ṽ = Ṽ+⊕ Ṽ0 ⊕ Ṽ−.

The map UΩ → ∂Cl(Ω) by sending a vector to the endpoint of the geodesic tangent to it is
C1. The map ∂Cl(Ω)→H sending a boundary point to its sharply supporting hyperspace
in the space H of hyperspaces in bdAn is continuous. Hence Ṽ+, Ṽ0, and Ṽ− are con-
tinuous bundles. Since the action preserves the decomposition of Ṽ, V also decomposes
as

(4.2.1) V = V+⊕V0 ⊕V−.

For each complete geodesic l in Ω, let l⃗ denote the set of unit vectors on l in one of
the two directions. On l⃗, we have a decomposition

Ṽ|⃗l = Ṽ+ |⃗l ⊕ Ṽ0 |⃗l ⊕ Ṽ− |⃗l of form

l⃗ × Ṽ+(⃗u),⃗ l × Ṽ0(⃗u),⃗ l × Ṽ−(⃗u) for a vector u⃗ tangent to l

where we recall:
• Ṽ+(⃗u) is the space of vectors in the direction of the backward endpoint of l⃗.
• Ṽ−(⃗u) is the space of vectors in the direction of the forward endpoint of l⃗.
• Ṽ0(⃗u) is the space vectors in directions of H0 = H+∩H− for ∂ l.

That is, these bundles are constant bundles along l.
Suppose that g ∈ Γ acts on a complete geodesic l with a unit vector u⃗ in the direction

of the action of g. Then Ṽ−(⃗u) and Ṽ+(⃗u) corresponding to endpoints of l are respectively
eigenspaces of the largest norm λ1(g) of the eigenvalues and the smallest norm λn(g) of
the eigenvalues of the linear part L (g) of g. Hence

• on Ṽ−(⃗u), g acts by expending by

(4.2.2)
λ1(g)
λẼ(g)

> 1,

and
• on Ṽ+(⃗u), g acts by contracting by

(4.2.3)
λn(g)
λẼ(g)

< 1.

There exists a flow Φ̂t : UΩ → UΩ for t ∈ R given by sending v⃗ to the unit tangent
vector to at α(t) where α is a geodesic tangent to v⃗ with α(0) equal to the base point of v⃗.

We define a flow on Φ̃t : Ã → Ã by considering a unit-speed geodesic-flow line l⃗ in
UΩ and considering l⃗ ×An and acting trivially on the second factor as we go from v⃗ to
Φ̂t (⃗v) (See remarks in the beginning of Section 3.3 and equations in Section 4.1 of [91].)
Each flow line in UΣ lifts to a flow line on A from every point in it. This induces a flow
Φt : A → A.

We defined a flow on Φ̃t : Ṽ → Ṽ by considering a unit-speed geodesic-flow line l⃗ in
UΩ and and considering l⃗ ×V and acting trivially on the second factor as we go from v⃗ to
Φ̃t (⃗v) for each t. (This generalizes the flow on [91].) Also, L (Φ̃t) preserves Ṽ+, Ṽ0, and
Ṽ− since on the line l, the endpoint ∂±l does not change. Again, this induces a flow

L (Φ)t : V → V,V+ → V+,V0 → V0,V− → V−.
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We let ||·||S denote some metric on these bundles over UΣ/Γ defined as a fiberwise
inner product: We chose a cover of Ω/Γ by compact sets Ki and choosing a metric over
Ki×An and use the partition of unity. This induces a fiberwise metric on V as well. Pulling
the metric back to Ã and Ṽ, we obtain a fiberwise metrics to be denoted by ||·||S.

By the uniform middle-eigenvalue condition, V satisfies the following properties for
u⃗ ∈ UΩ/Γ:

• the flat linear connection ∇V on V is bounded with respect to ||·||fiber.
• hyperbolicity: There exists constants C,k > 0 so that

||L (Φt)(⃗v)||fiber ≥
1
C

exp(kt) ||⃗v||fiber as t → ∞(4.2.4)

for v⃗ ∈ V+ and

||L (Φt)(⃗v)||fiber ≤C exp(−kt) ||⃗v||fiber as t → ∞(4.2.5)

for v⃗ ∈ V−

Using Proposition 4.2.1, we prove this property by taking C sufficiently large according to
t1, which is a standard technique.

4.2.2. The proof of the proximal property. We may assume that Γ has no finite
order elements by taking a finite index group using Theorem 1.1.19. Also, by Benoist
[22], elements of Γ are positive bi-proximal. (See Theorem 1.3.12.)

We can apply this to V− and V+ by possibly reversing the direction of the flow. The
Anosov property follows from the following proposition.

Let V−,1 denote the subset of V− of the unit length under ||·||fiber.

PROPOSITION 4.2.1. Let Ω/Γ be a closed strictly convex real projective orbifold with
hyperbolic fundamental group Γ. Then there exists a constant t1 so that

||L (Φt)(⃗v)||fiber ≤ C̃ ||⃗v||fiber , v⃗ ∈ V− and ||L (Φ)−t (⃗v)||fiber ≤ C̃ ||⃗v||fiber , v⃗ ∈ V+

for t ≥ t1 and a uniform C̃, 0 < C̃ < 1.

PROOF. It is sufficient to prove the first part of the inequalities since we can substitute
t →−t and switching V+ with V− as the direction of the vector changed to the opposite
one.

By following Lemma 4.2.5, the uniform convergence implies that for given 0 < ε < 1,
for every vector v⃗ in V−,1, there exists a uniform T so that for t > T , L (Φt)(⃗v) is in an
ε-neighborhood Uε(S0) of the image S0 of the zero section. Hence, we obtain that L (Φ)t
is uniformly contracting near S0, which implies the result. □

Now, we will prove Lemma 4.2.5; but we need some preliminary material:

REMARK 4.2.2. We need to only prove the following for a finite index group of ΓΓΓ

since the contracting properties are invariant under finite regular covering maps. Hence,
we may assume that each element is proximal or semi-proximal by Theorem 1.3.12.

LEMMA 4.2.3. Let Γ act properly discontinuously on a strictly convex domain Ω.
Assume that gi is a sequence of distinct positive bi-proximal elements of Γ. Suppose that
the sequence of attracting fixed point ai and that of repelling fixed point {ri} of gi form
sequences converging to distinct pair of points. Then

(4.2.6) {lengthΩ(gi)}→ ∞
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PROOF. Since {ai} → a∗ and {ri} → r∗, the segment airi passes a fixed compact
domain U in Ω for sufficiently large i. Suppose that lengthΩ(gi)<C for a constant C. Then
gi(U) passes airi for each i. Hence, gi(U) is a subset a ball of radius 2L+C. Since {gi}
form a sequence of mutually distinct elements, this contradicts the proper discontinuity of
the action of Γ. □

LEMMA 4.2.4. Let Ω be strictly convex and C1. We choose a subsequence {gi} of
positive-bi-proximal elements of Γ so that the sequences {ai} and {ri} are convergent for
the attracting fixed point ai ∈ Cl(Ω) and the repelling fixed point ri ∈ Cl(Ω) of each gi.
Suppose that

{ai}→ a∗ and {ri}→ r∗ for a∗,r∗ ∈ ∂Cl(Ω),a∗ ̸= r∗.
Suppose that gi is an unbounded sequence. Then for every compact K ⊂ Cl(Ω)−{r∗},

(4.2.7) {gi(K)}→ {a∗}
uniformly.

PROOF. Each gi acts on an (n− 3)-dimensional subspace Wgi in Sn−1
∞ disjoint from

Ω. Here, Wgi is the intersection of two sharply supporting hyperspaces of Ω at ai and
ri. The set {Wgi} is precompact by our condition. By the C1-property, we may assume
that {Wgi} → W∗ for an n − 3-dimensional subspace W∗ that is the intersection of two
hyperspaces supported at a∗ and r∗. Also, Wgi ∩Cl(Ω) = /0 by this property.

Let ηi denote the complete geodesic connecting ai and ri. Let η∞ denote the one
connecting a∗ and r∗. Since W∗ is the intersection of two sharply supporting hyperspaces
of Ω at a∗ and r∗, η∞ has endpoints a∗,r∗, and Ω is strictly convex, it follows ⟨η∞⟩∩W∗ = /0.

We call Pi ∩Ω for the n−2-dimensional subspace Pi containing Wgi a slice of gi. The
closure of a component of Ω with a slice of gi removed is called a half-space of gi.

Let Hi denote the half-space of gi containing K. Since {Cl(ηi)} and {Wgi} are geomet-
rically convergent respectively, and ⟨η∞⟩∩W∞ = /0, it follows that {gi(Pi)} geometrically
converges to a hyperspace containing W∞ passing a∗. Therefore, one deduces easily that
{gi(Hi)}→ {a∗} geometrically. Since K ⊂ Hi, the lemma follows. □

The line bundle V− lifts to Ṽ− where each unit vector u⃗ on Ω one associates the line
V−,⃗u corresponding to the starting point in ∂Cl(Ω) of the oriented geodesic l tangent to it.
Ṽ− |⃗l equals l⃗×V−,⃗u. L (Φ)t lifts to a parallel translation or constant flow L (Φ̃)t of form

(⃗u, v⃗)→ (Φ̂t (⃗u), v⃗).

LEMMA 4.2.5. Suppose that Ω is strictly convex with ∂Cl(Ω) being C1, and Γ acts
properly discontinuously and cocompactly on Ω satisfying the uniform middle eigenvalue
condition. Then {||L (Φ)t |V−||fiber}→ 0 uniformly as t → ∞.

PROOF. Let F be a fundamental domain of UΩ under Γ. It is sufficient to prove this
for L (Φ̃)t on the fibers of over F of UΩ with a fiberwise metric ||·||fiber.

We choose an arbitrary sequence {xi}, {xi} → x in F . For each i, let v⃗−,i be a Eu-
clidean unit vector in V−,i := Ṽ−(xi) for the unit vector xi ∈ UΩ. That is, v⃗−,i is in the
1-dimensional subspace in Rn, corresponding to the backward endpoint of the geodesic li
in Ω determined by xi in ∂Cl(Ω) and in a direction of Cl(Ω).

We will show that{∣∣∣∣L (Φ̃ti)(xi, v⃗−,i)
∣∣∣∣

fiber

}
→ 0 for any sequence ti → ∞,

which is sufficient to prove the uniform convergence to 0 by the compactness of V−,1.
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FIGURE 1. The figure for Lemma 4.2.5. Here yi,y j denote the images
under ΠΩ the named points in the proof of Lemma 4.2.5.

It is sufficient to show that any sequence of {ti}→ ∞ has a subsequence {t j} so that

{
∣∣∣∣L (Φ̃t j)(xi, v⃗−, j)

∣∣∣∣
fiber

}→ 0.

This follows since if the uniform convergence did not hold, then we can easily find a
sequence without such subsequences.

Let yi := Φ̂ti(xi) for the lift of the flow Φ̂. By construction, we recall that each ΠΩ(yi)
is in the geodesic li. Since we have the sequence of vectors {xi} → x, xi,x ∈ F , we obtain
that {li} geometrically converges to a line l∞ passing ΠΩ(x) in Ω. Let y+ and y− be the
endpoints of l∞ where {ΠΩ(yi)}→ y−. Hence,

{((⃗v+,i))}→ y+,{((⃗v−,i))}→ y−.

Find a deck transformation gi so that gi(yi) ∈ F and gi acts on the line bundle Ṽ− by
the linearization of the matrix of form of (4.1.1):

L (gi) : Ṽ− → Ṽ− with

(yi, v⃗) 7→ (gi(yi),L (gi)(⃗v)) where

L (gi) =
1

λẼ(gi)
1+ 1

n
ĥ(gi) : Ṽ−(yi) = Ṽ−(xi)→ Ṽ−(gi(yi)).(4.2.8)

(Goal): We will show {(gi(yi),L (gi)(⃗v−,i))}→ 0 under ||·||fiber. This will complete
the proof since gi acts as isometries on Ṽ− with ||·||fiber.

Also, we may assume that {gi} is a sequence of mutually distinct elements up to a choice
of subsequences since g−1

i (F) contains yi and yi forms an unbounded sequence.
Since gi(li)∩F ̸= /0, we choose a subsequence of gi and relabel it gi so that {gi(li)}

converges to a nontrivial line l̂∞ in Ω.
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By our choice of li, yi, gi as above, and Remark 4.2.2, we may assume without loss of
generality that each gi is positive bi-proximal since Ω is strictly convex.

We choose a subsequence of {gi} so that the sequences {ai} and {ri} are convergent
for the attracting fixed point ai ∈ Cl(Ω) and the repelling fixed point ri ∈ Cl(Ω) of each gi.
Then

{ai}→ a∗ and {ri}→ r∗ for a∗,r∗ ∈ ∂Cl(Ω).

(See Figure 1.)
Suppose that a∗ = r∗. Then we choose an element g ∈ Γ so that g(a∗) ̸= r∗ and replace

the sequence by {ggi} and replace F by F ∪g(F). The above uniform convergence condi-
tion still holds. Then for the new attracting fixed points a′i of ggi, we have {a′i} → g(a∗)
and the sequence {r′i} of repelling fixed point r′i of ggi converges to r∗ also by Lemma
5.3.8. Hence, we may assume without loss of generality that

a∗ ̸= r∗
by replacing our sequence gi.

Now, Lemma 4.2.4 shows that for every compact K ⊂ Cl(Ω)−{r∗},

(4.2.9) {gi(K)}→ {a∗}
uniformly.

Suppose that both y+,y− ̸= r∗. Then {gi(li)} converges to a singleton {a∗} by (4.2.9)
and this cannot be since l̂∞ ⊂ Ω. If

r∗ = y+ and y− ∈ ∂Cl(Ω)−{r∗},
then {gi(yi)}→ a∗ by (4.2.9) again. Since gi(yi) ∈ F , this is a contradiction. Therefore

r∗ = y− and y+ ∈ ∂Cl(Ω)−{r∗}.
Let di = ((⃗v+,i)) denote the other endpoint of li from ((⃗v−,i)).

• Since {((⃗v−,i))} → y− and {li} converges to a nontrivial line l∞, it follows that
{di = ((⃗v+,i))} is in a compact set in ∂Cl(Ω)−{r∗}, and {di}→ y+.

• Then {gi(di)}→ a∗ as {di} is in a compact set in ∂Cl(Ω)−{r∗}.
• Thus, {gi(((⃗v−,i)))}→ y′ ∈ ∂Cl(Ω) where a∗ ̸= y′ holds since {gi(li)} converges

to a nontrivial line l̂∞ in Ω as we said shortly above.
Also, gi has an invariant great sphere Sn−2

i ⊂ bdAn containing the attracting fixed
point ai and sharply supporting Ω at ai. Thus, ri is uniformly bounded at a distance from
Sn−2

i since {ri}→ y− = r∗ and {ai}→ a∗ with Sn−2
i geometrically converging to a sharply

supporting sphere Sn−2
∗ at a∗.

Let ||·||E denote the standard Euclidean metric of Rn.
• Since {ΠΩ(yi)} → y−, ΠΩ(yi) is also uniformly bounded away from ai and the

tangent sphere Sn−1
i at ai.

• Since {((⃗v−,i))}→ y−, the vector v⃗−,i has the component v⃗p
i parallel to ri and the

component v⃗S
i in the direction of Sn−2

i where v⃗−,i = v⃗p
i + v⃗S

i .
• Since {ri}→ r∗ = y− and {((⃗v−,i))}→ y−, we obtain {

∣∣∣∣⃗vS
i

∣∣∣∣
E}→ 0 and that

1
C

<
∣∣∣∣⃗vp

i

∣∣∣∣
E <C

for some constant C > 1.
• gi acts by preserving the directions of Sn−2

i and ri.

Since {gi(((⃗v−,i)))} converging to y′, y′ ∈ ∂Cl(Ω), is bounded away from Sn−2
i uniformly,

we obtain that
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• considering the homogeneous coordinates((
L (gi)(⃗vS

i ) : L (gi)(⃗v
p
i )
))
,

we obtain that the Euclidean norm of

L (gi)(⃗vS
i )∣∣∣∣L (gi)(⃗v

p
i )
∣∣∣∣

E

is bounded above uniformly.

Since ri is a repelling fixed point of gi and
∣∣∣∣⃗vp

i

∣∣∣∣
E is uniformly bounded above, {L (gi)(⃗v

p
i )}→

0 by (4.1.3) and (4.2.6).

{L (gi)(⃗v
p
i )}→ 0 implies {L (gi)(⃗vS

i )}→ 0

for ||·||E . Hence, we obtain

(4.2.10) {||L (gi)(⃗v−,i))||E}→ 0.

Recall that L (Φ̃)t is the identity map on the second factor of UΩ×V n.

gi(L (Φ̃)ti(xi, v⃗−,i)) = (gi(yi),L (gi)(⃗v−,i)) ∈ F ×V−

is a vector over the compact fundamental domain F of UΩ.

(gi(yi),L (gi)(⃗v−,i))

is a vector over the compact fundamental domain F of UΩ.{∣∣∣∣L (gi)(Φ̃ti)(xi, v⃗−,i)
∣∣∣∣

E

}
→ 0 implies

{∣∣∣∣L (gi)(Φ̃ti)(xi, v⃗−,i)
∣∣∣∣

fiber

}
→ 0

since gi(xi) ∈ F and ||·||fiber and ||·||E are compatible over points F . Since gi is an isometry
of ||·||fiber, we conclude that {

∣∣∣∣L (Φ̃ti)(x, v⃗−,i)
∣∣∣∣

fiber}→ 0: □

4.2.3. The neutralized section. We denote by Γ(V) the space of sections UΣ → V
and by Γ(A) the space of sections UΣ → A. Recall from [91] the one parameter-group of
operators DΦt,∗ on Γ(V) and Φt,∗ on Γ(A). In our terminology DΦt,∗ = L (Φt). Recall
Lemma 8.3 of [91] also. We denote by φ the vector field generated by this flow on UΣ.

A section s : UΣ → A is neutralized if

(4.2.11) ∇
A
φ s ∈ V0.

LEMMA 4.2.6. If ψ ∈ Γ(A), and

t 7→ DΦt,∗(ψ)

is a path in Γ(V) that is differentiable at t = 0, then

d
dt

∣∣∣∣
t=0

(DΦt)∗(ψ) = ∇
A
φ (ψ).

Recall that UΣ is a recurrent set under the geodesic flow.

LEMMA 4.2.7. A neutralized section s0 : UΣ → A exists. This lifts to a map s̃0 : UΩ →
Ã so that s̃0 ◦ γ = γ ◦ s̃0 for each γ in Γ acting on Ã = UΩ×An.
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PROOF. Let s be a continuous section UΣ → A. We construct ∇A± by projecting the
values of ∇ to V± and ∇A0 by projecting the values of ∇ to V0. We decompose

∇
A
φ (s) = ∇

A+
φ

(s)+∇
A0
φ
(s)+∇

A−
φ

(s) ∈ V

so that ∇
A±
φ

(s) ∈ V± and ∇
A0
φ
(s) ∈ V0 hold. This can be done since along the vector field

φ , V± and V0 are constant bundles. By the uniform convergence property of (4.2.4) and
(4.2.5), the following integrals converge to smooth functions over UΣ. Again

s0 = s+
∫

∞

0
(DΦt)∗(∇

A−
φ

(s))dt −
∫

∞

0
(DΦ−t)∗(∇

A+
φ

(s))dt

is a continuous section and ∇A
φ
(s0) = ∇

A0
φ
(s0) ∈ V0 as shown in Lemma 8.4 of [91].

Since UΣ is connected, there exists a fundamental domain F so that we can lift s0 to
s̃′0 defined on F mapping to A. We can extend s̃′0 to UΩ → UΩ×An. □

Let N2(A
n) denote the space of codimension two affine subspaces of An. We denote

by G(Ω) the space of maximal oriented geodesics in Ω. We use the quotient topology on
both spaces. There exists a natural action of Γ on both spaces.

For each element g ∈ Γ−{I}, we define N2(g): Now, g acts on bdAn with invariant
subspaces corresponding to invariant subspaces of the linear part L (g) of g. Since g and
g−1 are positive proximal,

• a unique fixed point in bdAn corresponds to the largest norm eigenvector, an
attracting fixed point in bdAn, and

• a unique fixed point in bdAn corresponds to the smallest norm eigenvector, a
repelling fixed point

by [20] or [17]. There exists an L (g)-invariant vector subspace V0
g complementary to the

sum of the subspace generated by these eigenvectors. (This space equals V0(⃗u) for the
unit tangent vector u⃗ tangent to the unique maximal geodesic lg in Ω on which g acts.) It
corresponds to a g-invariant subspace M(g) of codimension two in bdAn.

Let c̃ be the geodesic in UΣ that is g-invariant for g ∈ Γ. s̃0(c̃) lies on a fixed affine
subspace parallel to V 0

g by the neutrality, i.e., Lemma 4.2.7. There exists a unique affine
subspace N2(g) of codimension two in An containing s̃0(c̃). Immediate properties are
N2(g) = N2(gm),m ∈ Z−{0} and that g acts on N2(g).

DEFINITION 4.2.8. We define S′(∂Cl(Ω)) the space of hyperspaces P meeting An

where P∩bdAn is a sharply supporting hyperspace in bdAn to Ω. We denote by S(∂Cl(Ω))
the space of pairs (x,H) where H ∈ S′(∂Cl(Ω)), and x is in the boundary of H and in
∂Cl(Ω).

Define ∆ to be the diagonal set of ∂Cl(Ω)× ∂Cl(Ω). Denote by Λ∗ = ∂Cl(Ω)×
∂Cl(Ω)−∆. Let G(Ω) denote the space of maximal oriented geodesics in Ω. G(Ω) is in
a one-to-one correspondence with Λ∗ by the map taking the maximal oriented geodesic to
the ordered pair of its endpoints.

LEMMA 4.2.9. G(Ω) is a connected subspace.

PROOF. We obtain the proof by generalizing Lemma 1.3 of [91] using a bi-proximal
element of Γ. [22]. Or one can use the fact that UΩ is connected. □

PROPOSITION 4.2.10.
• There exists a continuous function ŝ : UΩ → N2(A

n) equivariant with respect to
Γ-actions.
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• Given g ∈ Γ and for the unique unit-speed geodesic l⃗g in UΩ lying over a geo-
desic lg where g acts on, ŝ(⃗lg) = N2(g).

• This gives a continuous map

s̄ : G(Ω) = ∂Cl(Ω)×∂Cl(Ω)−∆ → N2(A
n)

again equivariant with respect to the Γ-actions. There exists a continuous func-
tion

τ : Λ
∗ → S(∂Cl(Ω).

PROOF. Given a vector u⃗ ∈ UΩ, we find s̃0(⃗u). There exists a lift φ̃t : UΩ → UΩ of
the geodesic flow φt . Then s̃0(φ̃t (⃗u)) is in an affine subspace Hn−2 parallel to V0 for u⃗ by
the neutrality condition (4.2.11). We define ŝ(⃗u) to be this Hn−2.

For any unit vector u⃗′ on the maximal (oriented) geodesic in Ω determined by u⃗, we
obtain ŝ(⃗u′) = Hn−2. Hence, this determines the continuous map s̄ : G(Ω)→ N2(A

n). The
Γ-equivariance comes from that of s̃0.

For g ∈ Γ, u⃗ and g(⃗u) lie on the lift l⃗′g of the g-invariant geodesic l⃗g in UΩ provided u⃗
is tangent to l⃗g. Since g(s̃0(⃗u)) = s̃0(g(⃗u)) by equivariance, g(s̃0(⃗u)) lies on ŝ(⃗u) = ŝ(g(⃗u))
in UΩ by the third paragraph before the proposition. We conclude g(s̄(⃗l′g)) = s̄(⃗l′g), which
shows N2(g) = ŝ(⃗lg).

The map s̄ is defined since ∂Cl(Ω)×∂Cl(Ω)−∆ is in one-to-one correspondence with
the space G(Ω). The map τ is defined by taking for each pair (x,y) ∈ Λ∗

• we take the geodesic l with endpoints x and y, and
• taking the hyperspace containing s̄(l) and its boundary containing x.

□

4.2.4. The asymptotic niceness. We denote by h(x,y) the hyperspace part in τ(x,y)=
(x,h(x,y)).

LEMMA 4.2.11. Let U be a ΓΓΓẼ -invariant properly convex open domain in Rn so that
bdU ∩bdAn = Cl(Ω). Suppose that x and y are attracting and repelling fixed points of an
element g of Γ in ∂Cl(Ω). Then h(x,y) is disjoint from U.

PROOF. Suppose not. h′(x,y) := h(x,y)∩An is a g-invariant open hemisphere, and x
is an attracting fixed point of g in it. (We can choose g−1 if necessary.) Then U ∩h(x,y) is
a g-invariant properly convex open domain containing x in its boundary.

Suppose first that h′(x,y) has a limit point z of g−n(u) for some point u ∈ h′(x,y)∩U .
Here, y is the smallest eigenvalue of the linear part of g so that y is the attracting fixed

point of a component of An − h′(x,y) containing U for g−1. The antipodal point y− is
the attracting fixed point of the other component An − h′(x,y). Take a ball B in U with a
center u in the convex set U ∩ h(x,y) Then {g−n(u)} converges to z as n → ∞. Let u1,u2
be two nearby points in B so that u1u2 is separated by h′(x,y) and u1u2 ∩ h′(x,y) = u.
Then {g−ni(u1u2)} geometrically coverges to yz∪y−z for some sequence ni. Hence Cl(U)
cannot be properly convex.

If the above assumption does not hold, then an orbit g−n(u) for u ∈U ∩h′(x,y) has a
limit point only in the boundary of h′(x,y). Since g is biproximal, x is the repelling fixed
point of h′(x,y) under g−1. Hence, a limit point y′ is never x or x−.

Since y′ is a limit point, y′ ∈ Cl(U). It follows y′ ∈ Cl(Ω). Now, x,y′ ∈ Cl(Ω) implies
xy′ ⊂ bdAn ⊂ Cl(Ω). Finally, xy′ ⊂ ∂h′(x,y) for the sharply supporting subspace ∂h′(x,y)
of Cl(Ω) violates the strict convexity of Ω. (See Definition 6.0.3 and Benoist [20].)

□
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Lemma 4.2.12 will be generalized to Lemma 4.3.7 with a proof generalized word-for-
word.

LEMMA 4.2.12. Let U be a ΓΓΓẼ -invariant properly convex open domain in Rn so that
bdU ∩ bdAn = Cl(Ω). Let Γ acts on strictly convex domain Ω with ∂Ω being C1 in a
cocompact manner. Let (x,y) ∈ ∂Cl(Ω)×∂ (Cl(Ω)−∆. Then

• τ(x,y) does not depend on y and is unique for each x.
• h′(x,y) := h(x,y)∩An contains s̄(xy) but is independent of y and h(x,y) = h(x).
• The map τ ′ : ∂Cl(Ω)→ S(∂Cl(Ω)) induced from τ is continuous.
• if any open set U ′ so that (Γ,U ′,Ω) is a properly convex triple, then the AS-

hyperspace at each point of ∂Cl(Ω) exists and is the same as that of U.

PROOF. Let l1 be an augmented geodesic in UΩ with endpoints x and z oriented
towards x. Consider a connected subspace Lx of UΩ of points of maximal augmented
geodesics in Ω ending at x. The space of geodesic leaves in Lx is in one-to-one correspon-
dence with ∂Cl(Ω)−{x}. We will show that τ is locally constant on Lx showing that it is
constant.

Let l̃1 denote the lift of l1 in UΩ. Let S be a compact neighborhood in Lx of a point
y of l̃1 transverse to l̃1. Any two rays of geodesic flow Φ : S×R→ UΩ are asymptotic on
L(x,h1) by Lemma 3.1.4.

Let y ∈ l̃1. Consider another point y′ ∈ S ⊂ UΩ with with endpoints x and z′ where

(x,z),(x,z′) ∈ Λ
∗.

Choose a fixed fundamental domain F of ÛΩ. Let {yi = Φti(y)},yi ∈ l̃1, be a sequence
whose projection under ΠΩ convergs to x. We use a deck transformation gi so that gi(yi) ∈
F . Then gi(τ(l1)) = τ(gi(l1)) is a hyperspace containing gi(x) and ŝ(gi(l̃1)).

Let v⃗+ denote a vector in the direction of the end of l1 other than x. Equation (4.2.4)
shows that {||L (Φt)|V+||fiber} → ∞ as t → ∞. Since gi is isometry under ||·||fiber, and
Φ̂ti(y) = yi and gi(yi) ∈ F , it follows that the Ṽ+-component of gi(yi, v⃗+) satisfies

(4.2.12) {||L (gi)(⃗v+)||fiber}→ ∞.

Since gi(yi) ∈ F and under the Euclidean norm since over a compact set F the metrics are
compatible by a uniform constant, we obtain {||L (gi)(⃗v+)||E}→ ∞.

Since the affine hyperplanes in τ((x,z)) and τ((x,z′)) contain x in their boundary, they
restrict to parallel affine hyperplanes in A. Suppose that the affine hyperspace part of
τ(x,z) differs from one of τ((x,z′) by a translation by a constant times v⃗+. This implies
that the sequence of the Euclidean distances between the respective affine hyperspaces
corresponding to

gi(τ((x,z)) and gi(τ((x,z′))

goes to infinity as i → ∞.
Now consider Φ(S× [ti, ti+1])⊂UΩ, and we have obtained gi so that gi(Φ(S× [ti, ti+

1])) is in a fixed compact subset P̂ of UΩ by the uniform boundedness of Φ(S× [ti, ti+1]))
shown in the second paragraph of this proof. There is a map E : UΩ → Λ∗ given by
sending the vector in UΩ to the ordered pair of endpoints and supporting hyperspaces of
the geodesic passing the vector. Since ŝ is continuous, τ ◦E|P̂ is uniformly bounded. The
above paragraph shows that the sequence of the diameters of τ ◦E|gi(Φ(S× [ti, ti+1])) can
become arbitrarily large. This is a contradiction. Hence, τ is constant on Lx.

This proves the first two items. The third item follows since τ ′ is an induced map.
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Define H(x) to be the open n-dimensional hemisphere in Sn bounded by the great
sphere containing the affine hyperspace τ ′(x) and containing Ω. Let

Û :=
⋂

x∈∂Cl(Ω)

H(x)∩An.

We claim that for any x,y in ∂Cl(Ω), h′(x,y) is disjoint from U : By Theorem 1.1 of
Benoist [20], the geodesic flow on Ω/Γ is Anosov, and hence the set of closed geodesics
in Ω/Γ is dense in the space of geodesics by the basic property of the Anosov flow. Since
the fixed points are in ∂Cl(Ω), we can find sequences {xi},{xi} → x and {yi},{yi} → y
where xi and yi are fixed points of an element gi ∈ Γ for each i. If h′(x,y)∩U ̸= /0, then
h′(xi,yi)∩U ̸= /0 for i sufficiently large by the continuity of the map τ from Proposition
4.2.10. This is a contradiction by Lemma 4.2.11

In particular this also holds for Û and U ′ in the premise.
Now, we show that the affine hyperspace part of τ(x) is an AS-hyperspace for U :

Suppose that for x ∈ ∂Cl(Ω), the AS-hyperspace Q with Q ̸= τ(x). Then the hemisphere
HQ bounded by Q contains U . By the above disjointness of h(x,y) to U , HQ ⊂ H(x).
Then again we choose a segment l1 ending at x. Then we choose sequences gi as above
in the proof before (4.2.12). This shows as above the sequence of the Euclidean distances
between the respective affine hyperspace parts of

gi(τ(x)) and gi(Q)

goes to infinity. Proposition 4.3.6 shows that {gi(τ(x))} is in the image of τ , a compact
set. The set of suppprting hyperplanes of U is bounded away from bdAn since they have
to be between those of the image of τ and U . Since gi(Q) is still a supporting hyperplane
of U , the equation is a contradiction.

Now, we can replace U with U ′. The existence of an AS-plane at each point follows
by the argument above that h′(x,y) is disjoint from U ′ now replacing U . The forth item
follows by the paragraph above also.

□

Proof of Theorem 4.1.1. Let

Û :=
⋂

x∈∂Cl(Ω)

H(x)∩An.

Then this follows from Lemma 4.2.12.
□

4.3. Generalization to nonstrictly convex domains

4.3.1. Main argument. Now, we drop the condition of hyperbolicity on Γ. Hence,
Ω, Ω ⊂ bdAn, is not necessarily strictly convex. Also, Ω is allowed to be the interior of
a strict join. Here, we don’t assume that Γ is not necessarily hyperbolic, and hence, it is
more general. Also, we obtain an asymptotically nice properly convex domain U in An

where Γ acts properly on.

THEOREM 4.3.1. Let Γ have an affine action on the affine subspace An, An ⊂ Sn,
acting on a properly convex domain Ω in bdAn. Suppose that Ω/Γ is a closed n− 1-
dimensional orbifold, and suppose that Γ satisfies the uniform middle-eigenvalue condi-
tion. Then Γ is acts on a properly convex open domain U with the following properties:

• (Γ,U,Ω) is a properly convex triple, and Γ is asymptotically nice with the prop-
erly convex open domain U, and



4.3. GENERALIZATION TO NONSTRICTLY CONVEX DOMAINS 91

• if any open set U ′ so that (Γ,U ′,Ω) is a properly convex triple, then the AS-
hyperspace at each pair of a point x of ∂Cl(Ω) and a strictly supporting hyper-
plane of Ω in bdAn at x exists and is the same as that of U. That is U ′ is also
asymptotically nice.

The proof is analogous to Theorem 4.1.1. Now Ω is not strictly convex and hence
for each point of ∂Cl(Ω) there might be more than one sharply supporting hyperspace in
bdAn. We generalize UΩ to the augmented unit tangent bundle

(4.3.1) UAg
Ω := {(⃗x,Ha,Hb)| x⃗ ∈ UΩ is a direction vector at a point

of a maximal oriented geodesic l⃗x in Ω,
Ha is a sharply supporting hyperspace in bdAn at the starting point of l⃗x,

Hb is a sharply supporting hyperspace in bdAn at the ending point of l⃗x}.
Here, we regard x⃗ as a based vector and hence has information on where it is on l and
Ha and Hb is given orientations so that Ω is in the interior direction to them. This is not
a manifold but a locally compact Hausdorff space and is a metrizable space. Since the
set of sharply supporting hyperspaces of Ω at a point of ∂Cl(Ω) is compact, UAgΩ/Γ is
a compact Hausdorff space fibering over Ω/Γ with compact fibers. The obvious metric
is induced from Ω and the space Sn∗ of oriented hyperspaces in Sn. We also write ΠAg :
UAgΩ → Ω the obvious projection (⃗x,Ha,Hb) = ΠΩ(⃗x).

From Section 1.5, we recall the augmented boundary ∂ AgCl(Ω). We define

Λ
∗Ag = ∂

AgCl(Ω)×∂
AgCl(Ω)− (ΠAg ×ΠAg)

−1(∆Ag)

where ∆Ag is defined as the closed subset

{(x,y)|x,y ∈ ∂Cl(Ω),x = y or xy ⊂ ∂Cl(Ω)}.
Define GAg(Ω) denote the set of oriented maximal geodesics in Ω with endpoints aug-
mented with the sharply supporting hyperspace at each endpoint. The elements are called
augmented geodesics. There is a one to one and onto correspondence between Λ∗Ag and
GAg(Ω). We denote by (x,h1)(y,h2) the complete geodesic in Ω with endpoints x,y and
sharply supporting hyperspaces h1 at x and h2 at y.

LEMMA 4.3.2. GAg(Ω) is a connected subspace.

PROOF. We can use the fact that UAgΩ is connected. □

Now, we follow Section 4.1.1 and define Ã = UAgΩ×An, Ṽ = UAgΩ×V n, A by
UAgΩ×An/Γ and V := UAgΩ×V n/Γ and corresponding subbundles Ṽ+, Ṽ−, Ṽ0, V+,
V−, and V0. We define the flows Φ̂t ,Φt ,Φ̃t ,L (Φt),L (Φ̃t) by replacing UΩ by UAgΩ

and geodesics by augmented geodesics and so on in an obvious way.
For each point x = (⃗x,Ha,Hb) of UAgΩ,

• we define Ṽ+(x) to be the space of vectors in the direction of the backward
endpoint of lx,

• Ṽ−(x) that for the forward endpoint of lx,
• Ṽ0(x) to be the space of vectors in directions of Ha ∩Hb.

For each x ∈ UAgΩ,

V n = Ṽ+(x)⊕ Ṽ0(x)⊕ Ṽ−(x).

This gives us a decomposition. Ṽ = Ṽ+ ⊕ Ṽ0 ⊕ Ṽ−, and V = V+ ⊕V0 ⊕V−. Clearly,
V+ and V− are topological line bundles since the beginning and the endpoints depend



92 4. PROPERLY CONVEX AFFINE ACTIONS

continuously on points of UAgΩ. Also, Ṽ0 is the vector subspace of Rn whose directions
of nonzero vectors form Ha∩Hb. Since (Ha,Hb) depends continuously on points of UAgΩ,
we obtain that V0 is a continuous bundle on UAgΩ.

Obviously, the geodesic flows exists on UAgΩ using the ordinary geodesic flow with
respect to the geodesics and not considering the augmented boundary.

There exists constants C,k > 0 so that

||L (Φt)(⃗v)||fiber ≥
1
C

exp(kt) ||⃗v||fiber as t → ∞(4.3.2)

for v⃗ ∈ V+ and

||L (Φt)(⃗v)||fiber ≤C exp(−kt) ||⃗v||fiber as t → ∞(4.3.3)

for v⃗ ∈ V−.
We prove this by proving {||L (Φt)|V−||fiber} → 0 uniformly as t → ∞ i.e., Proposi-

tion 4.2.1 under the more general conditions that Ω is properly convex but not necessarily
strictly convex. We generalize Lemma 4.2.5. We will repeat the strategy of the proof
since it is important to check. However, the proof follows the same philosophy with some
technical differences.

We first need

LEMMA 4.3.3. Let g j be a sequence of elements of ΓΓΓ. Suppose that an(ĥ(g j))→ 0 as
j → ∞. Then an+1(g j)/λvẼ

(g j)→ 0 as j → ∞ provided the sequence of word-length of g j
goes to the infinity.

PROOF. Suppose that lengthΩ(g j) is bounded. Then we can conjugate g j by an el-
ement k j so that k jg jk−1

j sends an element of a fundamental domain F of Ω to a point
of a bounded distance from it. Hence, there are only finitely element h1, . . . ,hl . Hence
g j = k−1

j hi j k j for i j = 1, . . . , l. Then λvẼ
(g j) = λvẼ

(hi j) taking finitely many values.

Since an+1(g j) = an(ĥ(g j))/λvẼ
(g j)

1+ 1
n , the conclusion follows in this condition.

It is now sufficient to consider when the sequence lengthΩ(g j) is converging to infinity.
Then the uniform middle eigenvalue condition implies that

exp(−ClengthΩ(g j))≤ λn+1(g j)/λvẼ
(g j)≤ exp(−C−1lengthΩ(g j))

implies that λn+1(g j)/λvẼ
(g j)→ 0. Let |s|E denote the length of a segment in Rn+1 under

the fixed Euclidean metric. We have λn+1(g j)≥ an+1(g j) since we can consider segments
in a eigendirection of g j and we have at least that amount of shrinking of a segment and

an+1(g) = min
{
||g(s)||E
||s||E

∣∣∣∣s is a segment in Rn+1
}
.

Hence, the result follows. (This is related to [31], [27] and [28].) □

LEMMA 4.3.4. Assume that Ω is properly convex and Γ acts properly discontinu-
ously satisfying the uniform middle eigenvalue condition with respect to bdAn. Then
{||Φt |V−||fiber}→ 0 uniformly as t → ∞.

PROOF. We proceed as in the proof of Lemma 4.2.5. It is sufficient to prove the
uniform convergence to 0 by the compactness of V−,1. Let F be a fundamental domain of
UAgΩ under Γ. It is sufficient to prove this for L (Φ̃)t on the fibers of over F of UAgΩ

with a fiberwise metric ||·||fiber.
We choose an arbitrary sequence {xi = (⃗xi,Hai ,Hbi) ∈ UAgΩ}, {xi} → x in F where

ai,bi are the backward and forward point of the maximal oriented geodesic passing x⃗i in
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FIGURE 2. The figure for Lemma 4.3.4.

Ω. For each i, let v⃗−,i be a Euclidean unit vector in Ṽ−(xi) for the unit vector xi ∈ UAgΩ.
That is, v⃗−,i is in the 1-dimensional subspace in Rn, corresponding to the forward endpoint
of the geodesic determined by x⃗i in ∂Cl(Ω).

Let xi be as above convergin to x in F . Here, ((⃗v−,i)) is an endpoint of li in the direction
given by xi. For this, we just need to show that any sequence of {ti}→∞ has a subsequence
{t j} so that

{∣∣∣∣L (Φ̃t j)(xi, v⃗−, j)
∣∣∣∣

fiber

}
→ 0. This follows since if the uniform convergence

did not hold, then we can easily find a sequence without such subsequences.
Let yi := Φ̂ti(xi) for the lift of the flow Φ̂. By construction, we recall that each Π

Ag
Ω
(yi)

is in the geodesic li. Since we have the sequence {xi} → x, xi,x ∈ F , we obtain that {li}
geometrically converges to a line l∞ passing Π

Ag
Ω
(x) in Ω. Let y+ and y− be the endpoints

of l∞ where {Π
Ag
Ω
(yi)}→ y−. Hence,

{((⃗v+,i))}→ y+,{((⃗v−,i))}→ y−.

(See Figure 1 for the similar situation.)
Find a deck transformation gi so that gi(yi) ∈ F , and gi acts on the line bundle Ṽ− by

the linearization of the matrix of form (4.1.1):

gi : Ṽ− → Ṽ− given by

(yi, v⃗)→ (gi(yi),L (gi)(⃗v)) where

L (gi) :=
1

λẼ(gi)
1+ 1

n
ĥ(gi) : Ṽ−(yi) = Ṽ−(xi)→ Ṽ−(gi(yi)).(4.3.4)

We will show {(gi(yi),L (gi)(⃗v−,i))}→ 0 under ||·||fiber. This will complete the proof
since gi acts as isometries on Ṽ− with ||·||fiber.
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Since g(yi) ∈ F for every i, we obtain

gi(li)∩F ̸= /0.

Since gi(li)∩F ̸= /0, we choose a subsequence of gi and relabel it gi so that {Π
Ag
Ω
(gi(li))}

converges to a nontrivial line l̂∞ in Ω.
Remark 4.2.2 shows that we may assume without loss of generality that each element

of Γ is positive bi-semi-proximal.
We recall facts from Section 1.3.3. Given a generalized convergence sequence gi, we

obtain an endomorphism g∞ in Mn(R) so that {((gi))}→ ((g∞)) ∈ S(Mn(R)). Recall

A∗({gi}) := S(Img∞)∩Cl(Ω) and N∗({gi}) := S(kerg∞)∩Cl(Ω).

We have A∗({gi}),N∗({gi})⊂ ∂Cl(Ω) are both nonempty by Theorem 1.3.21.
Up to a choice of subsequence, Theorem 1.3.13 implies that for any compact subset K

of Cl(Ω)−N∗({gi}), there is a convex compact subset K∗ in A∗,

(4.3.5) {gi(K)}→ K∗ ⊂ A∗.

Suppose that y− ∈ Cl(Ω)−N∗({gi}). Then {gi(yi)} → ŷ ∈ A∗({gi}) since yi are in a
compact subset of Cl(Ω)−N∗({gi}) and (4.3.5). This is a contradiction since gi(yi) ∈ F .
Hence, y− ∈ N∗({gi}).

Let di = ((⃗v+,i)) denote the other endpoint of li than ((⃗v−,i)) as above. Let d∞ denote the
limit of di in ∂Cl(Ω). We deduce as above up to a choice of a subsequence:

• Since {((⃗v−,i))}→ y−, y− ∈ N∗({gi}) and {li} converges to a nontrivial line l∞ ⊂
Ω and N∗({gi}) is compact convex in ∂Cl(Ω), it follows that {di} is in a compact
set in ∂Cl(Ω)−N∗({gi}).

• Then {gi(di)} → a∗ ∈ A∗({gi}) by (4.3.5), since {di} is in a compact set in
∂Cl(Ω)−N∗({gi}).

• Thus, {gi(((⃗v−,i)))} → y′ ∈ ∂Cl(Ω)−A∗(gi) holds since {gi(li)} converges to a
nontrivial line in Ω.

Let ma be obtained for {gi} as in Theorem 1.3.16. Recall that ||·||E denote the stan-
dard Euclidean metric of Rn. Write gi = kiDik̂−1

i for ki, k̂i ∈ O(n,R), and Di is a positive
diagonal matrix of determinant ±1 with nonincreasing diagonal entries.

• Since {((⃗v−,i))} → y−, the vector v⃗−,i has the component v⃗p
i parallel to N p(gi) =

k̂i(S([ma+1,n])) and the component v⃗S
i in the orthogonal complement (N p(gi))

⊥=

k̂i(S([1,ma])) where v⃗−,i = v⃗p
i + v⃗S

i . We may require ||⃗v−,i||E = 1. (We remark

{
∣∣∣∣⃗vp

i

∣∣∣∣
E}→ 1 and {

∣∣∣∣⃗vS
i
∣∣∣∣

E}→ 0

since {⃗v−,i} converges to a point of N∗({gi}).
• {
∣∣∣∣L (gi)(⃗v

p
i )
∣∣∣∣

E} → 0 by Theorem 1.3.16 and Lemma 4.3.3 since the sequence
of the word length of gi goes to infinity while gi moves a point far away to a point
of the fundamental domain.

• Since {gi(((⃗v−,i)))} converges to y′, y′ ∈ ∂Cl(Ω)−A∗(gi), {gi(((⃗v−,i)))} is uni-
formly bounded away from A∗({gi}).

Because of the orthogonal decomposition k̂i(S([ma +1,n]) and k̂i(S([1,ma])), and the
fact that gi = kiDik̂−1

i , and {((L (gi)))}→ ((g∞)) in S(Mn(R)), it follows that {L (gi)(⃗vS
i )}

either converges to zero, or {
((

L (gi)(⃗vS
i )
))
} converges to A∗({gi}) by Theorem 1.3.16.

We have
{L (gi)(⃗v

p
i )}→ 0 implies {L (gi)(⃗vS

i )}→ 0
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for ||·||E since otherwise {
((

L (gi)(⃗vS
i )
))
} converges to a point of A∗({gi})⊂ F∗({gi}) and

hence {gi(((⃗v−,i)))} cannot be converging to y′.
Hence, we obtain {L (gi)(⃗v−,i)}→ 0 under ||·||E . Now, we can deduce the result as in

the final part of the proof of Lemma 4.2.5
□

Now, we find as in Section 4.2.3 the neutralized section s : UAgΣ → A with ∇A
φ

s ∈ V0.
Since we are looking at UAgΩ, the section s : UAgΩ → N2(A

n), we need to look at the
boundary point and a sharply supporting hyperspace at the point and find the affine sub-
space of dimension n−2 in Rn, generalizing Proposition 4.2.10. We generalize Definition
4.2.8:

DEFINITION 4.3.5. We denote by SAg(∂ AgCl(Ω)) the space of pairs ((x,H∩bdAn),H)
where H ∈ S′(∂Cl(Ω)), and x is in the boundary of H and (x,H ∩bdAn) ∈ ∂ AgCl(Ω).

PROPOSITION 4.3.6.
• There exists a continuous function ŝ : UAgΩ → N2(A

n) equivariant with respect
to Γ-actions.

• Given g ∈ Γ and for the unique unit-speed geodesic l⃗g in UAgΩ lying over an
augmented geodesic lg where g acts on, ŝ(⃗lg) = {N2(g)}.

• This gives a continuous map

s̄Ag : ∂
AgCl(Ω)×∂

AgCl(Ω)− (ΠAg ×ΠAg)
−1(∆Ag)→ N2(A

n)

again equivariant with respect to the Γ-actions. There exists a continuous func-
tion

τ
Ag : Λ

∗Ag → SAg(∂Cl(Ω)).

PROOF. The proof is entirely similar to that of Proposition 4.2.10 but using a straight-
forward generalization of Lemma 4.2.7. □

We generalize Proposition 4.2.12. We will define τ ′ : UAgΩ → SAg(∂Cl(Ω)) as a
composition of τAg with the map from UAgΩ to Λ∗Ag. This is a continuous map. Here,
we don’t assume that Γ acts on a properly convex domain in An with boundary Ω. Hence,
it is more general and we need a different proof. We just need that the orbit closures are
compact.

LEMMA 4.3.7. Let an affine group Γ acts on an affine subspace An on a properly
convex domain Ω in the boundary of an affine subspace An. Let Γ acts on a properly con-
vex domain Ω with a cocompact and Hausdorff quotient and satisfies the uniform middle
eigenvalue condition with respect to bdAn. Let ((x,h1),(y,h2)) ∈ Λ∗Ag. Then

• τAg((x,h1),(y,h2)) does not depend on (y,h2) and is unique for each (x,h1).
• h((x,h1),(y,h2)) contains s̄Ag((x,h1),(y,h2)) but is independent of (y,h2).
• h((x,h1),(y,h2)) is never a hemisphere in bdAn for every ((x,h1),(y,h2)) ∈

Λ∗Ag.
• τAg induces a map τAg′ : ∂ AgCl(Ω)→ SAg(∂Cl(Ω)) that is continuous.
• There exists an asymptotically nice convex Γ-invariant open domain U inAn with

bdU ∩∂An =Cl(Ω). For every (x,h1)∈ ∂ AgCl(Ω), τ(x,h1) is an AS-hyperplane
of U.

PROOF. Let l1 be an augmented geodesic in UAgΩ with endpoints (x,h1) and (z,h2)
oriented towards x. Consider a connected subspace L(x,h1) of UAgΩ of points of maximal
augmented geodesics in Ω ending at (x,h1). The space of geodesic leaves in L(x,h1) is in
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one-to-one correspondence with bdAg
Ω−Π

−1
Ag(Kx) for the maximal flat Kx in ∂Cl(Ω) con-

taining x. We will show that τAg is locally constant on L(x,h1) showing that it is constant.
Let l̃1 denote the lift of l1 in UAgΩ. Let S be a compact neighborhood in L(x,h1) of

a point y of l̃1 transverse to l̃1. Any two rays of geodesic flow Φ : S×R → UAgΩ are
asymptotic on L(x,h1) by Lemma 3.1.4.

Let y ∈ l̃1. Consider another point y′ ∈ S ⊂ UAgΩ with with endpoints x and z′ in a
sharply supporting hyperplane h′2. where

((x,h1),(z,h2)),((x,h1),(z′,h′2)) ∈ Λ
∗Ag.

Choose a fixed fundamental domain F of ÛΩ. Let {yi = Φti(y)},yi ∈ l̃1, be a se-
quence whose projection under ΠΩ convergs to x. We use a deck transformation gi so that
gi(yi) ∈ F . Then gi(τ

Ag(l1)) = τAg(gi(l1)) is a hyperspace containing gi(x) and gi(h1) and
ŝ(gi(l̃1)).

Let v⃗+ denote a vector in the direction of the end of l1 other than x. Equation (4.3.2)
shows that {||L (Φt)|V+||fiber} → ∞ as t → ∞. Since gi is isometry under ||·||fiber, and
Φ̂ti(y) = yi and gi(yi) ∈ F , it follows that the Ṽ+-component of gi(yi, v⃗+) satisfies

(4.3.6) {||L (gi)(⃗v+)||fiber}→ ∞.

Since gi(yi) ∈ F and under the Euclidean norm since over a compact set F the metrics are
compatible by a uniform constant, we obtain {||L (gi)(⃗v+)||E}→ ∞.

Since the affine hyperplanes in τAg((x,h1),(z,h2)) and τAg((x,h1),(z′,h′2)) contain x
and h1 in their boundary, they restrict to parallel affine hyperplanes in A. Suppose that
the affine hyperspace part of τAg(((x,h1),(z,h2)) differs from one of τAg((x,h1),(z′,h′2))
by a translation by a constant times v⃗+. This implies that the sequence of the Euclidean
distances between the respective affine hyperspaces corresponding to

gi(τ
Ag((x,h1),(z,h2))) and gi(τ

Ag((x,h1),(z′,h′2)))

goes to infinity as i → ∞.
Now consider Φ(S× [ti, ti + 1]) ⊂ UAgΩ, and we have obtained gi so that gi(Φ(S×

[ti, ti +1])) is in a fixed compact subset P̂ of UAgΩ by the uniform boundedness of Φ(S×
[ti, ti + 1])) shown in the second paragraph of this proof. There is a map E : UAgΩ →
Λ∗Ag given by sending the vector in UAgΩ to the ordered pair of endpoints and support-
ing hyperspaces of the geodesic passing the vector. Since ŝ is continuous, τAg ◦E|P̂ is
uniformly bounded. The above paragraph shows that the sequence of the diameters of
τAg ◦E|gi(Φ(S× [ti, ti +1])) can become arbitrarily large. This is a contradiction. Hence,
τAg is constant on L(x,h1).

This proves the first two items. The fourth item follows since τAg′ is an induced map.
The image of τAg′ is compact since ∂Cl(Ω) is compact. This implies the third item.

Define H(x,h1) to be the open n-dimensional hemisphere in Sn bounded by the great
sphere containing the affine hyperspace τAg′(x,h1) and containing Ω. We define

U :=
⋂

(x,h1)∈∂ AgCl(Ω)

H(x,h1)∩An.

Now, we show that the affine hyperspace part of τAg(x,h1) is an AS-hyperspace for
U : Suppose that for (x,h1) ∈ ∂ AgCl(Ω), the AS-hyperspace Q with Q∩ bdAn = h1 and
Q ̸= τAg(x,h1). Then the hemisphere HQ bounded by Q contains U . By definition, HQ ⊂
H(x,h1). Then again we choose a segment l1 ending at x. Then we choose sequences gi
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as above in the proof before (4.3.6). This shows as above the sequence of the Euclidean
distances between the respective affine hyperspace parts of

gi(τ
Ag(x,h1)) and gi(Q)

goes to infinity. Proposition 4.3.6 shows that {gi(τ
Ag(x,h1))} is in the image of τAg, a

compact set. The set of suppprting hyperplanes of U is bounded away from bdAn since
they have to be between those of the image of τAg and U . Since gi(Q) is still a supporting
hyperplane of U , the equation is a contradiction. □

PROOF OF THEOREM 4.3.1. First, we obtain a properly convex domain where Γ acts.
Since ∂ AgCl(Ω) is compact, the image under τAg is compact. Then U :=

⋂
(x,h)∈∂ AgCl(Ω) Ho

(x,h)∩
An contains Ω. This is an open set since the compact set of H(x,h), (x,h) ∈ ∂ AgCl(Ω) has
a lower bound on angles with bdAn. Thus, U is asymptotically nice. Now, the proof is
identical with that of Theorem 4.1.1 with Lemma 4.3.7 replacing Lemma 4.2.12.

The uniqueness part is done in Theorem 4.3.8 immediately below. □

4.3.2. Uniqueness of AS-hyperplanes. Finally, we end with some uniqueness prop-
erties.

The following generalizes Lemma 4.2.12.

THEOREM 4.3.8. Let (Γ,U,D) be a properly convex affine triple. Suppose that Γ

satisfies the uniform middle-eigenvalue condition. Then for any properly convex triple
(Γ,U ′,D) for an open set U ′, the set of AS-planes for U ′ containing all sharply supporting
hyperspaces of Ω in bdAn exists and is independent of the choice of U ′. That is U ′ is also
asymptotically nice.

PROOF. For each x,x ∈ ∂Cl(Ω), and h be a supporting hyperspace of Ω in bdAn. let
S(x,h) be the AS-hyperspace in Sn for U so that S(x,h)∩bdAn = h. Again for each (x,h), we
let S′(x,h) is the AS-hyperspace in Sn for U ′ if it exists so that S′(x,h)∩bdAn = h.

If (x,h) is a fixed point of a nontrivial g ∈ Γ. then the same argument as in the proof
of Lemma 4.2.11, show that U ′ and S(x,h) are disjoint.

Suppose that Γ is strongly-irreducible. Every extremal points of the dual domain Ω∗

in Sn−1∗
∞ is a limit of a sequence of fixed points of Γ∗ by Proposition 5.1 of [159]. Since

τAg is continuous, U ′ and S(x′,h′) are disjoint if h′ is an extremal point of Ω∗ by the density
of fixed points. Since every boundary points of Ω∗ is a nonegative linear sum of extermal
points of Ω∗, it follows that U ′ and S(x′,h′) is disjoint for any pair (x′,h′). This proves that
U ′ is also asymptotically nice.

Suppose that Γ is virtually decomposible. Then Ω is the interior of the strict join
K1 ∗ · · · ∗Km. Then there are supporting hyperplanes H j to Ω in Sn−1

∞ that contains all the
factors except for K j for each j = 1, . . . ,m and a supporting hyperplane to K j in the span of
K j. Then the virtual center isomorphic to Zm−1 acts on H j. If U ′ intersect with H j, then the
paragraph two above will again show the contraction. Since any supporting hyperplanes
are positive linear combination of some H ′

i , we have the disjointness of U ′ with any S(x′,h′).
Since U and U ′ are both asymptotically nice, the sets of AS-hyperplanes are compact.

For each (x,h), S(x,h) and S′(x,h) differ by a uniformly bounded distance in Sn∗.
Suppose that S(x,h1) is different from S′(x,h1)

for some x,h1 ∈ ∂Cl(Ω). Now, we follow
the argument in the proof of Lemma 4.3.7. We again obtain a sequence gi ∈ Γ so that

gi(S(x,h1)∩A
n) and gi(S′(x,h1)

∩An)
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are parallel affine planes, and the sequence of their Euclidean distances are going to ∞ as
i → ∞. By compactness, we know both sequences {gi(S(x,h1)∩A

n)} and {gi(S′(x,h1)
∩An)}

respectively converge to two hyperplanes up to a choice of a subsequence. This means that
their Euclidean distances are uniformly bounded. Again (4.3.6) contradicts this. □

REMARK 4.3.9. Theorems 4.1.1 and 4.3.1 also generalize to the case when Γ acts
on Ω as convex cocompact group: i.e., there is a convex domain C ⊂ Ω so that C/Γ is
compact but not necessarily closed. We work on the set of geodesics in C only and the
set Λ of endpoints of these. In this case the limit set Λ maybe a disconnected set. The
definition such as asymptotic niceness should be restricted to points of Λ only. Here we do
need the connectedness of Lemmas 4.2.9 and 4.3.2 to be generalized to this case. However,
the proofs indicated there will work.

4.4. Lens type T-ends

4.4.1. Existence of lens-neighborhood. The following is a consquence of Theorems
4.1.1 and 4.3.1.

THEOREM 4.4.1. Let Γ be a discrete group in SL±(n+ 1,R) (resp. PGL(n+ 1,R))
acting on a properly convex domain Ω cocompactly and properly, Ω ⊂ bdAn ⊂ Sn (resp.
⊂ RPn), so that Ω/Γ is a closed n-orbifold.

• Suppose that Γ satisfies the uniform middle eigenvalue condition with respect to
bdAn.

• Let P be the hyperspace containing Ω.
Let U be any one-sided Γ-invariant open neighborhood of Ω. Then Γ acts on a properly
convex domain L in Sn (resp. in RPn) with strictly convex boundary ∂L such that

Ω ⊂ L ⊂U,∂L ⊂ Sn −P(resp. ⊂ RPn −P).

Moreover, L satisfies bd∂Cl(L)∂L ⊂ P and L/Γ is a lens-orbifold.

PROOF. We prove for Sn first. We will just prove for the general case since the case
when Ω is strictly convex and C1, the augmented boundary is given as the set of all (x,h)
where x is in ∂Cl(Ω) and h is the unique supporting hyperspace of Ω at x. Assume without
loss of generality that U is an asymptotically nice open domain for Γ.

For each (x,h) in the augmented boundary of Ω, define a half-space H(x,h) ⊂ An

bounded by τAg′(x.h) and containing Ω in the boundary. For each H(x,h), (x,h)∈ ∂ AgCl(Ω),
in the proofs of Theorems 4.1.1 and 4.3.1, an open n-hemisphere H ′(x,h) ⊂ Sn satisfies
H ′(x,h)∩An = H(x,h). Then we define

V :=
⋂

(x,h)∈∂ AgCl(Ω)

H ′(x,h)⊂ Sn

is a convex open domain containing Ω as in the proof of Lemma 4.2.12.
Γ acts on a compact set

H := {h′|h′ is an AS-hyperspace to V at (x,h) ∈ ∂
AgCl(Ω),h′∩Sn−1

∞ = h}.
Let H ′ denote the set of hemispheres bounded by an element of H and containing Ω.
Then we define

V :=
⋂

H∈H ′
H ⊂ Sn

is a convex open domain containing Ω. Here again the set of AS-hyperspaces to V is closed
and bounded away from Sn−1

∞ .
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First suppose that V is properly convex. Then V has a Γ-invariant Hilbert metric dV
that is also Finsler. (See [86] and [112].) Then

Nε = {x ∈V |dV (x,Ω))< ε}
is a convex subset of V by Lemma 1.1.13.

A compact tubular neighborhood M of Ω/Γ in V/Γ is diffeomorphic to Ω/Γ× [−1,1].
(See Section 4.4.2 of [51].) We choose M in (U ∩V )/Γ. Since Ω/Γ is compact, the regular
neighborhood has a compact closure. Thus, dV (Ω/Γ,bdM)> ε0 for some ε0 > 0. If ε < ε0,
then Nε ⊂ M. We obtain that bdV Nε/Γ is compact.

Clearly, bdV Nε/Γ has two components in two respective components of (V −Ω)/Γ.
Let F1 and F2 be compact fundamental domains of respective components of bdV Nε with
respect to Γ. We procure the set H j of finitely many open hemispheres Hi, Hi ⊃ Ω, so that
open sets (Sn −Cl(Hi))∩Nε cover Fj for j = 1,2. By Lemma 4.4.3, the following is an
open set containing Ω

W :=
⋂
g∈Γ

⋂
Hi∈H1∪H2

g(Hi)∩V.

Since any path in V from Ω to bdV Nε must meet bdVW −P first, Nε contains W and bdVW .
A collection of compact totally geodesic polyhedrons meet in angles < π and comprise
bdVW/Γ. Let L be Cl(W )∩ Õ . Then ∂L has boundary only in bdAn by Lemma 4.4.2 since
Γ satisfies the uniform middle eigenvalue condition with respect to bdAn. We can smooth
bdVW to a strictly convex hypersurface to obtain a lens-neighborhood W ′ ⊂W of Ω in Nε

where Γ acts cocompactly by Theorem 4.4.4
Suppose that V is not properly convex. Then bdV contains v,v−. V is a convex domain

of form {v,v−} ∗Ω. This follows by Proposition 1.1.4 where we take the closure of V
and then the interior. We take any two open hemispheres S1 and S2 containing Cl(Ω) so
that {v,v−}∩ S1 ∩ S2 = /0. Then

⋂
g∈Γ g(S1 ∩ S2)∩V is a properly convex open domain

containing Ω, and we can apply the same argument as above.
To prove for RPn, we need to find L in a sufficiently thin neighborhood of Ω, which

the theorem for Sn provides. Then we can project to obtained the desired set. □

LEMMA 4.4.2. Let Γ be a discrete group in SL±(n+1,R) acting on a properly convex
domain Ω, Ω ⊂ bdAn, so that Ω/Γ is a closed n-orbifold. Suppose that Γ satisfies the
uniform middle eigenvalue condition with respect to bdAn and acts on a properly convex
domain V in Sn so that Cl(V )∩ bdAn = Cl(Ω) holds. Suppose that γi is a sequence of
mutually distinct elements of Γ acting on Ω. Let J be a compact subset of V . Then {gi(J)}
can accumulate only to a subset of Cl(Ω).

PROOF. Since Ω/Γ is compact, ĥ(gi) is an unbounded sequence of elements in SL±(n,R).
Recalling (4.1.1), we write the elements of gi as

(4.4.1)

(
1

λẼ (gi)1/n ĥ(gi) b⃗gi

0⃗ λẼ(gi)

)
where b⃗gi is an n×1-vector and ĥ(gi) is an n×n-matrix of determinant ±1 and λẼ(gi)> 0.
Let m(ĥ(gi)) denote the maximal modulus of the entry of the matrix of ĥ(gi) in SL±(n,R).
We may assume without loss of generality {ĥ(gi)/m(ĥ(gi))}→ gn−1,∞ in Mn(R). A matrix
analysis easily tells us λ1(ĥ(gi)) ≤ nm(ĥ(gi)) since the later term bounds the amount of
stretching of norms of vectors under the action of ĥ(gi). By Lemma 1.3.14, dividing by
λ1(ĥ(gi)), we have

ĥ(gi)/λ1(ĥ(gi))→ Agn−1,∞
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for A ≥ 1/n, or the sequence is unbounded in Mn(R).
Now, we let {((gi))}→ ((g∞)) where g∞ is obtained as a limit of

(4.4.2)

 1
λ1(ĥ(gi))

ĥ(gi)
λẼ (gi)

1/n

λ1(ĥ(gi))
b⃗gi

0⃗ λẼ (gi)
1/nλẼ (gi)

λ1(ĥ(gi))

 .

By the uniform middle eigenvalue condition, we obtain that {((gi))} → ((g∞)) where g∞ is
of form

(4.4.3)
(

gn−1,∞ b⃗
0⃗ 0

)
.

by rescaling if necessary. Now, R∗({gi}) is a subset of Sn−1
∞ since the lower row is zero.

Hence, {gi(J)} geometrically converges to g∞(J) ⊂ Sn−1
∞ . Since Γ acts on Cl(V ) and

Cl(V )∩bdAn = Cl(Ω), we obtain g∞(J)⊂ Cl(Ω). □

LEMMA 4.4.3. Let Γ be a discrete group of projective automorphisms of a properly
convex domain V and a domain Ω ⊂ V of dimension n− 1. Assume that Ω/Γ is a closed
n-orbifold. Suppose that Γ satisfies the uniform middle eigenvalue condition with respect
to the hyperspace containing Ω. Let P be a subspace of Sn so that P∩Cl(Ω) = /0 and
P∩V ̸= /0. Then {g(P)∩V |g ∈ Γ} is a locally finite collection of closed sets in V .

PROOF. Suppose not. Then there exists a sequence {xi}, xi ∈ gi(P)∩V and {gi},
gi ∈ Γ so that {xi}→ x∞ ∈V and {gi} is a sequence of mutually distinct elements.

We have xi ∈ F for a compact set F ⊂ V . Then Lemma 4.4.2 applies. {g−1
i (F)}

accumulates to ∂Cl(Ω). This means that g−1
i (xi) accumulates to ∂Cl(Ω). Since g−1

i (xi) ∈
P∩V , and P∩Cl(Ω) = /0, this is a contradiction. □

4.4.2. Approximating a convex hypersurface by strictly convex hypersurfaces.
See also Chapter 9 of [70] where they obtain the C1-property only.

THEOREM 4.4.4. We assume that Γ is a projective group with a properly convex affine
action with the triple (Γ,U,D) for U ⊂An ⊂ Sn. Assume the following:

• U is an asymptotically nice properly convex domain closed inAn,
• the boundary bdAnU = bdU ∩An, which is an (n−1)-manifold, is in an asymp-

totically nice properly convex open domain V ′ where Γ acts on, and Cl(U)∩
An ⊂V ′,

• Cl(V ′)∩bdAn = D, and
• bdAnU/Γ is a compact convex hypersurface.

Then there exists an asymptotically nice properly convex domain V closed in V ′ containing
U so that ∂V/Γ is a compact hypersurface with strictly convex smooth boundary. Further-
more, ∂V/Γ can be chosen to be arbitrarily close to bdAnU/Γ in V/Γ with any complete
Riemannian metric on V ′/Γ.

PROOF. Let V ′′ be a properly convex domain so that Cl(V ′′) ⊂U and (ΓΓΓ,V ′′,D) is a
properly convex affine triple. We can construct such a domain by the proof of Theorem
4.4.1 not including the part showing that ∂L is smooth. (One has to be careful that we do
not use the smoothness of ∂L where the proof uses this theorem.)

Let P denote the set of hyperspaces sharply supporting U at bdAnU . Let P be in P .
The dual P∗ of P in Sn∗ is a point of the properly convex domain V ′′∗ by (1.5.2). Hence,
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the set P∗ of dual points corresponding to elements of P is a properly embedded hyper-
surface in the interior of Cl(V ′′∗) by Proposition 1.5.4 applied to Cl(U) and the hyperspace
bdAnU and its dual P∗.

Also, bdAnU/ΓΓΓ is a compact orbifold by Proposition 1.5.4(iv). By the above duality,
P∗/ΓΓΓ

∗ is a compact orbifold, and so is P/ΓΓΓ. There is a fundamental domain F of P
under ΓΓΓ.

Any sequence gi(P) for P ∈ F and unbounded sequence of {gi}, gi ∈ ΓΓΓ, has accumu-
lation points only in the supporting hyperplane of V ′ since ΓΓΓ acts properly in the interior
of Cl(V ′′∗). By Theorem 4.3.8, these are supporting hyperplanes of V ′ since these are sup-
porting hyperplanes of V ′′. Hence for each point of bdAnU , there is a neighborhood N
whose closure is in V ′′.

Hence, P is a locally compact collection of elements in V ′′∗ with accumulations only
in the set of hyperplanes sharply supporting V ′.

For any ε > 0, there exists a compact set K′ so that elements of P −K′ are ε-dH -
close to the hyperspaces asymptotic to V ′ by the above paragraph. Therefore, for each
x ∈ bdAnU , there exists a compact neighborhood N ⊂V ′ so that N intersects only compact
subset of P . Hence, Lemma 4.4.6 implies the result. □

We have a generalization:

THEOREM 4.4.5. Assume the following:

• Γ is a projective discrete group acting properly on a properly convex domain U
closed in An ⊂ Sn,

• {p}= Cl(U)−U is a singleton,
• Γ is a cusp group,
• the manifold boundary bdAnU is in a properly convex open domain V ′ where Γ

acts on,
• U is closed in V ′, and
• bdAnU/Γ is a compact convex hypersurface.

Then there exists an properly convex domain V closed in V ′ containing U so that ∂V/Γ is
a compact hypersurface with strictly convex smooth boundary. Furthermore, ∂V/Γ can be
chosen to be arbitrarily close to bdAnU/Γ in V/Γ with any complete Riemannian metric
on V ′/Γ.

PROOF. Let An be the affine space bounded by a hyperspace tangent to Cl(U) at p.
Let P denote the set of hyperspaces sharply supporting U . There is a unique supporting
hyperplane ∂An to U at p only to which P can accumulate. This follows since a cusp
group acts on P and by duality. Then the analogous proof as that of Theorem 4.4.4, we
can show that for any ε > 0, there exists a compact set K′ so that elements of P −K′ are
ε-dH -close to ∂An. Now, Lemma 4.4.6 is applicable exactly. □

LEMMA 4.4.6. We assume that Γ is a projective group acting on An and an open
domain U ⊂An ⊂ Sn. Suppose that U is a properly convex domain in an affine space An

in Sn with bdU ∩An an embedded hypersurface in it. Let P denote the set of sharply
supporting hyperspaces of U meeting ∂U. Assume the following:

• bdAnU/Γ is a compact orbifold.
• Cl(U)∩An is in a convex open domain V ′ where Γ acts on,
• Each point of bdAnU has a neighborhood N ⊂ V ′ so that N −Cl(U) has only

compact set of sharpley supporting hyperspaces P in P with HP ∩N ̸= /0.
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Then there exists an properly convex domain V closed in V ′ containing U so that ∂V/Γ is
a compact hypersurface with strictly convex smooth boundary. Furthermore, ∂V/Γ can be
chosen to be arbitrarily close to bdAnU/Γ in V/Γ with any complete Riemannian metric
on V ′/Γ.

PROOF. We define an affine function fP on An so that f−1
P (0) = P and fP > 0 on the

component HP of An −P disjoint from Uo. It follows that if P′ = g(P) for P ∈ P and
g ∈ Γ, then fP′ ◦g−1 = fP.

We define a smooth function

g(t) = t2 exp(1/t2) for t > 0, and g(t) = 0 for t ≤ 0.

We let gP = g◦ fP. Then by the premise, gP(x) for each x ∈V ′ is nonzero for only compact
subset of P .

The Γ-action on V ′ preserves the Hilbert metric of V ′ and hence the action is properly
discontinuous on V ′. Since the action is properly discontinuous, we can put a Γ-invariant
Riemannian metric on V ′. The dual P∗ ⊂V ′∗ is a dual set of P considering each hyper-
plane as a linear function in Rn+1.

Since P is the boundary of the supporting hyperspaces of U , it is the boundary of U∗

by duality. Hence, P∗ can be considered a topological manifold in V ′∗. Since Γ∗-action
on P∗ ⊂ V ′∗ is properly discontinuous, P∗/Γ∗ is a compact topological orbifold. Also,
we may assume that fP for P ∈ P is chosen continuously with respect to P by taking the
fundamental domain of P∗ under the Γ∗-action. There is a Γ-invariant measure dµ on P∗

compatible with a positive continuous function times a volume on each chart of P . We
define a smooth function

χU : V ′ → R by
∫

P∈P
gPdµ.

Hence, χU is well-defined in V ′ by the above paragraph. Moreover,

χ
−1
U (0) =

⋂
P∈P

(An −HP) = Cl(U)∩An.

The third item of the premise and the proof of Proposition 2.1 of Ghomi [84] imply that χU
is strictly convex on V ′−U since only compact subset of P is involved in the computations
for each neighborhood of the third item. By our definition, χU is Γ-invariant.

We give an arbitrary Riemannian metric µ ′ on V ′/Γ. There exists a neighborhood N
of Cl(U)∩V ′/Γ in V ′/Γ where χU has a nonzero differential in N −Cl(U)/Γ as we can
see from the integral

∫
P∈P DgPdµ where DgP are in a properly convex cone CP in Rn∗

spanned by {uP|P ∈ P} for each point of V ′−Cl(U). Then as ε → 0,

Σε := {χ
−1
U (ε)}/Γ → bdAnU/Γ

geometrically since N has a compact closure and the gradient vectors are uniformly bounded
with respect to µ ′ and are zero only at points of U/Γ in the closure and hence we can iso-
topy Σε along the gradient vector field to as close to bdAnU/Γ as we wish. (See Batyrev
[13] and Ben-Tal [14] also.) Furthermore, since χU is strictly convex, χ

−1
U (ε) is a strictly

convex smooth hypersurface on which Γ acts.
□



CHAPTER 5

Properly convex radial ends and totally geodesic ends: lens
properties

We will consider properly convex ends in this chapter. In Section 5.1, we define the
uniform middle eigenvalue conditions for R-ends and T-ends. We state the main results of
this chapter Theorem 5.1.4: the equivalence of these conditions with the generalized lens
conditions for R-ends or T-ends. The generalized lens conditions often improve to lens
conditions, as shown in Theorem 5.1.5. In Section 5.2, we start to study the R-end theory.
First, we discuss the holonomy representation spaces. Tubular actions and the dual theory
of affine actions are discussed. We show that distanced actions and asymptotically nice
actions are dual. Hence, the uniform middle eigenvalue condition implies the distanced
action deduced from the dual theory in Chapter 4. In Section 5.3, we prove the main
results. In Section 5.3.1, we estimate the largest norm λ1(g) of eigenvalues in terms of
word length. In Section 5.3.2, we study orbits under the action with the uniform middle
eigenvalue conditions. In Section 5.3.3, we prove a minor extension of Koszul’s openness
for bounded manifolds, well-known to many people. In Section 5.3.4, we show how to
prove the strictness of the boundary of lenses and prove our main result Theorem 5.1.4
using the orbit results and the Koszul’s openness. In Section 5.3.5, we now prove major
Theorem 5.1.5. In Section 5.4, we show that the lens-shaped ends have concave end-
neighborhoods, and we discuss the properties of lens-shaped ends in Theorems 5.4.2 and
5.4.3. If the generalized lens-shaped end is virtually factorizable, it can be made into a
lens-shaped totally-geodesic R-end, which is a surprising result. In Section 5.5, we obtain
the duality between the lens-shaped T-ends and generalized lens-shaped R-ends.

The main reason that we are studying the lens-shaped ends is to use them in study-
ing the deformations preserving the convexity properties. These objects are useful in try-
ing to understand this phenomenon. We also remark that sometimes a lens-shaped p-end
neighborhood may not exist for an R-p-end within a given convex real projective orbifold.
However, a generalized lens-shaped p-end neighborhood may exist for the R-p-end.

5.1. Main results

Let O be a strongly tame convex real projective orbifold and let Õ be a convex domain
in Sn covering O . Let h : π1(O) → SL±(n+ 1,R) denote the holonomy homomorphism
with its image ΓΓΓ. We will take Sn as the default place where the statements take place in
this chapter. However, reader can easily modify these to RPn-versions by Proposition 1.4.2
results in Section 1.1.8.

DEFINITION 5.1.1. Suppose that Ẽ is an R-p-end of generalized lens-type. Then Ẽ
have a p-end-neighborhood that is projectively diffeomorphic to the interior of {p}∗Lo −
{p} under dev where {p} ∗L is a generalized lens-cone over a generalized lens L where
∂ ({p} ∗L−{p}) = ∂+L for a boundary component ∂+L of L, and let h(π1(Ẽ)) acts on L

103
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properly and cocompactly. A concave pseudo-end-neighborhood of Ẽ is the open pseudo-
end-neighborhood in Õ projectively diffeomorphic to {p} ∗L−{p}−L for some choice
of a lens L. A concave end-neighborhood of an end E an end-neighborhood covered by a
concave pseudo-end-neighborhood.

5.1.1. Uniform middle eigenvalue conditions. The following applies to both R-ends
and T-ends. Let Ẽ be a p-end and ΓΓΓẼ the associated p-end holonomy group. We say that
Ẽ is non-virtually-factorizable if any finite index subgroup has a finite center or ΓΓΓẼ is
virtually center-free; otherwise, Ẽ is virtually factorizable by Theorem 1.1 of [21]. (See
Section 1.4.4.)

Let Σ̃Ẽ denote the universal cover of the end orbifold ΣẼ associated with Ẽ. We recall
Proposition 1.4.10 (Theorem 1.1 of Benoist [23]). If ΓΓΓẼ is virtually factorizable, then ΓΓΓẼ
satisfies the following condition:

• Cl(Σ̃Ẽ) = K1 ∗ · · · ∗Kk where each Ki is properly convex or is a singleton.
• Let Gi be the restriction of the Ki-stabilizing subgroup of ΓΓΓẼ to Ki. Then Gi acts

on Ko
i cocompactly. (Here Ki can be a singleton, and Γi a trivial group.)

• A finite index subgroup G′ of ΓΓΓẼ is isomorphic to a cocompact subgroup of
Zk−1 ×G1 ×·· ·×Gk.

• The center Zk−1 of G′ is a subgroup acting trivially on each Ki.

Note that there are examples of discrete groups of form ΓΓΓẼ where Gi are non-discrete.
(See also Example 5.5.3 of [135] as pointed out by M. Kapovich.)

We will use simply Zk−1 to represent the corresponding group on ΓΓΓẼ . Here, Zk−1 is
called a virtual center of ΓΓΓẼ .

Let Γ be generated by finitely many elements g1, . . . ,gm. Let w(g) denote the minimum
word length of g ∈ G written as words of g1, . . . ,gm. The conjugate word length cwl(g) of
g ∈ π1(Ẽ) is

min{w(cgc−1)|c ∈ π1(Ẽ)}.

Let dK denote the Hilbert metric of the interior Ko of a properly convex domain K
in RPn or Sn. Suppose that a projective automorphism group Γ acts on K properly. Let
lengthK(g) denote the infimum of {dK(x,g(x))|x ∈ Ko}, compatible with cwl(g).

DEFINITION 5.1.2. Let vẼ be a p-end vertex of an R-p-end Ẽ. Let K := Cl(Σ̃Ẽ). The
p-end holonomy group ΓΓΓẼ satisfies the umec with respect to vẼ or the R-p-end structure if
the following hold:

• each g ∈ ΓΓΓẼ satisfies for a uniform C > 1 independent of g

(5.1.1) C−1lengthK(g)≤ log
(

λ1(g)
λvẼ

(g)

)
≤ClengthK(g),

for the largest norm λ1(g) of the eigenvalues of g and the eigenvalue λvẼ
(g) of g

at vẼ .

Of course, we choose the matrix of g so that λvẼ
(g)> 0. See Remark 1.1.5 as we are look-

ing for the lifting of g that acts on p-end neighborhood. We can replace lengthK(g) with
cwl(g) for properly convex ends by Svarc-Milnor (A. Swartz, professor at UC. Davis) or
Milnor-Svarc theorem. (See Theorem 8.1 of Farb-Margalit [78].) We remark that the con-
dition does depend on the choice of vẼ ; however, the radial end structures will determine
the end vertices.
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The definition of course applies to the case when ΓΓΓẼ has the finite-index subgroup
with the above properties.

We recall a dual definition identical with the definition in Section 4.1 but adopted to
T-p-ends.

DEFINITION 5.1.3. Suppose that Ẽ is a properly convex T-p-end. Suppose that the
ideal boundary component Σ̃Ẽ of the T-p-end is properly convex. Let K = Cl(Σ̃Ẽ). Let
g∗ : Rn+1∗ → Rn+1∗ be the dual transformation of g : Rn+1 → Rn+1. The p-end holonomy
group ΓΓΓẼ satisfies the umec with respect to Σ̃Ẽ or the T-p-end structure

• if each g ∈ ΓΓΓẼ satisfies for a uniform C > 1 independent of g

(5.1.2) C−1lengthK(g)≤ log
(

λ1(g)
λK∗(g∗)

)
≤ClengthK(g)

for the largest norm λ1(g) of the eigenvalues of g and the eigenvalue λK∗(g∗) of
g∗ in the vector in the direction of K∗, the point dual to the hyperspace containing
K.

Again, the condition depends on the choice of the hyperspace containing Σ̃Ẽ , i.e., the
T-p-end structure. (We again lift g so that λK∗(g)> 0.)

Here ΓΓΓẼ will act on a properly convex domain Ko of lower dimension, and we will
apply the definition here. This condition is similar to the Anosov condition studied by
Guichard and Wienhard [96], and the results also seem similar. We do not use their the-
ories. They also use word length instead. One may look at the paper of Kassel-Potrie
[109] to understand the relationship between eigenvalues and singular values. We use the
eigenvalues to obtain conjugacy invariant conditions which is needed in proving the con-
verse part of Theorem 5.1.4. Our main tools to understand these questions are in Chapter
4 which we will use here.

We will see that the condition is an open condition; and hence a “structurally stable
one.” (See Corollary 6.1.3.)

5.1.2. Lens and the uniform middle eigenvalue condition. As holonomy groups,
the condition for being a generalized lens R-p-end and one for being a lens R-p-end are
equivalent. For the following, we are not concerned with a lens-cone being in Õ .

THEOREM 5.1.4 (Lens holonomy). Let Ẽ be an R-p-end of a strongly tame convex
real projective orbifold. Then the holonomy group h(π1(Ẽ)) satisfies the uniform middle
eigenvalue condition for the R-p-end vertex vẼ if and only if it acts on a lens-cone with
vertex vẼ and its lens properly and cocompactly. Moreover, in this case, the lens-cone
exists in the union of great segments with the vertex vẼ in the directions of in the direction
of a properly convex domain Ω ⊂ Sn−1

vẼ
where h(π1(Ẽ)) acts properly discontinuously.

For the following, we are concerned with a lens-cone being in Õ .

THEOREM 5.1.5 (Theorem 5.3.21 (Actual lens-cone )). Let O be a strongly tame
convex real projective orbifold.

• Let Ẽ be a properly convex R-p-end.
– The p-end holonomy group satisfies the uniform middle-eigenvalue condi-

tion if and only if Ẽ is a generalized lens-shaped R-p-end.
• Assume that the holonomy group of O is strongly irreducible, and O is properly

convex. If O satisfies the triangle condition (see Definition 5.3.18) or Ẽ is vir-
tually factorizable or is a totally geodesic R-end, then we can replace the term
“generalized lens-shaped” to “lens-shaped” in the above statement.
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We will prove the analogous result for totally geodesic ends in Theorem 5.5.4.
Notice that there is no condition on O to be properly convex.
Another main result is on the duality of lens-shaped ends: Recalling from Section

1.5.1, we have RPn∗ = P(Rn+1∗) the dual real projective space of RPn. Recall also
Sn∗ = S(Rn+1∗) as the dual spherical projective space of Sn. In Section 5.2, we define
the projective dual domain Ω∗ in RPn∗ to a properly convex domain Ω in RPn where the
dual group Γ∗ to Γ acts on. Vinberg showed that there is a duality diffeomorphism between
Ω/Γ and Ω∗/Γ∗. The ends of O and O∗ are in a one-to-one correspondence. Horospherical
ends are dual to themselves, i.e., “self-dual types”, and properly convex R-ends and T-ends
are dual to one another. (See Proposition 5.5.5.) We will see that generalized lens-shaped
properly convex R-ends are always dual to lens-shaped T-ends by Corollary 5.5.7.

We mention that Fried also solved this question when the linear holonomy is in SO(2,1)
[81]. Also, we found out later that the dual consideration of Barbot’s work on the existence
of globally hyperbolic spacetimes for geometrically finite linear holonomy in SO(n,1) also
solves this problem in the setting of finding Cauchy hyperspaces in flat Lorentz spaces.
(See Theorem 4.25 of [11].)

5.2. The end theory

In this section, we discuss the properties of lens-shaped radial and totally geodesic
ends and their duality also.

5.2.1. The holonomy homomorphisms of the end fundamental groups: the tubes.
We will discuss for Sn only here but the obvious RPn-version exists for the theory. Let Ẽ
be an R-p-end of Õ . Let SL±(n+1,R)vẼ

be the subgroup of SL±(n+1,R) fixing a point
vẼ ∈ Sn. This group can be understood as follows by letting vẼ = [0, . . . ,0,1] as a group of
matrices: For g ∈ SL±(n+1,R)vẼ

, we have

(5.2.1)

(
1

λvẼ
(g)1/n ĥ(g) 0⃗

v⃗g λvẼ
(g)

)
where ĥ(g) ∈ SL±(n,R), v⃗ ∈ Rn∗,λvẼ

(g) ∈ R+, is the so-called linear part of h. Here,

λvẼ
: g 7→ λvẼ

(g) for g ∈ SL±(n+1,R)vẼ

is a homomorphism so it is trivial in the commutator group [ΓΓΓẼ ,ΓΓΓẼ ]. There is a group
homomorphism

L ′ : SL±(n+1,R)vẼ
→ SL±(n,R)×R+

g 7→ (ĥ(g),λvẼ
(g))(5.2.2)

with the kernel equal to Rn∗, a dual space to Rn. Thus, we obtain a diffeomorphism

SL±(n+1,R)vẼ
→ SL±(n,R)×Rn∗×R+.

We note the multiplication rules

(5.2.3) (A, v⃗,λ )(B, w⃗,µ) = (AB,
1

µ1/n v⃗B+λ w⃗,λ µ).

We denote by L1 : SL±(n+1,R)vẼ
→ SL±(n,R) the further projection to SL±(n,R).

Let ΣẼ be the end (n−1)-orbifold. Given a representation

ĥ : π1(ΣẼ)→ SL±(n,R) and a homomorphism λvẼ
: π1(ΣẼ)→ R+,
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we denote by Rn
ĥ,λvẼ

the R-module with the π1(ΣẼ)-action given by

g · v⃗ = 1
λvẼ

(g)1/n ĥ(g)(⃗v).

And we denote by Rn∗
ĥ,λvẼ

the dual vector space with the right dual action given by

g · v⃗ = 1
λvẼ

(g)1/n ĥ(g)∗(⃗v).

Let H1(π1(Ẽ),Rn∗
ĥ,λvẼ

) denote the cohomology space of 1-cocycles

Γ ∋ g 7→ v⃗(g) ∈ Rn∗
ĥ,λvẼ

.

As Hom(π1(ΣẼ),R+) equals H1(π1(ΣẼ),R), we obtain:

THEOREM 5.2.1. Let O be a strongly tame properly convex real projective orbifold,
and let Õ be its universal cover. Let ΣẼ be the end orbifold associated with an R-p-end Ẽ
of Õ . Then the space of representations

Hom(π1(ΣẼ),SL±(n+1,R)vẼ
)/SL±(n+1,R)vẼ

is the space mapping to

Hom(π1(ΣẼ),SL±(n,R))/SL±(n,R)×H1(π1(ΣẼ),R)

with the fiber isomorphic to H1(π1(ΣẼ),Rn∗
ĥ,λvẼ

) for each ([ĥ],λ ).

On a Zariski open subset of Hom(π1(ΣẼ),SL±(n,R))/SL±(n,R), the dimensions of
the fibers are constant (see Johnson-Millson [106]). A similar idea is given by Mess [129].
In fact, the dualizing these matrices gives us a representation to Aff(An). (See Chapter 4.)
In particular if we restrict ourselves to linear parts to be in SO(n,1), then we are exactly in
the cases studied by Mess. (The concept of the duality is explained in Section 5.2.3)

If Σ is a closed 2-orbifold with negative Euler characteristic, one can compute the
dimension of H1(π1(ΣẼ),Rn∗

ĥ,λvẼ
) using the twisted orbifold Euler characteristic of Porti

[138] as the 0-th and 2-nd cohomology are zero.

5.2.2. Tubular actions. Let us give a pair of antipodal points v and v−. If a group
Γ of projective automorphisms fixes a pair of fixed points v and v−, then Γ is said to be
tubular. There is a projection Πv : Sn −{v,v−} → Sn−1

v given by sending every great
segment with endpoints v and v− to a point of the sphere of directions at v.

A tube in Sn (resp. in RPn) is the closure of the inverse image Π−1
v (Ω) of a domain

Ω in Sn−1
v (resp. in RPn−1

v ). We often denote the closure in Sn by Tv(Ω), and we call it
a tube domain. Given an R-p-end Ẽ of Õ , let v := vẼ . The end domain is Rv(Õ). If an
R-p-end Ẽ has the end domain Σ̃Ẽ = Rv(Õ), the group h(π1(Ẽ)) acts on Tv(Ω).

The image of the tube domain Tv(Ω) in RPn is still called a tube domain and denoted
by T[v](Ω) where [v] is the image of v.

We will now discuss for the Sn-version but the RPn version is obviously clearly ob-
tained from this by a minor modification.

Letting v have the coordinates [0, . . . ,0,1], we obtain the matrix of g of π1(Ẽ) of form

(5.2.4)

( 1

λv(g)
1
n

ĥ(g) 0

b⃗g λv(g)

)
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where b⃗g is an n× 1-vector and ĥ(g) is an n× n-matrix of determinant ±1 and λv(g) is a
positive constant.

Note that the representation ĥ : π1(Ẽ) → SL±(n,R) is given by g 7→ ĥ(g). Here we
have λv(g)> 0. If Σ̃Ẽ is properly convex, then the convex tubular domain and the action is
said to be properly tubular

5.2.3. Affine actions dual to tubular actions. Let Sn−1 in Sn = S(Rn+1) be a great
sphere of dimension n−1. A component of a component of the complement of Sn−1 can be
identified with an affine space An. The subgroup of projective automorphisms preserving
Sn−1 and the components equals the affine group Aff(An).

By duality, a great (n−1)-sphere Sn−1 corresponds to a point vSn−1 . Thus, for a group
Γ in Aff(An), the dual groups Γ∗ acts on Sn∗ := S(Rn+1,∗) fixing vSn−1 . (See Proposition
1.5.4 also.)

Let Sn−1
∞ denote a hyperspace in Sn. Suppose that Γ acts on a properly convex open

domain U where Ω := bdU ∩Sn−1
∞ is a properly convex domain. We recall that Γ has a

properly convex affine action. Let us recall some facts from Section 1.5.4

• A great (n−2)-sphere P ⊂ Sn is dual to a great circle P∗ in Sn∗ given as the set
of hyperspheres containing P.

• The great sphere Sn−1
∞ ⊂ Sn with an orientation is dual to a point v ∈ Sn∗ and it

with an opposite orientation is dual to v− ∈ Sn∗.
• An oriented hyperspace P ⊂ Sn−1

∞ of dimension n−2 is dual to an oriented great
circle passing v and v−, giving us an element P† of the linking sphere Sn−1∗

v of
rays from v in Sn∗.

• The space S of oriented hyperspaces in Sn−1
∞ equals Sn−1∗

∞ . Thus, there is a
projective isomorphism

I2 : S = Sn−1∗
∞ ∋ P ↔ P† ∈ Sn−1∗

v .

For the following, let’s use the terminology that an oriented hyperspace V in Si sup-
ports an open submanifold A if it bounds an open i-hemisphere H in the right orientation
containing A.

PROPOSITION 5.2.2. Suppose that Γ ⊂ SL±(n+1,R) acts on a properly convex open
domain Ω ⊂ Sn−1

∞ cocompactly. Then the dual group Γ∗ acts on a properly tubular domain
B with vertices v := vSn−1

∞
and v− := vSn−1

∞ ,− dual to Sn−1
∞ . Moreover, the domain Ω and

domain Rv(B) in the linking sphere Sn−1
v from v in the directions of Bo are projectively

diffeomorphic to a pair of dual domains in Sn−1
∞ respectively.

PROOF. Given Ω ⊂ Sn−1
∞ , we obtain the properly convex open dual domain Ω∗ in

Sn−1∗
∞ . An oriented n−2-hemisphere sharply supporting Ω in Sn−1

∞ corresponds to a point
of bdΩ∗ and vice versa. (See Section 1.5.) An oriented great n−1-sphere in Sn supporting
Ω but not containing Ω meets a great n− 2-sphere P in Sn−1

∞ supporting Ω. The dual
P∗ of P is the set of hyperspaces containing P, a great circle in Sn∗. The set of oriented
great n−1-spheres containing P supporting Ω but not containing Ω forms a pencil; in this
case, a great open segment IP∗ in Sn∗ with endpoints v and v−. (See Section 1.1.2 for the
definition of supporting hyperspaces.) Let P‡ ∈ Sn−1∗

∞ denote the dual of P in Sn−1
∞ . Then

P† :=I2(P‡) is the direction of P∗ at v as we can see from the projective isomorphism I2.
Recall from the beginning of Section 1.5.1 P supports Ω if and only if P‡ ∈ Ω∗. Hence,
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there is a homeomorphism

IP := {Q|Q is an oriented great n−1-sphere supporting Ω,Q∩Sn−1
∞ = P}→

SP∗ = {p|p is a point of a great open segment in P∗ with endpoints v,v−

where the direction P† = I2(P‡),P‡ ∈ Ω∗}.(5.2.5)

The set B of oriented hyperspaces supporting Ω possibly containing Ω meets an ori-
ented (n− 2)-hyperspace in Sn−1

∞ supporting Ω. Denote by αx the great segment with
vertices v and v− in the direction of x ∈ Sn−1

v . Thus, we obtain

B∗ =
⋃

P∈Ω∗
SP∗ =

⋃
x∈I2(Ω∗)

αx ⊂ Sn∗.

Let T (Ω∗) denote the union of open great segments with endpoints v and v− in direction
of Ω∗. Thus, B∗ = T (Ω∗). Thus, there is a homeomorphism

I := {Q|Q is an oriented great n−1-sphere sharply supporting Ω}→

S = {p|p ∈ SP∗ ,P‡ ∈ bdΩ
∗}= bdB∗−{v,v−}.(5.2.6)

Also, Rv(B∗) = I2(Ω
∗) by the above equation. Thus, Γ acts on Ω if and only if Γ acts on

I if and only if Γ∗ acts on S if and only if Γ∗ acts on B∗ and on Ω∗. □

5.2.4. Distanced tubular actions and asymptotically nice affine actions. The ap-
proach is similar to what we did in Chapter 4 but is in the dual setting.

DEFINITION 5.2.3.
Radial action: A properly tubular action of Γ is said to be distanced if a Γ-invariant

tubular domain contains a properly convex compact Γ-invariant subset disjoint
from the vertices of the tubes.

Affine action: We recall from Chapter 4. A properly convex affine action of Γ is
said to be asymptotically nice if Γ acts on a properly convex open domain U ′ in
An with boundary in Ω ⊂ Sn−1

∞ , and Γ acts on a compact subset

J := {H|H is an AS-hyperspace passing x ∈ bdΩ,H ̸⊂ Sn−1
∞ }

where we require that every sharply supporting (n−2)-dimensional space of Ω

in Sn−1
∞ is contained in at least one of the element of J.

The following is a simple consequence of the homeomorphism given by equation
(5.2.6).

PROPOSITION 5.2.4. Let Γ and Γ∗ be dual groups where Γ has an affine action onAn

and Γ∗ is tubular with the vertex v = vSn−1
∞

dual to the boundary Sn−1
∞ ofAn. Let Γ = (Γ∗)∗

acts on a convex open domain Ω with a closed n-orbifold Ω/Γ. Then Γ acts asymptotically
nicely if and only if Γ∗ acts on a properly tubular domain B and is distanced.

PROOF. From the definition of asymptotic niceness, we can do the following: for
each point x and a sharply supporting hyperspace P of bdΩ passing x in Sn−1, we choose a
great n−1-sphere in Sn sharply supporting Ω at x containing P and uniformly bounded at a
distance in the dH -sense from Sn−1

∞ . This forms a compact Γ-invariant set J of hyperspaces.
The dual points of the supporting hyperspaces passing points of bdΩ are points on bdB

for a tube domain B with vertex v dual to Sn−1
∞ by (5.2.6) in the proof of Proposition 5.2.2.

Since the hyperspaces in J sharply supporting U at x∈ bdΩ, are bounded at a distance from
Sn−1

∞ in the dH -sense, the dual points are uniformly bounded at a distance from the vertices
v and v−. We take the closure of the set of hyperspaces in the dual space of Sn∗. Let us
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call this compact set K. Let Ω∗ ⊂ Sn−1
v be the dual domain of Ω. Then for every point

of bdΩ∗, we have a point of K in the corresponding great segment from v to v−. Then K
is uniformly bounded at a distance from v and v− in the d-sense. The convex hull of K
in Cl(Õ) is a compact convex set bounded at a uniform distance from v and v− since the
tube domain is properly convex. Since K is Γ∗-invariant, so is the convex hull in Cl(Õ).
Therefore, Γ∗ acts on B as a distanced action.

The converse is also very simple to prove by (5.2.6) in the proof of Proposition 5.2.2.
We can take the intersection U of the inner components of hyperspaces involved here and
obtain an open set. Also, U is not empty by an elementary geometric argument since the
angles between Sn−1

∞ and the strictly supporting hyperspaces are uniformly bounded below.
Hence, the asymptotic niceness is proved. □

THEOREM 5.2.5. Let Γ have a nontrivial properly convex tubular action at vertex
v = vSn−1

∞
on Sn (resp. in RPn) and acts on a properly convex tube B and satisfies the

uniform middle-eigenvalue conditions with respect to vSn−1
∞

. We assume that Γ acts on a
convex open domain Ω ⊂ Sn−1

v where B = Tv(Ω) and Ω/Γ is a closed n-orbifold. Then
Γ is distanced inside the tube B, and B contains a distanced Γ-invariant compact set K.
Finally, we can choose the distanced set K to be in a hypersphere disjoint from v,v− when
Γ is virtually factorizable.

PROOF. We will again prove for Sn. Let Ω denote the convex domain in Sn−1
v corre-

sponding to Bo. By Theorems 4.1.1 and 4.3.1, Γ∗ is asymptotically nice. Proposition 5.2.4
implies the result.

Now, we prove the final part to show the total geodesic property of virtually factoriz-
able ends: Suppose that Γ acts virtually reducibly on Sn−1

v on a properly convex domain
Ω. Then Γ is virtually isomorphic to a cocompact subgroup of

Zl0−1 ×ΓΓΓ1 ×·· ·×ΓΓΓl0

where ΓΓΓi is irreducible by Proposition 1.4.10. Also, Γ acts on

K := K1 ∗ · · · ∗Kl0 = Cl(Ω)⊂ Sn−1
v

where Ki denotes the properly convex compact set in Sn−1
v where ΓΓΓi acts on for each i.

Here, Ki is 0-dimensional for i = s+1, . . . , l0 for s+1 ≤ l0. Let Bi be the convex tube with
vertices v and v− corresponding to Ki. Each ΓΓΓi for i = 1, . . . ,s acts on a nontrivial tube Bi
with vertices v and v− in a subspace.

For each i, s+ 1 ≤ i ≤ r, Bi is a great segment with endpoints v and v−. A point pi
corresponds to Bi in Sn−1

v .
The virtual center isomorphic to Zl0−1 is in the group Γ by Proposition 1.4.10. Recall

that a nontrivial element g of the virtual center acts trivially on the subspace Ki of Sn−1
v ; that

is, g has only one associated eigenvalue in points of Ki. There exists a nontrivial element
g of the virtual center with the largest norm eigenvalue in Ki for the induced g-action on
Sn−1

v since the action of Γ on Ω is cocompact. By the middle eigenvalue condition, for
each i, we can find g in the center so that g has a hyperspace K′

i ⊂ Bi with largest norm
eigenvalues. The convex hull of

K′
1 ∪·· ·∪K′

l0
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in Cl(B) is a distanced Γ-invariant compact convex set. For (ζ1, · · · ,ζl0) ∈ Rl0
+, we define

(5.2.7)

ζ (ζ1, · · · ,ζl0) :=


ζ1In1+1 0 · · · 0

0 ζ2In2+1 · · · 0
...

...
. . .

...
0 0 · · · ζl0 Inl0+1

 ,ζ n1+1
1 ζ

n2+1
2 · · ·ζ

nl0+1
l0

= 1,

using the coordinates where each Ki corresponds to a block.
Now, we consider the general case. The element x of Ko ⊂ Sn−1

v has coordinates

((
λ1, . . . ,λl0 , x⃗1, . . . , x⃗l0

))
, where

l0

∑
i=1

λi = 1,x =

((
l0

∑
i=1

λi⃗xi

))

for x⃗i is a unit vector in the direction of Ko
i for i = 1, . . . , l0.

Let Z (G) for any subgroup G of SL±(n+1,R) denote the Zariski closure in SL±(n+
1,R).

Let Γ′ denote the finite index normal subgroup acting on each of Ki in Γ. We take the
Zariski closure of Γ′. It is isomorphic to

Rl0−1 ×Z (ΓΓΓ1)×·· ·Z (ΓΓΓl0)

where Z (ΓΓΓi) is the Zariski closure of ΓΓΓi easily derivable from Theorem 1.1 of Benoist
[21] for our setting. The elements of Rl0 commute with elements of ΓΓΓi and hence with Γ′.

There is a linear map Z :Zl0−1 →Rl0 so that an isomorphism Zl0−1 →Γ′ is represented
by ζ ◦ exp◦Z.

Let logλ1 : Zl0−1 → R denote a map given by taking the log of the largest norm and
logλn : Zl0−1 →R given by taking the log of the smallest norm and logλv : Zl0−1 →R the
log of the eigenvalue at v. Now, logλ1 and logλn extends to piecewise linear functions on
Rl0−1 that are linear over cones with origin as the vertex.

logλ1 has only nonnegative values and logλn has nonpositive values. The uniform
middle eigenvalue condition is equivalent to the condition that logλ1 > logλv > logλn
holds over Rn −{O}.

Let Bi denote the tube T (Ki). We choose an element g of the virtual center having
largest norm of the eigenvalue at points of Ki as an automorphism of Sn−1

v . g acts on Bi.
By the uniform middle eigenvalue condition, g fixes a subspace K̂i equal to Bi ∩Pi for a
hyperspace Pi in the span of Bi corresponding to the largest norm eigenvalue of g as an
element of SL±(n+ 1,R). By commutativity, the center also acts on K̂i. Define P to be
the join of P1, . . . ,Pl0 .. Hence, the center acts on the join K̂1 ∗ · · · ∗ K̂l0 equals T ∩P for a
hyperspace P. By commutativity, Γ′ acts on Bi also.

Suppose that for some g ∈ Γ−Γ′, g(P) ̸= P. Then g(P)∩B j has a point x closer to
v or v− than P∩B j for some j. Assume that it is closer to v without loss of generality.
We find a sequence {⃗ki} so that gi = ζ ◦ exp◦Z(⃗ki) have the largest eigenvalue at points of
Bi and λ1(gi)/λv(gi)→ ∞. Since λn(g−1

i ) = λ1(gi)
−1 and λv(g−1

i ) = λv(gi)
−1, we obtain

that {g−1
i (x)} → v as i → ∞. Then we obtain that gi(g(P))∩T is not distanced. This

contradicts the first paragraph of the proof.
Hence, Γ acts on the hyperspace P. Hence, letting K = B∩P completes the proof.

[SnT] □
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5.3. The characterization of lens-shaped representations

The main purpose of this section is to characterize the lens-shaped representations in
terms of eigenvalues, a major result of this monograph.

First, we prove the eigenvalue estimation in terms of lengths for non-virtually-factorizable
and hyperbolic ends. We show that the uniform middle-eigenvalue condition implies the
existence of limit sets. This proves Theorem 5.1.4. Finally, we prove the equivalence of
the lens condition and the uniform middle-eigenvalue condition in Theorem 5.3.21 for both
R-ends and T-ends under very general conditions. That is, we prove Theorem 5.1.5.

Techniques here are somewhat related to the work of Guichard-Wienhard [96] and
Benoist [18].

5.3.1. The eigenvalue estimations. Let O be a strongly tame real projective orbifold
and Õ be the universal cover in Sn. Let Ẽ be a properly convex R-p-end of Õ , and let vẼ
be the p-end vertex. Let

h : π1(Ẽ)→ SL±(n+1,R)vẼ

be a homomorphism and suppose that π1(Ẽ) is hyperbolic.
In this article, we assume that h satisfies the middle eigenvalue condition. We denote

by the norms of eigenvalues of g by

(5.3.1) λ1(g), . . . ,λn(g),λvẼ
(g),where λ1(g) · · ·λn(g)λvẼ

(g) =±1, and

λ1(g)≥ . . .≥ λn(g),

where we allow repetitions.
Recall the linear part homomorphism L1 from the beginning of Section 5.2. We de-

note by ĥ : π1(Ẽ) → SL±(n,R) the homomorphism L1 ◦ h. Since ĥ is a holonomy of a
closed convex real projective (n− 1)-orbifold, and ΣẼ is assumed to be properly convex,
ĥ(π1(Ẽ)) divides a properly convex domain Σ̃Ẽ in Sn−1

vẼ
.

We denote by λ̃1(g), ..., λ̃n(g) the norms of eigenvalues of ĥ(g) so that

(5.3.2) λ̃1(g)≥ . . .≥ λ̃n(g), λ̃1(g) . . . λ̃n(g) =±1

hold. These are called the relative norms of eigenvalues of g. We have λi(g)= λ̃i(g)/λvẼ
(g)1/n

for i = 1, ..,n.
For each nontorsion element g, eigenvalues corresponding to

λ1(g), λ̃1(g),λn(g), λ̃n(g),λvẼ
(g)

are all positive and g is positive semi-proximal by Proposition 1.3.11. (See also Theorem
1.3.12.) We define

length(g) := log

(
λ̃1(g)
λ̃n(g)

)
= log

(
λ1(g)
λn(g)

)
.

This equals the infimum of the Hilbert metric lengths of the associated closed curves in
Σ̃Ẽ/ĥ(π1(Ẽ)) as first shown by Kuiper. (See [17] for example.)

We recall the notions in Section 1.3.2. (See [17] and [18] also.)
When π1(Ẽ) is hyperbolic, all infinite order elements of ĥ(π1(Ẽ)) are positive biprox-

imal and a finite index subgroup has only positive biproximal elements and the identity.
Assume that ΓΓΓẼ is hyperbolic. Suppose that g ∈ ΓΓΓẼ is proximal. We define

(5.3.3) αg :=
log λ̃1(g)− log λ̃n(g)

log λ̃1(g)− log λ̃n−1(g)
,βg :=

log λ̃1(g)− log λ̃n(g)
log λ̃1(g)− log λ̃2(g)

,



5.3. THE CHARACTERIZATION OF LENS-SHAPED REPRESENTATIONS 113

and denote by ΓΓΓ
p
Ẽ the set of proximal elements. We define

βΓΓΓẼ
:= sup

g∈ΓΓΓ
p
Ẽ

βg,αΓΓΓẼ
:= inf

g∈ΓΓΓ
p
Ẽ

αg.

Proposition 20 of Guichard [95] shows that we have

(5.3.4) 1 < α
Σ̃Ẽ

≤ αΓ ≤ 2 ≤ βΓ ≤ β
Σ̃Ẽ

< ∞

for constants α
Σ̃Ẽ

and β
Σ̃Ẽ

depending only on Σ̃Ẽ since Σ̃Ẽ is properly and strictly convex.

Here, it follows that αΓΓΓẼ
,βΓΓΓẼ

depends on ĥ, and they form positive-valued functions
on the union of components of

Hom(π1(Ẽ),SL±(n+1,R))/SL±(n+1,R)
consisting of convex divisible representations with the algebraic convergence topology as
given by Benoist [23].

THEOREM 5.3.1. Let O be a strongly tame convex real projective orbifold. Let Ẽ be a
properly convex R-p-end of the universal cover Õ , Õ ⊂ Sn, n ≥ 2. Let ΓΓΓẼ be a hyperbolic
group. Then

1
n

(
1+

n−2
βΓΓΓẼ

)
length(g)≤ log λ̃1(g)≤

1
n

(
1+

n−2
αΓΓΓẼ

)
length(g)

for every nonelliptic element g ∈ ĥ(π1(Ẽ)).

PROOF. Since there is a positive bi-proximal subgroup of finite index, we concentrate
on positive bi-proximal elements only. We obtain from above that

log λ̃1(g)
λ̃n(g)

log λ̃1(g)
λ̃2(g)

≤ βΓΓΓẼ
.

We deduce that

(5.3.5)
λ̃1(g)
λ̃2(g)

≥
(

λ1(g)
λn(g)

)1/βΓΓΓẼ
=

(
λ̃1(g)
λ̃n(g)

)1/βΓΓΓẼ

= exp

(
length(g)

βΓΓΓẼ

)
.

Since we have λ̃i ≤ λ̃2 for i ≥ 2, we obtain

(5.3.6)
λ̃1(g)
λ̃i(g)

≥
(

λ1

λn

)1/βΓΓΓẼ

and since λ̃1 · · · λ̃n = 1, we have

λ̃1(g)n =
λ̃1(g)
λ̃2(g)

· · · λ̃1(g)
λ̃n−1(g)

λ̃1(g)
λ̃n(g)

≥

(
λ̃1(g)
λ̃n(g)

) n−2
βΓΓΓẼ

+1

.

We obtain

(5.3.7) log λ̃1(g)≥
1
n

(
1+

n−2
βΓΓΓẼ

)
length(g).

By similar reasoning, we also obtain

□ log λ̃1(g)≤
1
n

(
1+

n−2
αΓΓΓẼ

)
length(g).
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□

REMARK 5.3.2. Under the assumption of Theorem 5.3.1, if we do not assume that
π1(Ẽ) is hyperbolic, then we obtain

(5.3.8)
1
n

length(g)≤ log λ̃1(g)≤
n−1

n
length(g)

for every semiproximal element g ∈ ĥ(π1(Ẽ)).

PROOF. Let λ̃i(g) denote the norms of ĥ(g) for i = 1,2, . . . ,n.

log λ̃1(g)≥ . . .≥ log λ̃n(g), log λ̃1(g)+ · · ·+ log λ̃n(g) = 0

hold. We deduce

log λ̃n(g) =− logλ1 −·· ·− log λ̃n−1(g)

≥ −(n−1) log λ̃1

log λ̃1(g)≥ − 1
n−1

log λ̃n(g)(
1+

1
n−1

)
log λ̃1(g)≥

1
n−1

log
λ̃1(g)
λ̃n(g)

log λ̃1(g)≥
1
n

length(g).(5.3.9)

We also deduce

− log λ̃1(g) =log λ̃2(g)+ · · ·+ log λ̃n(g)

≥ (n−1) log λ̃n(g)

−(n−1) log λ̃n(g)≥ log λ̃1(g)

(n−1) log
λ̃1(g)
λ̃n(g)

≥ n log λ̃1(g)

n−1
n

length(g)≥ log λ̃1(g).□

□

REMARK 5.3.3. We cannot show that the middle-eigenvalue condition implies the
uniform middle-eigenvalue condition. This could be false. For example, we could obtain
a sequence of elements gi ∈ Γ so that {λ1(gi)/λvẼ

(gi)} → 1 while Γ satisfies the middle-
eigenvalue condition. Certainly, we could have an element g where λ1(g) = λvẼ

(g). How-
ever, even if there is no such element, we might still have a counter-example. For example,
suppose that we might have 

log
(

λ1(gi)
λvẼ

(gi)

)
length(g)

→ 0.

This could happen by changing λvẼ
considered as a homomorphism π1(ΣẼ)→ R+. Such

assignments are not really understood globally but see Benoist [17]. Also, an analogous
phenomenon seems to happen with the Margulis space-time and diffused Margulis invari-
ants as investigated by Charette, Drumm, Goldman, Labourie, and Margulis recently. See
[91])
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5.3.2. The uniform middle-eigenvalue conditions and the orbits. Let Ẽ be a prop-
erly convex R-p-end of the universal cover Õ of a strongly tame properly convex real
projective orbifold O . Assume that ΓΓΓẼ satisfies the uniform middle-eigenvalue condition.
There exists a ΓΓΓẼ -invariant compact set to be denoted LẼ distanced from {vẼ ,vẼ−} by
Theorem 5.2.5. For the corresponding tube TvẼ

(Σ̃Ẽ), LẼ ∩ bdTvẼ
(Σ̃Ẽ) is a compact sub-

set distanced from {vẼ ,vẼ−}. Let C H (L) be the convex hull of L in the tube TvẼ
(Σ̃Ẽ)

obtained by Theorem 5.2.5. Then C H (L) is a ΓΓΓẼ -invariant distanced subset of TvẼ
(Σ̃Ẽ).

We of course are doing everything in Sn here. But RPn-versions are fairly clear to
obtain.

DEFINITION 5.3.4. A transversal set is a compact subset of TvẼ
(Σ̃Ẽ)−{vẼ ,vẼ−}

that meets the interior of every great segment from vẼ to vẼ− in it. A transversal boundary
set is a compact subset of bdTvẼ

(Σ̃Ẽ)−{vẼ ,vẼ−} that meets the interior of every great
segment from vẼ to vẼ− in it. We define the limit set ΛẼ of a properly convex R-p-end Ẽ
to be the smallest nonempty compact ΓΓΓẼ -invariant transversal boundary set.

Following Corollary 5.3.5 shows that the limit set is well-defined. Compare also to
Definition 6.2.1.

The following main result of this subsection shows that ΛẼ is characterized.

COROLLARY 5.3.5. A transversal boundary ΓΓΓẼ -invariant compact set C in bdTvẼ
(Σ̃Ẽ)−

{vẼ ,vẼ−} exists and is unique. Also, it satisfies C H (C)∩ (bdTvẼ
(Σ̃Ẽ)−{vẼ ,vẼ−}) =C.

PROOF. Proposition 5.3.10 will show that C is independent of the choice and meets
each great segment for any distanced compact convex set L in TvẼ

(Σ̃Ẽ) at a unique point.
Since C H (C)∩ (bdTvẼ

(Σ̃Ẽ)(Σ̃Ẽ)−{vẼ ,vẼ−}) contains C and is also a ΓΓΓẼ -invariant
distanced compact set, the uniqueness part of Proposition 5.3.10 shows that it equals C. □

Also, ΛẼ ∩bdTvẼ
(Σ̃Ẽ) contains all attracting and repelling fixed points of γ ∈ ΓΓΓẼ by

the ΓΓΓẼ -invariance and the middle-eigenvalue condition.
5.3.2.1. Hyperbolic groups. We first consider when ΓΓΓẼ is hyperbolic.

LEMMA 5.3.6. Let O be a strongly tame convex real projective orbifold. Let Ẽ be a
properly convex R-p-end. Assume that ΓΓΓẼ is hyperbolic and satisfies the uniform middle
eigenvalue conditions.

• Suppose that γi is a sequence of elements of ΓΓΓẼ acting on TvẼ
(Σ̃Ẽ).

• The sequence of attracting fixed points ai and the sequence of repelling fixed
points bi are so that {ai}→ a∞ and {bi}→ b∞ where a∞,b∞ are not in {vẼ ,vẼ−}.

• Suppose that the sequence {λi} of eigenvalues where λi corresponds to ai con-
verges to +∞.

Then the point a∞ in bdTvẼ
(Σ̃Ẽ)−{vẼ ,vẼ−} is the geometric limit of {γi(K)} for any

compact subset K ⊂ M.

PROOF. We may assume without loss of generality that a∞ ̸= b∞ since otherwise we
replace {gi} with {ggi} where g(a∞) ̸= b∞. Proving for this case implies the general cases.

Let ki be the inverse of the factor

min

{
λ̃1(γi)

λ̃2(γi)
,

λ̃1(γi)

λvẼ
(γi)

n+1
n

=
λ1(γi)

λvẼ
(γi)

}
.

Then {ki}→ 0 by the uniform middle eigenvalue condition and (5.3.5).
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There exists a totally geodesic sphere Sn−1
i sharply supporting TvẼ

(Σ̃Ẽ) at bi. ai is
uniformly bounded away from Sn−1

i for i sufficiently large. Sn−1
i bounds an open hemi-

sphere Hi containing ai where ai is the attracting fixed point by Corollary 1.2.3 of [110] or
by Proposition 1.3.2 so that for a Euclidean metric dE,i, γi|Hi : Hi → Hi we have

(5.3.10) dE,i(γi(x),γi(y))≤ kidE,i(x,y),x,y ∈ Hi.

Note that {Cl(Hi)} converges geometrically to Cl(H∞) for an open hemisphere containing
a in the interior.

Actually, we can choose a Euclidean metric dE,i on Ho
i so that {dE,i|J×J} is uniformly

convergent for any compact subset J of H∞. Hence there exists a uniform positive constant
C′ so that

(5.3.11) d(ai,K)<C′dEi(ai,K).

provided ai,K ⊂ J and sufficiently large i.
Since ΓΓΓẼ is hyperbolic, the domain Ω corresponding to TvẼ

(Σ̃Ẽ) in Sn−1
vẼ

is strictly
convex. For any compact subset K of M, the equation K ⊂ M is equivalent to

K ∩Cl(
∞⋃

i=1

bivẼ ∪bivẼ−) = /0.

Since the boundary sphere bdH∞ meets TvẼ
(Σ̃Ẽ) in this set only by the strict convexity of

Ω, we obtain K ∩bdH∞ = /0. And K ⊂ H∞ since TvẼ
(Σ̃Ẽ)⊂ Cl(H∞).

We have d(K,bdH∞) > ε0 for ε0 > 0. Thus, the distance d(K,bdHi) is uniformly
bounded by a constant δ . d(K,bdHi) > δ implies that dEi(ai,K) ≤ C/δ for a positive
constant C > 0 Acting by gi, we obtain dEi(gi(K),ai)≤ kiC/δ by (5.3.10), which implies
d(gi(K),ai) ≤ C′kiC/δ by (5.3.11). Since {ki} → 0, the fact that {ai} → a implies that
{gi(K)} geometrically converges to a. □

LEMMA 5.3.7. Let O be a strongly tame convex real projective orbifold. Let Ẽ be a
properly convex R-p-end. Assume that ΓΓΓẼ is hyperbolic, and satisfies the uniform middle
eigenvalue conditions. Suppose that {γi} is sequence of elements of ΓΓΓẼ acting on TvẼ

(Σ̃Ẽ)

and forms a convergence sequence acting on Sn−1
vẼ

. Then any transversal boundary ΓẼ -
invariant set LẼ for Ẽ, contains the geometric limit of any subsequence of {γi(K)} for any
compact subset K ⊂ T o

vẼ
. Furthermore,

A∗({γi})∩TvẼ
(Σ̃Ẽ),R∗({γi})∩TvẼ

(Σ̃Ẽ)⊂ LẼ .

PROOF. Let z ∈T o
vẼ

. Let ((z′)) denote the element in ΣẼ corresponding to the ray from
vẼ to z. Let {γi} be any sequence in ΓΓΓẼ so that the corresponding sequence {γi(((z)))} in
ΣẼ ⊂ Sn−1

vẼ
converges to a point z′ in bdΣẼ ⊂ Sn−1

vẼ
.

Clearly, a fixed point of g ∈ ΓΓΓẼ −{I} in bdTvẼ
(Σ̃Ẽ)−{vẼ ,vẼ−} is in LẼ since g has at

most one fixed point on each open segment in the boundary. For the attracting fixed points
ai and ri of γi, we can assume that

{ai}→ a,{ri}→ r for ai,ri ∈ LẼ

where a,r ∈ LẼ by the ΓẼ -invariance and the closedness of LẼ . Assume a ̸= r first. By
Lemma 5.3.6, we have {γi(z)}→ a and hence the limit z∞ = a.

However, it could be that a = r. In this case, we choose γ0 ∈ ΓΓΓẼ so that γ0(a) ̸= r.
Then γ0γi has the attracting fixed point a′i so that we obtain {a′i} → γ0(a) and repelling
fixed points r′i so that {r′i}→ r holds by Lemma 5.3.8. This implies the first part.
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Then as above {γ0γi(z)}→ γ0(a) and we need to multiply by γ
−1
0 now to show {γi(z)}→

a. Thus, the limit set is contained in LẼ . □

LEMMA 5.3.8. Let {gi} be a sequence of projective automorphisms acting on a strictly
convex domain Ω in Sn. Suppose that the sequence of attracting fixed points {ai ∈ bdΩ}→
a and the sequence of repelling fixed points {ri ∈ bdΩ}→ r. Assume that the corresponding
sequence of eigenvalues of ai limits to +∞ and that of ri limits to 0. Let g be any projective
automorphism of Ω. Then {ggi} has the sequence of attracting fixed points {a′i} converging
to g(a) and the sequence of repelling fixed points converging to r.

PROOF. Recall that g is a quasi-isometry. Given ε > 0 and a compact ball B disjoint
from a ball around r, we obtain that ggi(B) is in a ball of radius ε of g(a) for sufficiently
large i. For a choice of B and sufficiently large i, we obtain ggi(B)⊂Bo. Since ggi(B)⊂Bo,
we obtain

(ggi)
n(B)⊂ (ggi)

m(B)o for n > m

by induction, There exists an attracting fixed point a′i of ggi in ggi(B). Since the sequence
of the diameters of sets of form ggi(B) is converging to 0, we obtain that {a′i}→ g(a).

Also, given ε > 0 and a compact ball B disjoint from a ball around g(a), g−1
i g−1(B) is

in the ball of radius ε of r. Similarly to above, we obtain the needed conclusion. □

5.3.2.2. Non-hyperbolic groups. Now, we generalize to not necessarily hyperbolic
ΓΓΓẼ . A ΓΓΓẼ -invariant distanced set LẼ contains the attracting fixed set Ai and the repelling
fixed set Ri of any g ∈ ΓΓΓẼ by invariance and sequence arguments.

LEMMA 5.3.9. Let O be a strongly tame convex real projective orbifold. Let Ẽ be a
properly convex R-p-end. Assume that ΓΓΓẼ is non-hyperbolic or virtually-factorizable and
satisfies the uniform middle eigenvalue conditions with respect to vẼ . Suppose that {γi}
is a generalized convergence sequence of elements of ΓΓΓẼ acting on TvẼ

(Σ̃Ẽ). Let LẼ be a
transverse boundary set for Ẽ. Then LẼ contains the geometric limit of any subsequence
of {γi(K)} for any compact subset K ⊂ TvẼ

(Σ̃Ẽ)
o. Furthermore,

A∗({γi})∩TvẼ
(Σ̃Ẽ),R∗({γi})∩TvẼ

(Σ̃Ẽ)⊂ LẼ .

PROOF. Let L = C H (LẼ)∩TvẼ
(Σ̃Ẽ). Then L is a convex set uniformly bounded

away from vẼ and its antipode. by a geometric consideration.
Given any sequence gi, we can extract a convergence sequence {gi} with a conver-

gence limit g∞.
Suppose that Lo = /0. Then L is a convex domain on a hyperspace P disjoint from vẼ .

We use a coordinate system where each γ ∈ Γ is of form (5.2.4) where b⃗g = 0. Dividing gi
by λ1(gi) and taking a limit, we obtain that g∞ equals

(5.3.12)
(

ĝ∞ 0
0 0

)
by the uniform middle eigenvalue condition and Lemma 1.3.14. Hence A∗({gi})⊂ P. By
Theorem 1.3.21,

A∗({gi})⊂ P∩bdTvẼ
(Σ̃Ẽ)) = LẼ .

The remainders are simple to show.
Suppose that Lo is not empty. Then Lo ∩N∗({gi}) = /0 by Lemma 1.3.20. Given any

convergence sequence {gi},gi ∈Γ converging to g∞, the sequence gi(x) for x∈ L converges
to a point of A∗({gi}).
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By Lemma 1.3.14, vẼ ∈ N∗({gi}) since {λvẼ
(gi)/λ (gi)} → 0 by the uniform middle

eigenvalue condition. Dividing gi by λ1(gi) and taking a limit, we obtain that g∞ equals

(5.3.13)
(

ĝ∞ 0
b̂ 0

)
by the uniform middle eigenvalue condition and Lemma 1.3.14 dualizing the proof of
Lemma 4.4.2. Here ĝ∞ is not zero since otherwise we have uniform convergence to vẼ or
vẼ− for any compact set disjoint from {vẼ ,vẼ−} while L is invariant set, which is absurd.
Since ĝ∞ ̸= 0, the image of g∞ is now a subspace of the same dimension as A∗({((ĝi))}).
Actually, it is graph over A∗({((ĝi))}) where the vertical direction is given by the direction
to vẼ for a linear function given by b̂.

Since ΓΓΓẼ acts on L, g∞(x) ∈ Cl(L)∩ bdTvẼ
(Σ̃Ẽ). Hence, g∞(L) = A∗({gi}) ⊂ LẼ .

Using {g−1
i }, we obtain R∗({gi})⊂ LẼ .

Any element of x ∈TvẼ
(Σ̃Ẽ) satisfies x = ((⃗vx)) , v⃗x = v⃗L + c⃗vẼ for a constant c > 0 and

a vector v⃗L in the direction of a point of L and a vector v⃗Ẽ in direction of vẼ . Then

g∞(((⃗vx))) = ((g∞(⃗vL)+ cg∞(⃗vẼ))) .

Since cg∞(⃗vẼ) = 0 from (5.3.13), we obtained that g∞(TvẼ
(Σ̃Ẽ)) = g∞(L). Since

g∞(TvẼ
(Σ̃Ẽ))⊂ A∗({gi})∩TvẼ

(Σ̃Ẽ),

and g∞(L) = A∗({gi}), we obtain the result. The final statement is also proved by taking
the sequence g−1

i . □

For the following, ΓΓΓẼ can be virtually factorizable. By following Proposition 5.3.10,
ΛẼ is well-defined independent of the choice of K.

PROPOSITION 5.3.10. Let O be a strongly tame convex real projective orbifold. Let Ẽ
be a properly convex R-p-end. Assume that ΓΓΓẼ satisfies the uniform middle eigenvalue con-
dition with respect to the R-p-end structure. Let vẼ be the R-end vertex and z ∈ TvẼ

(Σ̃Ẽ)
o.

Let LẼ be a transversal boundary set for Ẽ, and let L be the closure of C H (LẼ). Then the
following properties are satisfied :

(i) LẼ contains all the limit points of orbits of each compact subset of TvẼ
(Σ̃Ẽ)

o. LẼ
contains all attracting fixed sets of elements of ΓΓΓẼ . If ΓΓΓẼ is hyperbolic, then the
set of attracting fixed point is dense in the set.

(ii) For each segment s in bdTvẼ
(Σ̃Ẽ) with an endpoint vẼ , the great segment con-

taining s meets LẼ at a unique point other than vẼ ,vẼ−. That is, there is a
one-to-one correspondence between ∂Cl(ΣẼ) and LẼ .

(iii) LẼ is homeomorphic to Sn−2.
(iv) For any ΓΓΓẼ -distanced compact set L′ in bdTv⃗Ẽ

(Σ̃Ẽ)−{vẼ ,vẼ−} meeting every
great segment in TvẼ

(Σ̃Ẽ), we have LẼ = L′. (uniqueness)

PROOF. We will first prove (i),(ii),(iii) for various cases and then prove (iv) all to-
gether:

(A) Consider first when ΓΓΓẼ is hyperbolic. Proposition 5.3.7 proves (i) here. Let L
be the closure of C H (LẼ), which is ΓΓΓẼ -invariant. Let K′ = L∩bdTvẼ

(Σ̃Ẽ)−{vẼ ,vẼ−}.
Clearly LẼ ⊂ K′.

Since ΓΓΓẼ is hyperbolic, any point y of bdΣ̃Ẽ ⊂ Sn−1
vẼ

is a limit point of some sequence
{gi(x)} for x ∈ Σ̃Ẽ by [22]. Thus, at least one point in the segment ly in the direction of
y, y ∈ Sn−1

vẼ
with endpoints vẼ and vẼ− is a limit point of some subsequence of {gi(x)} by

Lemma 5.3.6. Thus, ly ∩LẼ ̸= /0. and ly ∩K′ ̸= /0.
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Let us choose a standard Euclidean metric ||·||E for Rn+1. We identify Sn−1
vẼ

with a
subspace V not passing vẼ for convenience during this proof. We consider V to correspond
to Rn and vẼ to be the n+1-st unit vector.

We claim that ly ∩K′ is unique: Suppose not. Let z and z′ be the two points of ly ∩K′.
We choose a line l in Σ̃Ẽ ending at y. Let yi be the sequence of points on l covering to y.
We choose gi as in the proof of Lemma 4.2.5 so that gi(yi) ∈ F for a compact fundamental
domain F of Σ̃Ẽ . We assume that {gi} is a convergence sequence by choosing a subse-
quence if necessary. (Here, ((⃗v−,i)) is fixed to be a single point y = ((⃗v−)).) Given the other
endpoint z of l, we have

{gi(z)}→ a∗({gi})
for an attractor of a∗({gi}) of {gi}. This follows by the same reasoning the proof of
Lemma 4.2.5. This means that {gi(y)} is uniformly bounded away from a∗({gi}) since
gi(l) passes F with {gi(z)} converging to a∗({gi}). Since {gi(y)} is bounded away from
a∗({gi}) uniformly, as in the proof of Lemma 4.2.5 using (4.2.8) and similarly to proving
the conclusion of the lemma, we obtain

(5.3.14)

{
1

λvẼ
(gi)

1+ 1
n

ĥ(gi)(⃗v−)

}
→ 0

in the Euclidean metric. To explain more, we write v⃗− as a sum of v⃗p
i + v⃗S

i as there. The
rest is analogous.

Let vẼ denote the unit vector in the direction of v⃗Ẽ . We consider Rn to be a com-
plementary subspace to this vector under the norm ||·||. We write the vector for z as
v⃗z = λ v⃗−+ v⃗Ẽ and the vector for z′ as v⃗z′ = λ ′⃗v−+ v⃗Ẽ . Then

gi(⃗vz) = λ
1

λ
1
n

vẼ
(gi)

ĥ(gi)(⃗v−)+(λ b⃗gi · v⃗−+λvẼ
(gi))⃗vẼ

by (5.2.1). Let us denote

ci :=

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

λ
1
n

vẼ
(gi)

ĥ(gi)(⃗v−)

∣∣∣∣∣∣
∣∣∣∣∣∣
E

.

Since the direction of gi(⃗vz) is bounded away from v⃗Ẽ ,∣∣∣∣∣λ b⃗gi · v⃗−
ci

+
λvẼ

(gi)

ci

∣∣∣∣∣
is uniformly bounded. By (5.3.14), we obtain{∣∣∣∣λvẼ

(gi)

ci

∣∣∣∣}→ ∞.

Hence, {∣∣∣∣∣ b⃗gi · v⃗−
ci

∣∣∣∣∣
}

→ ∞ as i → ∞.

We also have

gi(⃗vz′) = λ
′ 1

λ
1
n

vẼ
(gi)

ĥ(gi)(⃗v−)+(λ ′⃗bgi · v⃗−+λvẼ
(gi))⃗vẼ .
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Since λ ′ ̸= λ , and
{∣∣∣∣ b⃗gi ·⃗v−

ci

∣∣∣∣}→ ∞{∣∣∣∣∣λ ′ b⃗gi · v⃗−
ci

+
λvẼ

(gi)⃗vẼ

ci

∣∣∣∣∣=
∣∣∣∣∣(λ ′−λ )

b⃗gi · v⃗−
ci

+λ
b⃗gi · v⃗−

ci
+

λvẼ
(gi)⃗vẼ

ci

∣∣∣∣∣
}

cannot be uniformly bounded. This implies that gi(z′) converges to vẼ or vẼ−. Since
z′ ∈ K′ and K′ is ΓΓΓẼ -invariant, this is a contradiction.

By Lemma 5.3.6, LẼ meets every great segment in T . Thus, K′∩ ly = LẼ ∩ ly for every
y in ∂Cl(Σ̃Ẽ). Thus, K′ = LẼ , and (i) and (ii) hold for LẼ .

(iii) Since LẼ is closed and compact and bounded away from vẼ ,vẼ−, the section
s : ∂Cl(ΩẼ) → bdTvẼ

(Σ̃Ẽ) is continuous. If not, we can contradict (ii) by taking two
sequences converging to distinct points in a great segment from v⃗Ẽ to its antipode.

(B) Now suppose that ΓΓΓẼ is not virtually factorizable and is not hyperbolic. Lemma
5.3.9 proves that the orbits limit to LẼ only. An attracting fixed sets in TvẼ

(Σ̃Ẽ) is in LẼ as
in case (A).

First suppose that a great segment η in TvẼ
(Σ̃Ẽ) with endpoints vẼ and vẼ− corre-

sponds to an element y of ∂Cl(Σ̃Ẽ). Now we take a line l in Σ̃Ẽ as in the hyperbolic case.
Then (5.3.14) holds as above using Lemma 4.3.4 instead of Lemma 4.2.5. The identical
argument will show that ηo meets with LẼ at a unique point. This proves (i) and (ii). (iii)
follows as above.

(C) Suppose that ΓΓΓE is virtually factorizable. We follow the proof of Theorem 5.2.5.
Now, the space of open great segments with an endpoint vẼ in TvẼ

(Σ̃Ẽ)
o corresponds to a

properly convex domain Ω that is the interior of the strict join K1 ∗ · · · ∗Kl . Then a totally
geodesic ΓΓΓẼ -invariant hyperspace H is disjoint from {vẼ ,vẼ−} by the proof of Theorem
5.2.5. Here, we may regard Ki ⊂ H for each i = 1, . . . , l. Then consider any sequence
gi so that {gi(x)} → x0 for a point x ∈ TvẼ

(Σ̃Ẽ)
o and x0 ∈ TvẼ

(Σ̃Ẽ). Let x′ denote the
corresponding point of Σ̃Ẽ for x. Then {gi(x′)} converges to a point y ∈ Sn−1

vẼ
. Let x⃗ ∈Rn+1

be the vector in the direction of x. We write

x⃗ = x⃗E + x⃗H

where x⃗H is in the direction of H and x⃗E is in the direction of vẼ . By the uniform middle
eigenvalue condition and estimating the size of vectors, we obtain the same situation as in
(5.3.12) and {gi(x)} → x0 for x ∈ LẼ and x0 ∈ H. Hence, x0 ∈ H ∩LẼ . Thus, every limit
point of an orbit of x is in H.

If there is a point y in LẼ −H, then there is a strict join Ki1 ∗ · · · ∗Kil ∗ {vẼ} for a
proper collection containing y. As in the proof of Theorem 5.2.5, by Proposition 1.4.10,
we can find a sequence gi, virtually central gi ∈ ΓΓΓẼ , so that {gi|Ki1 ∗ · · · ∗Kil} converges to
the identity, and the maximal norm of gi to be in the complementary domains. The norms
of eigenvalues associated with Ki1 ∗ · · · ∗Kil have uniformly bounded ratios with the min-
imal one λn(gi) in this case. The maximal norm λ̄1(gi) of the eigenvalue associated with
Ki1 ∗ · · · ∗Kil and λẼ(gi) satisfy {λ̄1(gi)/λẼ(gi)} → 0 by the uniform middle eigenvalue
condition. Hence {gi(y)} → vẼ . Again this is a contradiction. Hence, we obtain LẼ ⊂ H.
(i), (ii), (iii) follow easily now.

(iv) Suppose that we have another distanced set L′. We take a convex hull of LE ∪L′

and apply the same reasoning as above. □

5.3.3. An extension of Koszul’s openness. Here, we state and prove a well-known
minor modification of Koszul’s openness result.
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A radial affine connection is an affine connection on Rn+1 −{O} invariant under a
scalar dilatation St : v⃗ → t⃗v for every t > 0.

PROPOSITION 5.3.11 (Koszul). Let M be a properly convex real projective compact
n-orbifold with strictly convex boundary. Let

h : π1(M)→ PGL(n+1,R) (resp. h : π1(M)→ SL±(n+1,R))

denote the holonomy homomorphism acting on a properly convex domain Ωh in RPn (resp.
in Sn). Assume that M is projectively diffeomorphic to Ωh/h(π1(M)). Then there exists a
neighborhood U of h in

Hom(π1(M),PGL(n+1,R)) (resp. Hom(π1(M),SL±(n+1,R)))

so that every h′ ∈ U acts on a properly convex domain Ωh′ so that Ωh′/h′(π1(M)) is a
compact properly convex real projective n-orbifold with strictly convex boundary. Also,
Ωh′/h′(π1(M)) is diffeomorphic to M.

PROOF. We prove for Sn. Let Ωh be a properly convex domain covering M. We may
modify M by pushing ∂M inward: Let Ω′

h be the inverse image of M′ in M. Then M′ and
Ω′

h are properly convex by Lemma 1.4.6.
The linear cone C(Ωo

h)⊂Rn+1 = Π−1(Ωo
h) over Ωo

h has a smooth strictly convex Hes-
sian function V by Vey [151] or Vinberg [107]. Let C(Ω′

h) denote the linear cone over Ω′
h.

We extend the group µ(π1(M)) by adding a transformation γ : v⃗ 7→ 2⃗v to C(Ωo
h). For the

fundamental domain F ′ of C(Ω′
h) under this group, the Hessian matrix of V restricted to

F ∩C(Ω′
h) has a lower bound. Also, the boundary bdC(Ω′

h) is strictly convex in any affine
coordinates in any transverse subspace to the radial directions at any point.

Let N′ be a compact orbifold C(Ω′
h)/⟨µ(π1(Ẽ)),γ⟩ with a flat affine structure. Note

that St , t ∈ R+, becomes an action of a circle on M. The change of representation h to
h′ : π1(M)→ SL±(n+1,R) is realized by a change of holonomy representations of M and
hence by a change of affine connections on C(Ω′

h). Since St commutes with the images of
h and h′, St still gives us a circle action on N′ with a different affine connection. We may
assume without loss of generality that the circle action is fixed and N′ is invariant under
this action.

Thus, N′ is a union of B1, . . . ,Bm0 that are the products of n-balls by intervals foliated
by connected arcs in circles that are flow arcs of St . We can change the affine structure on
N′ to one with the holonomy group ⟨h′(π1(Ẽ)),γ⟩ by local regluing B1, . . . ,Bm0 as in [49].
We reglue using maps that preserve the leaves for which we need to find maps commuting
with the γ-action. We assume that St still gives us a circle affine action since γ is not
changed. We may assume that N′ and ∂N′ are foliated by circles that are flow curves of
the circle action. The change corresponds to a sufficiently small Cr-change in the affine
connection for r ≥ 2 as we can see from [49]. Now, the strict positivity of the Hessian
of V in the fundamental domain and the boundary convexity are preserved. Let C(Ω′′

h)
denote the universal cover of N′ with the new affine connection. Thus, C(Ω′′

h) is also a
properly convex affine cone by Koszul’s work [114]. Also, it is a cone over a properly
convex domain Ω′′

h in Sn. [SnT] □

We denote by PGL(n + 1,R)v the subgroup of PGL(n + 1,R) fixing a point v,v ∈
RPn. and denote by SL±(n + 1,R)v the subgroup of SL±(n + 1,R) fixing a point v,
v ∈ Sn. Let HomC(Γ,PGL(n + 1,R)v) denote the space of representations acting co-
compactly and discretely on a properly convex domain in Sn−1

v . Respectivley, we define
HomC(π1(M),SL±(n+1,R)v) similarly.
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PROPOSITION 5.3.12. Let T be a tube domain over a properly convex domain Ω ⊂
RPn−1 (resp. ⊂ Sn−1). Let B be a strictly convex hypersurface bounding a properly convex
domain in a tube domain T . Let v be a vertex of T . B meets each radial ray in T from
v transversely. Assume that a projective group Γ acts on Ω properly discontinuously and
cocompactly. Then there exists a neighborhood of the inclusion map in

HomC(Γ,PGL(n+1,R)v) (resp. HomC(π1(M),SL±(n+1,R)v))

where every element h acts on a strictly convex hypersurface Bh in a tube domain Th
meeting each radial ray at a unique point and bounding a properly convex domain in Th.

PROOF. We assume first that B,T ⊂ Sn. For sufficiently small neighborhood V of h
in HomC(Γ,SL±(n+ 1,R)v), h(Γ), h ∈ V acts on a properly convex domain Ωh properly
discontinuously and cocompactly by Theorem 4.1 of [49] (see Koszul [114]). A large
compact subset K of Ω flows to a compact subset Kh by a diffeomorphism by a method
of Section 5 of [49]. Let Th denote the tube over Ωh. Since B/Γ is a compact orbifold,
we choose V ′ ⊂ V so that for the projective connections on a compact neighborhood of
B/Γ corresponding to elements of V ′, B/Γ is still strictly convex and transverse to radial
lines. For each h ∈ V ′, we obtain an immersion to a strictly convex domain ιh : B → Th
transverse to radial lines since we can think of the change of holonomy as small C1-change
of connections. (Or we can use the method described in Section 5 of [49].) Let pTh : Th →
Ωh denote the projection with fibers equal to the radial lines. Also, in this way of viewing
as the connection change, pTh ◦ ιh is a proper immersion to Ωh, it is a diffeomorphism to
B → Ωh. (Here again we can use Section 5 of [49].) Each point of B is transverse to a
radial segment from v. By considering the compact fundamental domains of B, we see that
same holds for Bh for h sufficiently near I. Also, Bh is strictly convex and smooth. By
Proposition 5.3.11, the conclusion follows. [SnT] □

5.3.4. Convex cocompact actions of the p-end holonomy groups.

DEFINITION 5.3.13. In Sn, a (resp. generalized) lens-shaped R-p-end with the p-
end vertex vẼ in Sn is strictly (resp. generalized) lens-shaped if we can choose a (resp.
generalized) CA-lens domain D in Sn so that the interior of D∗vẼ is a p-end neighborhood
with the top hypersurfaces A and the bottom one B so that each great open segment in Sn

from vẼ in the direction of ∂Cl(Σ̃Ẽ) meets Cl(D)−A−B at a unique point. In RPn, such
an p-end vertex vẼ is strict one if its lift is one in Sn.

A (resp. generalized) lens L is called strict lens if the following hold:

∂Cl(A) = Cl(A)−A = ∂Cl(B) = Cl(B)−B, A∪B = ∂L, and Cl(A)∪Cl(B) = ∂Cl(L).

Recall that in order that L is to be a lens, we assume that π1(Ẽ) acts cocompactly on L.
Also, Cl(A)−A must equal the limit set ΛẼ of Ẽ by Corollary 5.3.5.

Also, the images of these under pSn are called by the same names respectively.

Obviously, a lens of a lens-shaped R-p-end is strict if and only if the R-p-end is strictly
lens-shaped.

In this section, we will prove Proposition 5.3.14 obtaining a lens.
For the following, O needs not be properly convex but merely convex.

PROPOSITION 5.3.14. Let O be a strongly tame convex real projective orbifold where
Õ ⊂ Sn (resp. RPn).

• Let ΓΓΓẼ be the holonomy group of a properly convex R-p-end Ẽ.
• Let TvẼ

(Σ̃Ẽ) be an open tube corresponding to R(vẼ).
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• Suppose that ΓΓΓẼ satisfies the uniform middle eigenvalue condition with respect to
the R-p-end structure, and acts on a distanced compact convex set K in TvẼ

(Σ̃Ẽ)

where K ∩TvẼ
(Σ̃Ẽ)⊂ Õ .

Then any connected open p-end-neighborhood U containing a lift to Õ of K ∩TvẼ
(Σ̃Ẽ)

contains a lens L′ and a lens-cone p-end-neighborhood L′ ∗ {vẼ}−{vẼ} of the R-p-end
Ẽ. We can choose the lens L′ in U so that bdL′ ∩T o = A∪B for strictly convex smooth
connected hypersurfaces A and B. Furthermore, every lens of the cone is a strict lens.

PROOF. First suppose that Õ ⊂ Sn. We may assume that U embeds to a neighborhood
of L under a developing map by taking U sufficiently small. We denote by U the image
again. the projection of K to Σ̃Ẽ must be onto since it must be a ΓẼ -invariant convex set.
So, K must meet each great segment with endpoints vẼ in the directions of Σ̃Ẽ . Hence,
K ∩TvẼ

(Σ̃Ẽ) is a separating set in Õ , and U −K has two components since the boundary
of K has two components in Õ .

Let ΛẼ denote bdTvẼ
(Σ̃Ẽ)∩K. Let us choose finitely many points z1, . . . ,zm ∈U −K

in the two components of U −K.
Proposition 5.3.10 shows that the orbits of zi for each i accumulate to points of ΛẼ only.

Hence, a totally geodesic hypersphere separates vẼ with these orbit points and another one
separates vẼ− and the orbit points. Define the convex hull C1 := C H (ΓΓΓẼ({z1, . . . ,zm})∪
K). Thus, C1 is a compact convex set disjoint from vẼ and vẼ− and C1∩bdTvẼ

(Σ̃Ẽ) = ΛẼ .
(See Definition 1.1.22.)

We need the following lemma:
□

LEMMA 5.3.15. We continue to assume as in Proposition 5.3.14. Then we can choose
z1, . . . ,zm in U so that for C1 := C H (ΓΓΓẼ({z1, . . . ,zm})∪K), bdC1 ∩ Õ is disjoint from K
and C1 ⊂U.

PROOF. First, suppose that K is not in a hyperspace. Then (bdK ∩TvẼ
(Σ̃Ẽ))/ΓΓΓẼ is

diffeomorphic to a disjoint union of two copies of ΣẼ . We can cover a compact fundamental
domain of bdK∩TvẼ

(Σ̃Ẽ) by the interior of n-balls in Õ that are convex hulls of finite sets
of points in U . Since L/ΓΓΓẼ is compact for a lens L containing K ∩ Õ , so is (K ∩ Õ)/ΓΓΓẼ ,
and there exists a positive lower bound of {dÕ(x,bdU ∩ Õ)|x ∈ K}. Let F denote the union
of these finite sets. We can choose ε > 0 so that the ε-dÕ -neighborhood U ′ of K in Õ is
a subset of U . Moreover U ′ is convex by Lemma 1.1.13 following [67]. We let z1, . . . ,zm
denote the points of F . If we choose F to be in U ′, then C1 is in U ′ since U ′ is convex.

The disjointedness of bdC1 from K ∩TvẼ
(Σ̃Ẽ) follows since the ΓΓΓẼ -orbits of above

balls cover bdK ∩TvẼ
(Σ̃Ẽ).

If K is in a hyperspace, the reasoning is similar to the above. □

We continue:

LEMMA 5.3.16. Let C be a ΓΓΓẼ -invariant distanced compact convex set with boundary
in where (C ∩T o

Ẽ )/ΓΓΓẼ is compact. There are two connected hypersurfaces A and B of
bdC∩T o

Ẽ meeting every great segment in T o
Ẽ . Suppose that A and B are disjoint from an-

other C′ ΓΓΓẼ -invariant distanced compact convex set with boundary in where (C′∩T o
Ẽ )/ΓΓΓẼ

is compact. Then A (resp. B ) contains no line ending in bdÕ .

PROOF. It is enough to prove for A. Suppose that there exists a line l in A ending at a
point of bdTvẼ

(Σ̃Ẽ). Assume l ⊂ A. The line l projects to a line l′ in Ẽ.
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Let C1 = C∩TvẼ
(Σ̃Ẽ). Since A/ΓΓΓẼ and B/ΓΓΓẼ are both compact, and there exists a

fibration C1/ΓΓΓẼ → A/ΓΓΓẼ induced from C1 → A using the foliation by great segments with
endpoints vẼ ,vẼ−.

Since A/ΓΓΓẼ is compact, we choose a compact fundamental domain F in A and choose
a sequence {xi ∈ l} whose image sequence in l′ converges to the endpoint of l′ in ∂Cl(Σ̃Ẽ).
We choose γi ∈ ΓΓΓvẼ

so that γi(xi) ∈ F where {γi(Cl(l′))} geometrically converges to a
segment l′∞ with both endpoints in ∂Cl(Σ̃Ẽ). Hence, {γi(Cl(l))} geometrically converges
to a segment l∞ in A. We can assume that for the endpoint z of l in A, {γi(z)} converges to
the endpoint p1. Proposition 5.3.10 implies that the endpoint p1 of l∞ is in LẼ := L∩bdTẼ .
Let t be the endpoint of l not equal to z. Then t ∈ A. Since γi is not a bounded sequence,
γi(t) converges to a point of ΛẼ . Thus, both endpoints of l∞ are in ΛẼ and hence lo

∞ ⊂ C′

by the convexity of C′. However, l ⊂ A implies that lo
∞ ⊂ A. As A is disjoint from C′, this

is a contradiction. The similar conclusion holds for B. □

PROOF OF PROPOSITION 5.3.14 CONTINUED. We will denote by C1 the compact
convex subset C1 = C ∩TvẼ

(Σ̃Ẽ) for C obtained by Lemma 5.3.15. Since C1 meets in
a compact segment any great segment in TvẼ

(Σ̃Ẽ), it follows that bdC1 ∩TvẼ
(Σ̃Ẽ)

o is a
union of two hypersurfaces A and B. Since C is contructed by taking the convex hull of
(ΓΓΓẼ({z1, . . . ,zm})∪K), and balls that are convex hulls of some points of z1, . . . ,zm and
their images cover bdK ∩TvẼ

(Σ̃Ẽ)
o, it follows that the extreme points of A or B must be

vertices of the images of z1, . . . ,zm and points of K ∩ bdTvẼ
(Σ̃Ẽ). Since the ball cover

bdK ∩TvẼ
(Σ̃Ẽ)

o, A and B are disjoint from K.
Since A and analogously B do not contain any geodesic ending at bdÕ , by Lemma

5.3.16, A∪B = bdC1∩TvẼ
(Σ̃Ẽ)

o is a union of compact n−1-dimensional polytopes meet-
ing one another in strictly convex dihedral angles.

Immediately following Proposition 5.3.17 completes the proof of Proposition 5.3.14.
For RPn version, we can argue by projecting by pSn and Proposition 1.4.2. □

PROPOSITION 5.3.17. Assume the premise of Proposition 5.3.14. Suppose that a lens
cone L1 ∗ {⃗vẼ}−{vẼ} is in a convex p-end neighborhood U of a p-end Ẽ a p-end neigh-
borhood of Ẽ. Suppose that L1 contains a lens L in its interior where L ∗ {⃗vẼ}− {vẼ}
is again. Suppose that L1 is bounded by two connected convex polyhedral hypersurfaces.
Then there exists a lens L2 bounded by two connected strictly convex hypersurfaces so that
L2 ⊂U and L ⊂ Lo

2,L2 ⊂ Lo
1.

PROOF. First, assume Õ ⊂ Sn. Let us take the dual domain UL of (L ∗ {vẼ})o. The
dual U1 of (L1 ∗ {vẼ})o is an open subset of UL by (1.5.2). By Proposition 5.2.4, the
dual action is asymptotically nice. By the uniqueness parts of Theorems 4.1.1 and 4.3.1,
UL and U1 are asymptotically-nice properly convex domains. By Lemma 1.5.7 (iii), the
hyperplanes sharply supporting (L1∗{vẼ})o at vẼ correspond to points of a totally geodesic
domain D,

D = Cl(U1)∩P = Cl(UL)∩P
for a ΓΓΓ

∗
Ẽ -invariant hyperplane P. Hence, UL and U1 are asymptotically nice domains with

respect to Do. (See Section 4.1.)
By the premise, we have a connected convex polyhedral open subspace

S1 := bd(L1 ∗{vẼ})∩TvẼ
(Σ̃Ẽ)

o ⊂ bd(L1 ∗{vẼ}).
By Lemma 1.5.7 (iv), S1 corresponds to a connected convex polyhedral hypersurface

S∗1 ⊂ bdU1
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by DAg
(L1∗{vẼ})o . Since S1 is disjoint from L by the premise, it follows S∗1 ⊂ bdU1 ∩UL by

(1.5.2). Since S1/ΓΓΓẼ is compact, so is S∗1/ΓΓΓ
∗
Ẽ by Proposition 1.5.4. Theorem 4.4.1 shows

that D∪S′1 = bdU2. Hence, bdU1 ∩UL = S∗1.
By Theorem 4.4.4, we obtain an asymptotically nice closed domain U2 with connected

strictly convex smooth hypersurface boundary S2 in UL with U1 ∪S1 ⊂Uo
2 . The dual U∗

2 of
U2 has a connected strictly convex smooth hypersurface boundary S∗2 in TvẼ

(Σ̃Ẽ)
o disjoint

from (L∗{vẼ})o and inside (L1 ∗{vẼ})o by (1.5.2). This is what we wanted.
Also, considering (L∗{vẼ−})o and (L1 ∗{vẼ−})o, we obtain a connected strictly con-

vex smooth hypersurface in the other component of TvẼ
(Σ̃Ẽ)

o −L in U . The union of the
two hypersurfaces bounds a lens L2 in U . (See Section 1.5.1.)

Let F denote the compact fundamental domain of the boundary of the lens. The strict-
ness of the lens follows from Proposition 5.3.10 since the boundary of the lens is a union
of orbits of F and the limit points are only in ΛẼ .

Again Proposition 1.4.2 completes the proof for RPn. □

Proof of Theorem 5.1.4. Proposition 5.3.14 is the forward direction using Õ :=TvẼ
(Σ̃Ẽ).

Now, we show the converse. It is sufficient to prove for the case Õ ⊂ Sn. Let L
be a CA-lens of the lens-cone where ΓΓΓẼ acts cocompactly on. Let TvẼ

(Σ̃Ẽ) be the tube
corresponding to L.

We will denote by h : π1(Ẽ) → SL±(n+ 1,R) denote the holonomy homomorphism
of the end fundamental group with image ΓΓΓẼ . We assume that the image of h are matrices
of form (5.2.1).

There is an abelianization map

A : π1(Ẽ)→ H1(π1(Ẽ),R)

obtained by taking a homology class. The above map g → logλvẼ
(h(g)) induces homo-

morphism
Λ
′h : H1(π1(Ẽ),R)→ R

that depends on the holonomy homomorphism h.
Let us give an arbitrary Riemannian metric µ on ΣẼ . Recall that a current is a trans-

verse measure on a partial foliation by 1-dimensional subspaces in the compact space UΣẼ
on the transverse measure. (See [141].) These are not necessarily geodesic currents as
in Bonahon [29]. The space of currents is denoted by C (UΣẼ) which is given a weak
topology.

The abelianization map π1(ΣẼ)→H1(π1(Ẽ),R) can be understood as sending a closed
curve to a current the corresponding homology class. This map extends to C (UΣẼ) →
H1(π1(Ẽ),R). (See Proposition 1 of [141] and Theorem 14 of [73].) Also, Λh : π1(Ẽ)→R
gives rise to the continuous map Λ̂h : C (UΣẼ) → R which restricts to Λh on the image
currents of π1(ΣẼ): Λh is given by integrating a 1-form on ΣẼ along the closed curve
representing π1(ΣẼ) since Hom(H1(π1(Ẽ),R),R) = H1(π1(Ẽ),R). Since the integration
along currents are well-defined, we are done.

Let λ ul
1 (h(g)) denote the maximal norm of the eigenvalues h(g) of the upper-left corner

of h in (5.2.1). Obviously, λ ul
1 (h(g))≥ λvẼ

(h(g)) for each g, g ∈ π1(Ẽ): If the eigenvalue
of the upper-left corner matrix of h(g) is strictly smaller than λ ul

1 (h(g)), Proposition 1.3.2
shows that the closure of L contains vẼ or vẼ− considering the orbit of {gn}, a contradic-
tion.

Let g ∈ ΓΓΓẼ . Let [g] denote the current supported on a closed curve cg on ΣẼ corre-
sponding to g lifted to UΣẼ . Define lengthµ(g) to be the infimum of the µ-length of such
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closed curves corresponding to g. Suppose that ΓΓΓẼ does not satisfy

C−1lengthµ(g)≤ log
λ ul

1 (h(g))
λvẼ

(h(g))
≤Clengthµ(g)

for a uniform constant C > 1. Then there exists a sequence gi of elements of ΓΓΓẼ so that
log
(

λ ul
1 (h(gi))

λvẼ
(h(gi))

)
lengthµ(gi)

→ 0 as i → ∞.

Let [g∞] denote a limit point of {[gi]/lengthµ(gi)} in the space of currents on UΣẼ .
Since UΣẼ is compact, a limit point exists. We may modify h by changing the homo-
morphism g 7→ λvẼ

(h(g)) only; that is, we only modify the (n+ 1)× (n+ 1)-entry of the
matrices form (5.2.1) with corresponding changes. Proposition 5.3.12 implies that the per-
turbed CA-lens L′ is still a properly convex domain with the same tube domain whose
closure does not contain vẼ . By considering the image of [g∞] in H1(ΣẼ ,R), we can make
a sufficiently small change of h to h′ in this way so that Λh′([g∞]) > Λh([g∞]). From this,
we obtain that

(5.3.15) log
(

λ ul
1 (h′(gi))

λvẼ
(h′(gi))

)
< 0 for sufficiently large i.

By (5.3.15), we obtain that λ ul
1 (h′(g))< λvẼ

(h(′g)) for some g and that λvẼ
(h′(g)) at

vẼ . Hence, we can decompose Sn into a hyperspace S′ and the complementary {vẼ ,vẼ−}.
The norms of eigenvalues associated with S′ are strictly less than that of vẼ . Proposition
1.3.2 shows that the closure of L contains vẼ or vẼ− by considering the orbits under {gi}.

□

5.3.5. The uniform middle-eigenvalue conditions and the lens-shaped ends. Now,
we aim to prove Theorem 5.1.5 restated as Theorem 5.3.21. A radially foliated end-
neighborhood system of O is a collection of end-neighborhoods of O that is radially foli-
ated and outside a compact suborbifold of O whose interior is isotopic to O .

DEFINITION 5.3.18. We say that a strongly tame properly convex O with Õ ⊂ Sn

(resp. ⊂ RPn) satisfies the triangle condition if for any fixed end-neighborhood system of
O , every triangle T ⊂ Cl(Õ), if ∂T ⊂ bdÕ,T o ⊂ Õ , and ∂T ∩Cl(U) ̸= /0 for a radial p-end
neighborhood U , then ∂T is a subset of Cl(U)∩bdÕ .

For example, by Corollary 6.3.3, strongly tame strict SPC-orbifolds with generalized
lens-shaped or horospherical ends satisfy this condition. The converse is not necessarily
true.

A minimal ΓΓΓẼ -invariant distanced compact set is the smallest compact ΓΓΓẼ -invariant
distanced set in TẼ .

LEMMA 5.3.19. Suppose that O is a strongly tame properly convex real projective
orbifold and satisfies the triangle condition. Then no triangle T with T o ⊂ Õ,∂T ⊂ bdÕ
has a vertex equal to an R-p-end vertex.

PROOF. Assume Õ ⊂ Sn. Let vẼ be a p-end vertex. Choose a fixed radially foliated
p-end-neighborhood system. Suppose that a triangle T with ∂T ⊂ bdÕ contains a vertex
equal to a p-end vertex. Let U be a component of the inverse image of a radially foliated
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end-neighborhood in the end-neighborhood system, and be a p-end neighborhood of a p-
end Ẽ with a p-end vertex vẼ . By the triangle condition, ∂T ⊂ Cl(U)∩bdÕ .

Since U is foliated by radial lines from vẼ , we choose U so that bdU ∩ Õ covers a
compact hypersurface in O . Let U denote the set of segments in Cl(U) from vẼ . Every
segment in U in the direction of Σ̃Ẽ ends in bdU ∩ Õ . Also, the segments U in directions
of bdΣ̃Ẽ are in bdU ∩bdÕ by the definition of Σ̃Ẽ . Also, Cl(U) is a union of segments in
U . Thus, Cl(U)∩bdÕ is a union of segments in directions of bdΣ̃Ẽ .

Since T o ⊂ Õ , each segment in U with interior in T o is not in directions of ∂Cl(Σ̃Ẽ).
Let w be the endpoint of the maximal extension in Õ of such a segment. Then w is not in
Cl(U)∩ bdÕ by the conclusion of the above paragraph. This contradicts ∂T ⊂ Cl(U)∩
bdÕ .

The proof for RPn case follows by Proposition 1.4.2. [SnP] □

LEMMA 5.3.20. Suppose that O is a strongly tame properly convex real projective
orbifold and satisfies the triangle condition or, alternatively, assume that an R-p-end Ẽ is
virtually factorizable. Suppose that the holonomy group ΓΓΓ is strongly irreducible. Then
the R-p-end Ẽ is generalized lens-shaped if and only if it is lens-shaped.

PROOF. Again, we prove for Sn. If Ẽ is virtually factorizable, this follows by Theorem
5.4.3.

Suppose that Ẽ is not virtually factorizable. Now assume the triangle condition. Given
a generalized CA-lens L, let Lb denote Cl(L)∩TvẼ

(Σ̃Ẽ). We obtain the convex hull M of
Lb. M is a subset of Cl(L). The lower boundary component of L is a smooth strictly convex
hypersurface.

Let M1 be the outer component of bdM∩TvẼ
(Σ̃Ẽ). Suppose that M1 meets bdÕ . M1

is a union of the interior of simplices. By Lemma 1.4.4, either a simplex σ in Cl(Õ) is
in bdÕ or its interior σo is disjoint from it. Hence, there is a simplex σ in M1 ∩ bdÕ .
Taking the convex hull of vẼ and an edge in σ , we obtain a triangle T with ∂T ⊂ bdÕ
and T o ⊂ Õ . This contradicts the triangle condition by Lemma 5.3.19. Thus, M1 ⊂ Õ . By
Theorem 5.3.21, the end satisfies the uniform middle eigenvalue condition. By Proposition
5.3.14, we obtain a lens-cone in Õ . [SnS] □

THEOREM 5.3.21. Let O be a strongly tame convex real projective orbifold. Let ΓΓΓẼ
be the holonomy group of a properly convex R-end Ẽ and the end vertex vẼ . Then the
following are equivalent:

(i) Ẽ is a generalized lens-shaped R-end.
(ii) ΓΓΓẼ satisfies the uniform middle-eigenvalue condition with respect to vẼ .

Assume that the holonomy group of π1(O) is strongly irreducible, and O is properly con-
vex. If O furthermore satisfies the triangle condition or, alternatively, assume that Ẽ is
virtually factorizable, then the following holds:

• ΓΓΓẼ is lens-shaped if and only if ΓΓΓẼ satisfies the uniform middle-eigenvalue con-
dition.

PROOF. Assume Õ ⊂ Sn. (ii) ⇒ (i): This follows from Theorem 5.1.4 since we can
intersect the lens with Õ to obtain a generalized lens and a generalized lens-cone from it.
(Here, of course π1(Ẽ) acts cocompactly on the generalized lens.)

(i) ⇒ (ii): Let L be a generalized CA-lens in the generalized lens cone L ∗ vẼ . Let B
be the lower boundary component of L in the tube TvẼ

(Σ̃Ẽ). Since B is strictly convex, the
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upper component of TvẼ
(Σ̃Ẽ)−B is a properly convex domain, which we denote by U .

Let lx denote the maximal segment from vẼ passing x for x ∈U −L.
We define a function f : U −L → R given by f (x) to be the Hilbert distance on line

lx from x to L∩ lx. Then a level set of f is always strictly convex: This follows by taking
a 2-plane P containing vẼ passing L. Let x,y be a points of f−1(c) for a constant c > 0.
Let x′ be the point of Cl(L)∩ lx closest to x and y′ be one of Cl(L)∩ ly closest to y. Let
x′′ be one of Cl(L)∩ lx furthest from x. Let y′′ be one of Cl(L)∩ ly furthest from x. Since
f (x) = f (y), a cross-ratio argument shows that the lines extending xy,x′y′ and x′′y′′ are
concurrent outside U ∩P. The strict convexity of B and Lemma 1.8 of [67] shows that
f (z)< ε for z ∈ xyo.

We can approximate each level set by a convex polyhedral hypersurface in U −L by
taking vertices in the level set and taking the convex hull using the strict convexity of
the level set. Then we can smooth it to be a strictly convex hypersurface by Proposition
5.3.17. Let V denote the domain bounded by this and B. Then V has strictly convex smooth
boundary in U . Theorem 5.1.4 immediately below implies (ii).

The final part follows by Lemma 5.3.20. [SnS] □

5.4. The properties of lens-shaped ends.

LEMMA 5.4.1. Let O be a strongly tame properly convex orbifold. Then given any
end-neighborhood, there is a concave end-neighborhood in it. Furthermore, the dO -
diameter of the boundary of a concave end-neighborhood of an R-end E is bounded by
the Hilbert diameter of the end orbifold ΣE of E.

PROOF. It is sufficient to prove for the case Õ ⊂ Sn. Suppose that we have a general-
ized lens-cone V that is a p-end-neighborhood equal to the interior of L ∗ vẼ where L is a
generalized CA-lens bounded away from vẼ .

Now take a p-end neighborhood U ′. We assume without loss of generality that U ′

covers a product end-neighborhood with compact boundary.
By taking smaller U ′ if necessary, we may assume that U ′ and L are disjoint. Since

(bdU ′∩ Õ)/h(π1(Ẽ)) and L/h(π1(Ẽ)) are compact, ε > 0. Let

L′ := {x ∈V |dV (x,L)≤ ε}.
Since a lower component of ∂L is strictly convex, we can show that L′ can be polyhedrally
approximated and smoothed to be a CA-lens by Proposition 5.3.17.

Clearly, h(π1(Ẽ)) acts on L′.
We choose sufficiently large ε ′ so that bdU ∩ Õ ⊂ L′, and hence V −L′ ⊂ U form a

concave p-end-neighborhood as above.
Let Ẽ be a p-end corresponding to E. Let U be a concave p-end neighborhood of Ẽ

that is a cone: U is the interior of {v} ∗L−L for a generalized CA-lens L and the p-end
vertex v corresponding to U . Let T denote the tube with vertex v in the direction of L.
Then B := bdU ∩ Õ is a smooth lower boundary component of L.

Any tangent hyperspace P at a point of B meets bdT in a sphere of dimension n− 2.
By convexity of L and the strict convexity B, it follows that P∩ L is a point. We claim
that P∩ bdÕ ⊂ P∩ bdT : We put T into an affine space An with vertices in bdAn. Then
T is foliated by parallel complete affine lines. Consider these as vertical lines. B is a
strictly convex hypersurface meeting these vertical lines transversely. Then the property of
P becomes clear now.

Thus any maximal segment in O tangent to B at x must end in bdT ∩ bdÕ . There
is a projection ΠvẼ

: B → Σ̃Ẽ that is a diffeomorphism. Hence, the maximal segment is
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sent to a maximal segment of Σ̃Ẽ under Πv, which forms an isometry on the segment with
the Hilbert metrics. Moreover this is a Finsler isometry by considering the Finsler metric
restricted to the tangent space to B at x to that of the tangent space to Σ̃Ẽ at Π(x) and the
Finsler metrics. The conclusion follows. [SnS] □

5.4.1. The properties for a lens-cone in non-virtually-factorizable cases. Recall
that each infinite-order g ∈ ΓΓΓẼ is positive bi-semi-proximal by Proposition 1.3.11.

THEOREM 5.4.2. Let O be a strongly tame convex real projective n-orbifold. Let Ẽ
be an R-p-end of Õ ⊂ Sn (resp. in RPn) with a generalized lens p-end-neighborhood. Let
vẼ be the p-end vertex. Assume that π1(Ẽ) is non-virtually-factorizable. Then ΓΓΓẼ satisfies
the uniform middle eigenvalue condition with respect to vẼ , and there exists a generalized
CA-lens D disjoint from vẼ with the following properties:

(i) • bdD−∂D = ΛẼ is independent of the choice of D where ΛẼ is from Propo-
sition 5.3.10.

• D is strictly generalized lens-shaped.
• Each nontorsion nonidentity element g ∈ ΓΓΓẼ has an attracting fixed set in

bdD intersected with the union of some great segments from vẼ in the direc-
tions in bdΣ̃Ẽ .

• The closure of the union of attracting fixed set is a subset of bdD−A−B for
the top and the bottom hypersurfaces A and B. The closure equals bdD−
A−B if ΓΓΓẼ is hyperbolic.

(ii) • Let l be a segment l ⊂ bdÕ with lo ∩Cl(U) ̸= /0 for any concave p-end-
neighborhood U of vẼ . Then l is in

⋃
S(vẼ) and in the closure in Cl(V ) of

any concave or proper p-end-neighborhood V of vẼ .
• The set S(vẼ) of maximal segments from vẼ in Cl(V ) is independent of a

concave or proper p-end neighborhood V (in fact it is the set of maximal
segments from vẼ ending in bdD−A−B).

• ⋃
S(vẼ) = Cl(V )∩bdÕ.

(iii) S(g(vẼ)) = g(S(vẼ)) for g ∈ π1(Ẽ).
(iv) Given g ∈ π1(O), we have

(5.4.1)
(⋃

S(g(vẼ))
)o

∩
⋃

S(vẼ) = /0 or else
⋃

S(g(vẼ)) =
⋃

S(vẼ) with g ∈ ΓΓΓẼ .

(v) A concave p-end neighborhood is a proper p-end neighborhood.
(vi) Assume that v⃗Ẽ ′ is the p-end vertex of an R-p-end Ẽ ′. We can choose mutually

disjoint concave p-end neighborhoods for every R-p-ends. Then(⋃
S(vẼ)

)o
∩
⋃

S(vẼ ′) = /0 or
⋃

S(vẼ) =
⋃

S(vẼ ′) with vẼ = vẼ ′ , Ẽ = Ẽ ′

for an R-p-end vertice vẼ . (This is a sharping of (iv).)

PROOF. Suppose first Õ ⊂ Sn. Theorem 5.3.21 implies the uniform middle eigenvalue
condition.

(i) Let U1 be a concave end neighborhood. Since ΓΓΓẼ acts on U1, U1 is a component
of the complement of a generalized lens D in a generalized R-end of form D ∗ {vẼ} by
definition. The action on D is cocompact and proper since we can use a foliation by great
segments in a tube corresponding to Ẽ.

Proposition 5.3.10 implies that the lens is a strict one. This implies (i).
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(ii) Consider any segment l in bdÕ with lo meeting Cl(U1) for a concave p-end-
neighborhood U1 of vẼ . Here, the generalized lens D has boundary components A and
B where B is also a boundary component of U1 in Õ . Let T be the open tube corresponding
to Σ̃Ẽ . Then Õ ⊂ T since Σ̃Ẽ is the direction of all segments in Õ starting from vẼ . Let
T1 be a component of bdT −∂1B containing vẼ . Then T1 ⊂ Cl(U1)∩bdÕ by the definition
of concave p-end neighborhoods. In the closure of U1, an endpoint of l is in T1. Then
lo ⊂ bdT since lo is tangent to bdT −{vẼ ,vẼ−}. Any convex segment s from vẼ to any
point of l must be in bdT . By the convexity of Cl(Õ), we have s ⊂ Cl(Õ). Thus, s is
in bdÕ since bdT ∩Cl(Õ) ⊂ bdÕ . Therefore, the segment l is contained in the union of
segments in bdÕ from vẼ .

We now suppose that l is a segment from vẼ containing a segment l0 in Cl(U1)∩bdÕ
from vẼ , and we will show that l is in Cl(U1)∩bdÕ , which will be sufficient to prove (ii). lo

contains a point p of bdD−A−B, which is a subset of bdTvẼ
(Σ̃Ẽ)∩D. Since l ⊂ Cl(Õ),

we obtain
⋃

g∈ΓΓΓẼ
g(l) ⊂ Cl(Õ), a properly convex subset. Hence,

⋃
g∈ΓΓΓẼ

g(l)−U1 is a
distanced set, and has a distanced compact closure. Then the convex hull of the closure
meets bdTvẼ

(Σ̃Ẽ) in a way contradicting Proposition 5.3.10 (ii) where D is ΛẼ in the
proposition. Thus, lo does not meet bdD−A−B. Thus,

l ⊂ Cl(U1)∩bdÕ.

We define S(vẼ) as the set of maximal segments in Cl(U1)∩ bdÕ . Such a maximal
segment is also maximal in Cl(U)∩bdÕ by the above paragraph. Hence, we can character-
ize S(vẼ) as the set of maximal segments in bdÕ from vẼ ending at points of bdD−A−B.
Also,

⋃
S(vẼ) = Cl(U1)∩bdÕ .

For any other concave affine neighborhood U2 of U1, we have

U2 = {vẼ}∗D2 −D2 −{vẼ}

for a generalized CA-lens D2. Since Cl(D2)− ∂D2 equals Cl(D)− ∂D, we obtain that
Cl(U2)∩bdÕ = Cl(U1)∩bdÕ =

⋃
S(vẼ).

Let U ′ be any proper p-end-neighborhood associated with vẼ . U1 ⊂U ′ for a concave p-
end neighborhood U1 by Lemma 5.4.1. Again, U1 = {vẼ}∗D−D−{vẼ} for a generalized
CA-lens D where vẼ ̸∈ Cl(D). Hence, Cl(U1)∩ bdÕ ⊂ Cl(U ′)∩ bdÕ . Moreover, every
maximal segment in S(vẼ) is in Cl(U ′).

We can form S′(vẼ) as the set of maximal segments from vẼ in Cl(U ′)∩ bdÕ . Then
no segment l in S′(vẼ) has interior points in bdD−A−B as above. Thus,

S(vẼ) = S′(vẼ).

Also, since every points of Cl(U ′)∩bdÕ has a segment in the direction of bdΣ̃Ẽ , we obtain⋃
S(vẼ) = Cl(U ′)∩bdÕ.

(iii) Since g(D) is the generalized CA-lens for the the generalized lens neighborhood
g(U) of g(vẼ), we obtain g(S(vẼ)) = S(g(vẼ)) for any p-end vertex vẼ .

(iv) Choose a proper p-end neighborhood U of Ẽ covering an end-neighborhood of
product form with compact boundary. We choose a generalized CA-lens L of a generalized
lens-cone so that CẼ := {vẼ} ∗ L− L−{vẼ} is in U by Lemma 5.4.1. We can choose
CẼ to be a proper concave p-end neighborhood since can choose one in a proper p-end
neighborhood. The properness of U shows that

(5.4.2) g(CẼ) =CẼ for g ∈ ΓΓΓẼ , or else g(CẼ)∩CẼ = /0 for every g ∈ ΓΓΓẼ .
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Let BL denote the boundary component of L meeting the closure of CẼ . Now,
⋃

S(vẼ)
o

has an open neighborhood of form CẼ ∪
⋃

S(vẼ)
o in O since BL is separating hypersurface

in Õ . We obtain the conclusion since the intersection of the two sets implies the intersec-
tions of the neighborhoods of the sets.

(v) Let CẼ be a concave p-end neighborhood {vẼ}∗L−L−{vẼ} for a lens L. We will
now show that CẼ is a proper p-end neighborhood. Suppose for contradiction that

g(CẼ)∩CẼ ̸= /0 and g(CẼ) ̸=CẼ .

Since CẼ is concave, each point x of bdCẼ ∩ Õ is contained in a sharply supporting
hyperspace H so that

• a component C of CẼ −H is in CẼ where
• Cl(C) ∋ vCẼ

for the p-end vertex vCẼ
of CẼ .

Similar statements hold for g(CẼ).
Since g(CẼ)∩CẼ ̸= /0 and g(CẼ) ̸=CẼ , it follows that

bdg(CẼ)∩CẼ ̸= /0 or g(CẼ)∩bdCẼ ̸= /0.

Assume the second case without the loss of generality. Let x ∈ bdCE in g(CE) and choose
H,C as above. Let Cl(C) be the closure containing vẼ of a component C of Cl(Õ)−H for
a separating hyperspace H. C∩bdÕ is a union of lines in S(vẼ). Now, H ∩g(CẼ) contains
an open neighborhood in H of x.

Since H contains a point of a concave p-end neighborhood g(CẼ) of g(Ẽ), it meets a
points of {g(vẼ)}∗g(D)−g(D)−{g(vẼ)} for a lens D of Ẽ and a ray from g(vẼ) in g(CẼ).
We deduce that H ∩ g(CẼ) separates g(CẼ) into two open sets C1 and C2 in the direction
of one of the sides of H where Cl(C1)−H and Cl(C1)−H meet g(

⋃
S(vẼ))

o at nonempty
sets. One of C1 and C2 is in C since C is a component of Õ −H. Also, Cl(C)−H meets
the set at (Cl(C)−H)∩bdO ⊂

⋃
S(vẼ). Hence, this implies

g
(⋃

S(vẼ)
)o

∩
⋃

S(vẼ) ̸= /0.

By (iv), this means g ∈ π1(Ẽ). Hence, g(CẼ) =CẼ and this is absurd. We have

g(CẼ)∩CẼ = /0 or g(CẼ) =CẼ for g ∈ π1(O).

Since g acts on CẼ and the maximal segments in S(vẼ) must go to maximal segments,
and the interior points of maximal segments cannot be an image of vẼ , we must have
g(vẼ) = vẼ . Hence, g(U)∩U ̸= /0 for any proper p-end neighborhood of Ẽ, and g ∈ π1(Ẽ).

(vi) Suppose that S(vẼ)
o ∩S(vẼ ′) ̸= /0. Then S(vẼ)

o ∪CẼ is a neighborhood of S(vẼ)
o

for a proper concave p-end neighborhood CẼ of Ẽ. Also, S(vẼ ′)o ∪CẼ is a neighborhood
of S(vẼ ′)o for a proper concave p-end neighborhood of CẼ ′ of Ẽ ′.

The above argument in (iv) applies within this situation to show that Ẽ = Ẽ ′ and vẼ =
vẼ ′ .

Proposition 1.4.2 implies the version for RPn. [SnT] □

5.4.2. The properties of lens-cones for factorizable case. Recall that a group G
divides an open domain Ω if Ω/G is compact. For virtually factorizable ends, we have
more results. We don’t require that the quotient is Hausdorff.

THEOREM 5.4.3. Let O be a strongly tame properly convex real projective n-orbifold.
Suppose that

• Cl(O) is not of form vẼ ∗D for a totally geodesic properly convex domain D, or
• the holonomy group ΓΓΓ is strongly irreducible.
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Let Ẽ be an R-p-end of the universal cover Õ , Õ ⊂ Sn (resp. ⊂ RPn) with a generalized
lens p-end-neighborhood. Let vẼ be the p-end vertex, and the p-end orbifold ΣẼ of Ẽ.
Suppose that the p-end holonomy group ΓΓΓẼ is virtually factorizable. Then ΓΓΓẼ satisfies the
uniform middle eigenvalue condition with respect to vẼ , and the following statements hold :

(i) The R-p-end is totally geodesic. Di ⊂ Sn−1
vẼ

is projectively diffeomorphic by the
projection ΠvẼ

to totally geodesic convex domain D′
i in Sn ( resp. in RPn) disjoint

from vẼ . Moreover, ΓΓΓẼ is virtually a cocompact subgroup of Rl0−1 ×∏
l0
i=1 ΓΓΓi

where ΓΓΓi acts on D′
i irreducibly and trivially on D′

j for j ̸= i, and Rl0−1 acts
trivially on D′

j for every j = 1, . . . , l0.
(ii) The R-p-end is strictly lens-shaped, and each C′

i corresponds to a cone C∗
i =

vẼ ∗D′
i. The R-p-end has a p-end-neighborhood equal to the interior of

{vẼ}∗D for D := Cl(D′
1)∗ · · · ∗Cl(D′

l0)

where the interior of D forms the boundary of the p-end neighborhood in Õ .
(iii) The set S(vẼ) of maximal segments in bdÕ from vẼ in the closure of a p-end-

neighborhood of vẼ is independent of the p-end-neighborhood.

⋃
S(vẼ) =

l0⋃
i=1

{vẼ}∗Cl(D′
1)∗ · · · ∗Cl(D′

i−1)∗∂Cl(D′
i)∗Cl(D′

i+1)∗ · · · ∗Cl(D′
l0).

Finally, the statements (i), (ii), (iii), (iv), (v) and (vi) of Theorem 5.4.2 also hold.

PROOF. Again the Sn-version is enough by Proposition 1.4.2. Theorem 5.3.21 im-
plies the uniform middle eigenvalue condition. (i) This follows by Proposition 1.4.10 (see
Benoist [22]).

As in the proof of Theorem 5.4.2, Theorem 5.3.21 implies that ΓΓΓẼ satisfies the uniform
middle eigenvalue condition. Proposition 5.3.14 implies that the CA-lens is a strict one.
Theorem 5.2.5 implies that the distanced ΓΓΓẼ -invariant set is contained in a hyperspace P
disjoint from vẼ .

(i) By the uniform middle eigenvalue condition, the largest norm of the eigenvalue
λ1(g) is strictly bigger than λvẼ

(g).
By Proposition 1.4.10, Γ is a virtually a subgroup of Rl0−1 ×Γ1 ×·· ·×Γl0 with Rl0−1

acting as a diagonalizable group, and there are subspaces Ŝ j, j = 1, . . . , l0, in Sn−1
vẼ

where
the factor groups ΓΓΓ1, ...,ΓΓΓl0 act irreducibly by Benoist [22]. Let S j, j = 1, . . . , l0, be the
projective subspaces in general position meeting only at the p-end vertex vẼ which goes
to Ŝ j under ΠvẼ

. Now, Cl(Σ̃Ẽ)∩S j is a properly convex domain Ki by Benoist [22]. Let
Ci denote the union of great segments from vẼ with directions in Ki in Si for each i. The
abelian center isomorphic to Zl0−1 acts as the identity on the subspace corresponding to Ci
in the projective space Sn−1

vẼ
.

We denote by D′
i :=Ci ∩P. We denote by D = D′

1 ∗ · · · ∗D′
l0
⊂ P. Also, the interior of

vẼ ∗D is a p-end neighborhood of Ẽ. This proves (i).
Let U be the p-end-neighborhood of vẼ obtained in (iv). ΓΓΓẼ acts on vẼ and D′

1, . . . ,D
′
l0

.
Recall that the virtual center of ΓΓΓẼ isomorphic to Zl0−1 ⊂ Rl0−1 has diagonalizable

matrices acting trivially on S j for j = 1, . . . , l0. For all Ci, every nonidentity g in the virtual
center acts as nonidentity now by the uniform middle eigenvalue condition.

For each i, we can find a sequence g j in the virtual center of ΓΓΓẼ so that the premise of
Proposition 1.4.19 are satisfied, and Cl(D′

i) ⊂ Cl(Õ). By Proposition 1.4.19, (ii) follows.
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Therefore, we obtain

vẼ ∗Cl(D′
1)∗ · · · ∗Cl(D′

i−1)∗∂Cl(D′
i)∗Cl(D′

i+1)∗ · · · ∗Cl(D′
l0) = bdÕ ∩Cl(U)

by the middle eigenvalue conditions. (iii) follows.
(ii) We need to show Do ⊂ Õ . By Lemma 1.4.4, we have either Do ⊂ Õ or D ⊂ bdÕ .

In the second case, Cl(Õ) = {vẼ}∗D since S(vẼ)⊂ bdÕ and D ⊂ bdÕ . This contradicts
the premise.

If ΓΓΓ is strongly irreducible, Õ cannot be a strict join by Proposition 1.4.18. Thus, this
completes the proof.

We can prove the strictness of the lens and the final part by generalizing the proof of
Theorem 5.4.2 to this situation. The proof statements do not change. [SnT] □

5.4.3. Uniqueness of vertices outside the lens. We will need this later in Chapter
11.

PROPOSITION 5.4.4. Suppose that h : π1(E)→ SL±(n+1,R) is a holonomy represen-
tation of end fundamental group π1(E) of a strongly tame convex real projective orbifold.
Let h(π1(E)) act on a generalized lens-cone {v}∗L with vertex v, acting on a generalized
lens L properly and cocompactly, or act on a horosphere as a lattice in a cusp group. Then
the following hold:

• the vertex of the lens-cone is determined up to the antipodal map.
• If the lens-cone is given an outward direction, then the vertex of any lens-cone

where h(π1(E)) acts on as a p-end neighborhood equals the vertex of the lens-
cone and is uniquely determined.

• The vertex of the horospherical end is uniquely determined.

PROOF. The horospherical case can be understood from the horopherical action acting
on a ball of a Klein model where fixed points form a pair of antipodal points.

Suppose that h(π1(E)) acts on a generalized lens cone {v}∗L for a generalized lens L
as in the premise and a vertex v. By Theorem 5.1.4, h(π1(E)) satisfies the uniform middle
eigenvalue condition with respect to v. Suppose that there exists another point w fixed by
h(π1(E)) so that {w}∗L′ is a generalized lens cone for another generalized lens L′ properly
and cocompactly. Let −→vw denote a vector tangent to vw oriented away from v. Then vw
goes to a point ((−→vw)) on Sn−1

v which h(π1(E)) fixes. Hence, π1(E) acts reducibly on Sn−1
v ,

and h(π1(E)) is virtually factorizable. Thus, h(π1(E)) acts on a hyperspace S disjoint
from v by Theorem 5.4.3. There is a properly convex domain D in S where h(π1(E))
acts properly discontinuously. Also, Cl(D) = K1 ∗ · · · ∗Km for properly convex domain K j
where h(π1(E)) acts irreducibly by Proposition 1.4.10.

Suppose that w ∈ S. Then {w} = K j or its antipode K j− for some j. The uniform
middle eigenvalue condition with respect to v implies that π1(E) does not have the same
property with respect to w. Hence, w ̸∈ S.

Hence π1(E) acts on a domain Ω equal to the interior of K := K1 ∗· · ·∗Km where K j is
compact and convex and a finite-index subgroup Γ′

E of π1(E) acts on each K j irreducibly.
The great segment from v containing w meets S in a point w′. There exists a virtual-center
diagonalizable group D acting on each K j as the identity by Proposition 1.4.10 (more
precisely Proposition 4.4 of [21]). Hence {w′} must be one of Kk or its anitpode Kk− since
otherwise we can find an element of D not fixing w′.

Since the action is cocompact on Ω, there must be an element of D acting with largest
norm eigenvalue on Kk.
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Since h(π1(E)) acts on {w} ∗L′ with a compact set L′ disjoint from w. We construct
a tube domain T and L′ ∩ T gives us a CA-lens in the tube. Hence, by Theorem 5.1.4
λw(g) satisfies the uniform middle eigenvalue condition. We choose g ∈ D with a largest
norm eigenvalue at Kk. Since v,w,w′ are distinct points in a properly convex segment and
are fixed points of g, it follows that λ1(g) = λw(g) = λv(g). This contradicts the uniform
middle eigenvalue condition for v under π1(E). Thus, we obtain v = w. □

PROPOSITION 5.4.5. Suppose that h : π1(E)→ SL±(n+1,R) is a representation
• acting properly and cocompactly on a lens neighborhood of a totally geodesic
(n−1)-dimensional domain Ω and Ω/h(π1(E)) is a compact orbifold or

• acting on a horosphere as a cocompact cusp group.
Then h(π1(E)) uniquely determines the hyperplane P with one of the following properties:

• P meets a lens domain L′ with the property that (L′∩P)/h(π1(E)) is a compact
orbifold with L′∩P = L′o ∩P.

• P is tangent to the h(π1(E))-invariant horosphere at the cusp point of the horo-
sphere.

PROOF. The duality will prove this by Proposition 5.5.5 and Corollary 5.5.1. The
vertex and the hyperspace exchanges the roles. □

5.5. Duality and lens-shaped T-ends

We first discuss the duality map. We show a lens-cone p-end neighborhood of an R-p-
end is dual to a lens p-end neighborhood of a T-p-end. Using this we prove Theorem 5.5.4
dual to Theorem 5.3.21, i.e., Theorem 5.1.5.

5.5.1. Duality map. The Vinberg duality diffeomorphism induces a one-to-one cor-
respondence between p-ends of Õ and Õ∗ by considering the dual relationship ΓΓΓẼ and ΓΓΓ

∗
Ẽ ′

for each pair of p-ends Ẽ and Ẽ ′ with dual p-end holonomy groups. (See Section 1.5.)
Given a properly convex domain Ω in Sn (resp. RPn), we recall the augmented bound-

ary of Ω

bdAg
Ω := {(x,H)|x ∈ bdΩ,x ∈ H,

H is an oriented sharply supporting hyperspace of Ω} ⊂ Sn ×Sn∗.(5.5.1)

This is a closed subspace. Each x ∈ bdΩ is contained in at least one sharply supporting
hyperspace oriented towards Ω. and an element of Sn represent an oriented hyperspace in
Sn∗.

We recall a duality map.

(5.5.2) DAg
Ω

: bdAg
Ω → bdAg

Ω
∗

given by sending (x,H) to (H,x) for each (x,H) ∈ bdAg
Ω. This is a diffeomorphism since

DAg
Ω

has an inverse given by switching factors by Proposition 1.5.4 (iii).
We will need the corollary about the duality of lens-cone and lens-neighborhoods.

Recall that given a properly convex domain D in Sn or RPn, the dual domain is the closure
of the open set given by the collection of (oriented) hyperspaces in Sn or RPn not meeting
Cl(D). Let Ω be a properly convex domain. We need to recall the duality from Section
1.5.1 with the projection map

Π
Ag
Ω

: bdAg
Ω → bdΩ

sending each pair (x,h) of a point x, x ∈ bdΩ, and sharply supporting hyperplane h at x.
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A

v

A'

P

FIGURE 1. The figure for Corollary 5.5.1. Lines passing v in the left
figure correspond to points on P in the left. The line passing a point of
A corresponds to a point on A′. Lines in the right figure correspond to
points in the left figure.

COROLLARY 5.5.1. The following hold in Sn:

• Let L be a lens and {v} ̸∈ Cl(L) so that v ∗ L is a properly convex lens-cone.
Suppose that the smooth strictly convex boundary component A of L is tangent
to a segment from v at each point of ∂Cl(A) and {v} ∗ L = {v} ∗A. Then the
following hold:

– the dual domain of Cl({v} ∗L) is the closure of a component L1 of L′−P
where L′ is a lens and P is a hyperspace meeting L′o.

– A corresponds to a hypersurface A′ ⊂ bdL′ under the duality (5.5.2).
– A′∪D is the boundary of L1 for a totally geodesic properly convex (n−1)-

dimensional compact domain D dual to Rv({v} ∗ L) where D is given by
Π

Ag
{v}∗L ◦D{v}∗L((Π

Ag)−1
{v}∗L({v})).

• Conversely, we are given a lens L′ and P is a hyperspace meeting L′o but not
meeting the boundary of L′. Let L1 be a component of L′−P with smooth strictly
convex boundary ∂L1 so that ∂Cl(∂L1) ⊂ P. Here, we assume ∂L1 is an open
hypersurface. Then the following hold:

– The dual of the closure of a component L1 of L′−P is the closure of v ∗L
for a lens L and v ̸∈ L so that v ∗L is a properly convex lens-cone. Here,
{v}= Π

Ag
Cl(L1)

◦DCl(L1)(P).
– The outer boundary component A of L is tangent to a segment from v at each

point of ∂Cl(A).
• In the above, the vertex denoted by v corresponds to a hyperplane denoted by P

uniquely.

PROOF. In the proof all hyperspaces are oriented so that Lo is in its interior direction.
Let A denote the boundary component of L so that {v}∗L = {v}∗A. We will determine the
dual domain (Cl({v}∗L))∗ of {v}∗L by finding the boundary of D using the duality map
D{v}∗L. The set of hyperspaces sharply supporting Cl({v}∗L) at v forms a properly totally
geodesic domain D in Sn∗ contained in a hyperspace P dual to v by Lemma 1.5.7. Also the
set of hyperspaces sharply supporting Cl({v}∗L) at points of A goes to the strictly convex
hypersurface A′ in bd(v ∗ L)∗ by Lemma 1.5.7 since D{v}∗L is a diffeomorphism. (See
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Remark 1.5.6 and Figure 1.) The subspace S := bd({v} ∗A)−A is a union of segments
from v. The sharply supporting hyperspaces containing these segments go to points in ∂D.
Each point of Cl(A′)−A′ is a limit of a sequence {pi} of points of A′, corresponding to
a sequence of sharply supporting hyperspheres {hi} to A. The tangency condition of A at
∂Cl(A) implies that the limit hypersphere contains the segment in S from v. We obtain that
Cl(A′)−A′ equals the set of hyperspheres containing the segments in S from v, and they
go to points of ∂D with ∂Cl(A′) = ∂D. We conclude

Π
Ag
{v}∗L ◦D{v}∗L(bd({v}∗L)) = A′∪D.

Let P be the unique hyperspace containing D. Then each point of ∂Cl(A) goes to a
sharply supporting hyperspace at a point of ∂Cl(A′) distinct from P. Let L∗ denote the
dual domain of Cl(L). Since Cl(L)⊂ Cl({v}∗L), we obtain (Cl({v}∗L))∗ ⊂ (Cl(L))∗ by
(1.5.2). Since A ⊂ bdL, we obtain

Π
Ag
{v}∗L ◦D{v}∗L(bd({v}∗L))⊂ A′∪P, and A′ ⊂ bdL∗.

Proposition 1.5.4 implies that (({v}∗L)o)∗ is a component L1 of (Lo)∗−P since the first
domain can have boundary points in A′ ∪P only and cannot have points outside the com-
ponent. Hence, the dual of Cl({v}∗L) is Cl(L1). Moreover, A′ ⊂ bdL1 since A′ is a strictly
convex hypersurface with boundary in P.

The second item is proved similarly to the first. Now hyperspaces are oriented so that
Lo

1 is in its interior. Then ∂L1 goes to a hypersurface A in the boundary of the dual domain
L∗

1 of L1 under DL1 . Again A is a smooth strictly convex boundary component. Since
∂Cl(L1)⊂ P and L1 is a component of L′−P, we obtain bdL1 −∂L1 = Cl(L1)∩P. This is
a totally geodesic properly convex domain D in P.

Suppose that l ⊂ P be an n− 2-dimensional space disjoint from Lo
1. Then a space

of oriented hyperspaces containing l bounding an open hemisphere containing Lo
1 forms a

parameter dual to a convex projective geodesic in Sn∗. An L1-pencil Pt with ends P0,P1 is
a parameter satisfying

Pt ∩P = P0 ∩P,Pt ∩Lo
1 = /0 for all t ∈ [0,1]

where Pt is oriented so that it bounds a open hemisphere containing Lo
1.

There is a one-to-one correspondence

{P′|P′ is an oriented hyperspace that supports L1 at points of ∂D}↔ {v}∗∂Cl(A) :

Every supporting hyperspace P′ to L1 at points of ∂D is contained in an L1-parameter
Pt with P0 = P′,P1 = P. v is the dual to P in Sn∗. Each of the path Pt is a segment in Sn∗

with an endpoint v.
Under the duality map Π

Ag
Cl(L1)

◦DCl(L1), the image of bdL1 is a union of A and the union
of these segments. Given any hyperspace P′ disjoint from Lo

1, we find a one-parameter
family of hyperspaces containing P′ ∩P. Thus, we find an L1-pencil family Pt with P0 =
P′,P1 = P. We can extend the L1-pencil so that the ending hyperspace P′′ of the L1-pencil
meets ∂L1 tangentially or tangent to ∂L1 and P′′∩P is a supporting hyperspace of D in P.
Since the hyperspaces are disjoint from L1, the segment is in L∗

1. Since L1 is a properly
convex domain, we can deduce that (Cl(L1))

∗ is the closure of the cone {v}∗A.
Let L′′ be the dual domain of Cl(L′). Since L′ ⊃ L1, we obtain L′′ ⊂ (Cl(L1))

∗ by
(1.5.2). Since ∂L1 ⊂ bdL′, we obtain A ⊂ bdL′′ by the duality map DCl(L1). We obtain that
L′′∪A ⊂ Cl({v}∗A).

Let B be the image of the other boundary component B′ of L′ under DL′ . We take
a sharply supporting hyperspace Py at y ∈ B′. Then Py ∩P is disjoint from Cl(D) by the
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strict convexity of B′. We find an L1-pencil Pt of hyperspaces containing Py ∩P with P0 =
Py,P1 = P. This L1-pencil goes into the segment from v to a point of B under the duality.
We can extend the L1-pencil so that the ending hyperspace meets ∂L1 tangentially. The
dual pencil is a segment from v to a point of A. Thus, each segment from v to a point of A
meets B. Thus, L′′o∪A∪B is a lens of the lens cone {v}∗A. This completes the proof. □

5.5.2. The duality of T-ends and properly convex R-ends. Let Ω be the properly
convex domain covering O . For a T-end E, the totally geodesic ideal boundary SE of E
is covered by a properly convex open domain in bdΩ corresponding to a T-p-end Ẽ. We
denote it by S̃Ẽ .

Recall R-end structure from Section 3.1.3 (see Definition 9.1.1 also).

LEMMA 5.5.2. Let O be a convex real projective strong tame orbifold with ends where
O = Õ/Γ for a properly convex domain Õ ⊂ Sn and a discrete projective group Γ. Let
pO : Õ → O denote the covering map. Suppose that a p-end fundamental group ΓẼ for a
p-end Ẽ acts on a connected hypersurface Σ̃ in Õo. Then a component U ′ of Õ − Σ̃ is a
p-end neighborhood of Ẽ. Furthermore the following hold:

• Suppose that U ′ is a horoball so that bdU ′∩Õ = bdU ′−{p}=Σ for the common
fixed point p of ΓẼ . Then pO(U ′) can be given the structure of a horospherical
R-end neighborhood of Ẽ and p = vẼ .

• Suppose that U ′ equals UL := L∗{p}−L for a lens L where
– h(π1(Ẽ)) acts properly and cocompactly on U ′,
– we have a lens-cone L∗{p} for a common fixed point p of ΓẼ , and
– bdUL ∩ Õ = Σ̃.

Then UL can be given the structure of a concave p-R-end neighborhood of Ẽ and
p = vẼ .

• Suppose that U ′ equals a component L1 of L−P for a lens L where
– h(π1(Ẽ)) acts properly and cocompactly on L,
– h(π1(Ẽ)) acts on the hyperplane P,
– L1 ⊂ Õ , and
– bdL1 ∩ Õ = Σ̃.

Then Lo
1 can be given the structure of a p-T-end neighborhood of Ẽ and Σ̃Ẽ can

be identified with L∩P.

Moreover the corresponding end completions gives us a compact smooth orbifold Ō whose
interior is O .

PROOF. It is sufficient to prove for the case when the orbifold is orientable and without
singular points since we can take a finite quotient by Theorem 1.1.19. Let U be a proper
p-end neighborhood of Ẽ. We take Õ/ΓẼ which is diffeomorphic to A := B×R where
B := (bdU ∩ Õ)/ΓẼ is a closed submanifold of codimension-one. We can take an exiting
sequence Ui of p-end neighborhoods in U . Then C := Σ/ΓẼ is a closed submanifold freely
homotopic to the above one. Hence, one UB of the two components Õ/ΓẼ −B contains
Ui for sufficiently large i. Hence, a component of the inverse image of UB which is a
component of Õ −Σ is a p-end neighborhood, perhaps not a proper one.

In the first case, we have a horoball U ′ inside Õo and in H since the sharply supporting
hyperspaces at the vertex of H must coincide by the invariance under h(π1(Ẽ)) by a limit-
ing argument. By above, one of the two component of Õo−bdU ′ is a p-end neighborhood.
One cannot put the outside component into U ′ by an element of h(π1(O)). Hence, U is a
horospherical p-end neighborhood of Ẽ.
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For the second item, Lemma 3.1.5 implies that UL is lines in O . Thus, UL is the p-end
neighborhood of Ẽ, and Ẽ has a radially foliated p-end neighborhood with vẼ as the p-end
vertex.

In the third case, let D denote Cl(L1)∩P, a properly convex domain. By premise,
Do/h(π1(Ẽ)) is a closed orbifold of codimension-one. Then one of the two components
of Õ −bdL1 is a p-end neighborhood of Ẽ by above. Do is totally geodesic and bdL1 ∩ Õ
is not. Hence, Lo

1 is a p-end neighborhood of Ẽ. By premise, h(π1(Ẽ)) acts properly on
L1 ∪Do. The T -end structure is given by (Do ∪L1)/h(π1(Ẽ)) which is the completion of
the end neighborhood p(Lo

1) projectively diffeomorphic to Lo
1/h(π1(Ẽ)). (See 3.1.2.) □

PROPOSITION 5.5.3. Let O be a strongly tame properly convex real projective orb-
ifold. The following conditions are equivalent :

(i) A properly convex R-end E of O satisfies the uniform middle-eigenvalue condi-
tion.

(ii) The corresponding T-end E∗ of O∗ satisfies this condition with the correspon-
dence of the vertex of the p-end Ẽ of E to the hyperplane of p-end Ẽ∗ is given as
the unique hyperplane containing Π

Ag
Cl(Õ)

◦DÕ((Π
Ag)−1

Cl(Õ)
(vẼ)).

PROOF. The items (i) and (ii) are equivalent by considering (5.1.1) and (5.1.2). Propo-
sition 1.4.2 implies the RPn-version. [SnT] □

We now prove the dual to Theorem 5.3.21. For this we do not need the triangle condi-
tion or the reducibility of the end.

THEOREM 5.5.4. Let O be a strongly tame properly convex real projective orbifold.
Let S̃Ẽ be a totally geodesic ideal boundary component of a T-p-end Ẽ of Õ . Then the
following conditions are equivalent :

(i) The end holonomy group of Ẽ satisfies the uniform middle-eigenvalue condition
with respect to the T-p-end structure of Ẽ.

(ii) S̃Ẽ has a lens neighborhood in an ambient open manifold containing Õ with
cocompact action of π1(Ẽ), and hence Ẽ has a lens-shaped p-end-neighborhood
in Õ .

PROOF. We prove for the Sn-version. Assuming (i), we can deduce the existence of a
lens neighborhood from Theorem 4.4.1 and Lemma 5.5.2.

Assuming (ii), we obtain a totally geodesic (n− 1)-dimensional properly convex do-
main S̃Ẽ in a subspace Sn−1 on which ΓΓΓẼ acts. Let U be a lens-neighborhood of it on which
ΓΓΓẼ acts. Then since U is a neighborhood, the sharply supporting hemisphere at each point
of Cl(S̃Ẽ)− S̃Ẽ is now transverse to Sn−1. Let P be the hyperspace containing S̃Ẽ , and let
U1 be the component of U −P. Then the dual U∗

1 is a lens-cone by the second part of
Corollary 5.5.1 where P corresponds to a vertex of the lens-cone. The dual U∗ of U is aa
lens contained in a lens-cone U∗

1 where ΓΓΓE acts on U∗. We apply the part (i) ⇒ (ii) of
Theorem 5.3.21. By Proposition 5.5.3, we are done. Proposition 1.4.2 implies for RPn.
[SnT] □

PROPOSITION 5.5.5. Let O be a strongly tame properly convex real projective orbifold
with R-ends or T-ends with universal covering domain Ω. Let O∗ be the dual orbifolds with
a universal covering domain Õ∗. Then O∗ is also strongly tame and can be given R-end
and T-end structures to the ends where the following hold:
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• there exists a one-to-one correspondence C between the set of p-ends of Õ and
the set of p-ends of Õ∗ by sending a p-end neighborhood to a p-end neighbor-
hood using the Vinberg diffeomorphism of Theorem 1.5.8.

• C restricts to such a one between the subset of horospherical p-ends of Õ and
the subset of horospherical ones of Õ∗. Also, the augmented Vinberg duality
homeomorphism D̄Ag send the p-end vertex to the p-end vertex of the dual p-
end.

• C restricts to such a one between the subset of all generalized lens-shaped R-
ends of O and the subset of all lens-shaped T-ends of O∗. Also, Σ̃Ẽ of an R-p-end
is projectively dual to the ideal boundary component S̃Ẽ∗ for the corresponding
dual T-p-end Ẽ∗ of Ẽ. Also, DAg

Õ
gives a one to one correspondence between

Π
Ag−1
Õ

(
⋃

S(vẼ)) in bdAgÕ to Π
Ag−1
Õ∗ (Cl(S̃Ẽ∗)) of bdAgÕ∗.

• C restricts to such a one between the set of lens-shaped T-p-ends of Õ with the
set of p-ends of generalized lens-shaped R-p-ends of Õ∗. The ideal boundary
component S̃Ẽ for a T-p-end Ẽ is projectively diffeomorphic to the properly con-
vex open domain dual to the domain Σ̃Ẽ∗ for the corresponding R-p-end Ẽ∗ of Ẽ.
Also, DAg

Õ
gives one to one correspondence between Π

Ag−1
Õ

(Cl(S̃Ẽ)) in bdAgÕ

to Π
Ag−1
Õ∗ (

⋃
S(Ẽ∗)) of bdAgÕ∗.

PROOF. We prove for the Sn-version first. Let Õ be the universal cover of O . Let
Õ∗ be the dual domain. By the Vinberg duality diffeomorphism of Theorem 1.5.8, O∗ :=
Õ∗/Γ∗ is also strongly tame for the dual group Γ∗. The first item follows by the fact that
this diffeomorphism sends p-end neighborhoods to p-end neighborhoods.

Let Ẽ be a horospherical R-p-end with x as the end vertex. Since there is a subgroup
ΓẼ of a cusp group acting on Cl(Õ) with a unique fixed point, the intersection of the
unique sharply supporting hyperspace h with Cl(Õ) at x is a singleton {x}. (See Theorem
8.1.3.) The dual subgroup Γ∗

Ẽ is also a cusp group and acts on Cl(Õ∗) with h fixed. So
the corresponding Õ∗ has the dual hyperspace x∗ of x as the unique intersection at h∗ dual
to h at Cl(Õ∗). There is a horosphere S where the end fundamental group Γ∗

Ẽ acts on. By
Lemma 5.5.2, S bounds a horospherical p-end neighborhood of Ẽ. Hence x∗ is the vertex
of a horospherical end. DAg

Õ
(x) = x∗ since ΓẼ → Γ∗

Ẽ and these are unique fixed points.
An R-p-end Ẽ of Õ has a p-end vertex vẼ . Σ̃Ẽ is a properly convex domain in Sn−1

vẼ
.

The space of sharply supporting hyperspaces of Õ at vẼ forms a properly convex domain of
dimension n−1 since they correspond to hyperspaces in Sn−1

vẼ
not intersecting Σ̃Ẽ . Under

the duality map DAg
Õ

in Proposition 1.5.4, (vẼ ,h) for a sharply supporting hyperspace h is
sent to (h∗,v∗Ẽ) for a point h∗ and a hyperspace v∗Ẽ . Lemma 1.5.7 shows that h∗ is a point
in a properly convex n−1-dimensional domain D := bdÕ∗∩P for P = v∗Ẽ , a hyperspace.

Corollary 5.5.1 implies the fact about DAg
Õ

.
Since D is a properly convex domain with a Hilbert metric, π1(Ẽ) acts properly on

Do. The n-orbifold (Õ ∪Do)/π1(Ẽ) has closed-orbifold boundary Do/π1(Ẽ). There is
a Riemannian metric on the n-orbifold so that Do/π1(Ẽ) is totally geodesic. Using the
exponential map, we obtain a tubular neighborhood of Do/π1(Ẽ). Hence, Õ has a p-end
neighborhood corresponding to π1(Ẽ) containing Do in the boundary. The dual group
ΓΓΓ
∗
Ẽ satisfies the uniform middle eigenvalue condition since ΓΓΓẼ satisfies the condition. By

Theorem 4.4.1 and Lemma 5.5.2, we can find a p-end neighborhood U in Õ∗ bounded by
a strictly convex hypersurface bdU ∩ Õ where Cl(bdU ∩ Õ)− (bdU ∩ Õ)⊂ ∂D.
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By Lemma 5.5.2, S̃Ẽ∗ ⊂ bdΩ∗, and Ẽ∗ is a totally geodesic end with S̃Ẽ∗ dual to Σ̃Ẽ .
This proves the third item.

The fourth item follows similarly. Take a T-p-end Ẽ. We take the ideal p-end bound-
ary Σ̃Ẽ . The map DAg

Õ
sends P to a singleton P∗ in bdÕ∗ and points of Cl(S̃Ẽ)) go to

hyperspaces supporting Õ∗ at P∗. Since ΓΓΓ
∗
Ẽ satisfies the uniform middle eigenvalue condi-

tion with respect to P∗, Theorem 5.1.4 shows that there exists a lens-cone where ΓΓΓ
∗
Ẽ acts

on. Also, ΓΓΓẼ acts on a tube domain TP∗(Do) for a properly convex domain Do. Then
Cl(Õ∗)∩bdTP∗(Do) is a ΓΓΓ

∗
Ẽ -invariant closed set. Also, this set is the image under DAg

Õ
of

all hyperspaces supporting Õ at points of Cl(Σ̃Ẽ) by Corollary 5.5.1. Hence, RP∗(Õ∗) =Do

by convexity. Since Do is properly convex, ΓΓΓ
∗
Ẽ acts properly on it. By Lemma 3.1.5, P∗

is a p-end vertex of a p-end neighborhood. There is a lens L so that UL := P∗ ∗L−L is a
ΓΓΓ-invariant. There is a boundary component ∂−L of this UL in Õ∗. By Lemma 5.5.2, this
implies that UL is a p-end neighborhood corresponding to ΓΓΓẼ . Corollary 5.5.1 implies the
fact about DAg

Õ
.

The proof for RPn-version follows by Proposition 1.4.2. [SnT] □

REMARK 5.5.6. We also remark that the map induced on the limit points of p-end
neighborhoods of Ω to that of Ω∗ by D̄Ag

Ω
is compatible with the Vinberg diffeomorphism

by the continuity part of Theorem 1.5.9. That is the limit points of bdAg
Ω of a p-end

neighborhood of a p-end Ẽ goes to the limit points of bdAg
Ω∗ a p-end neighborhood of a

dual p-end Ẽ∗ of Ẽ by D̄Ag
Ω

.

C restricts to a correspondence between the lens-shaped R-ends with lens-shaped T-
ends. See Corollary 5.5.7 for detail.

Theorems 5.3.21 and 5.5.4 and Propositions 5.5.5 and 5.5.3 imply

COROLLARY 5.5.7. Let O be a strongly tame properly convex real projective orbifold
and let O∗ be its dual orbifold. Then we can give the structure of R-ends and T-ends to ends
of O and O∗ so that dual end correspondence C restricts to a correspondence between
the generalized lens-shaped R-ends with lens-shaped T-ends and horospherical ends to
themselves. If O satisfies the triangle condition or every end is virtually factorizable, C
restricts to a correspondence between the lens-shaped R-ends with lens-shaped T-ends and
horospherical ends to themselves.

COROLLARY 5.5.8. Let O be a strongly tame properly convex real projective orbifold.
Let Ẽ be a lens-shaped p-end. Then for a lens-cone p-end neighborhood U of form {vẼ}∗
L−{vẼ} for lens L, we have the upper boundary component A is tangent to radial rays
from vẼ at bdA.

PROOF. By Corollary 5.5.7, Ẽ corresponds to a T-p-end Ẽ∗ of O∗ of lens type. Now,
we take the dual domain L′

1 of {vẼ}∗L of Ẽ∗. The second part of Corollary 5.5.1 applied
to L′

1 gives us result for {vẼ}∗L.
Proposition 1.4.2 finishes the proof. [SnT] □



CHAPTER 6

Application: The openness of the lens properties, and
expansion and shrinking of end neighborhoods

This chapter lists applications of the main theory of Part 2, except for Chapter 7, which
are results we need in Part 3. In Section 6.1, we show that the lens-shaped property is stable
under the change of holonomy representations. In Section 6.2, we will define limits sets
of ends and discuss the properties. We obtain the exhaustion of Õ by a sequence of p-
end-neighborhoods of Õ , we show that any end-neighborhood contains horospherical or
concave end-neighborhood, and we discuss on maximal concave end-neighborhoods. In
Section 6.3, Corollary 6.3.1 shows that the closures of p-end neighborhoods are disjoint
in the closures of the universal cover in Sn (resp. in RPn). We prove from this the strong
irreducibility of O , Theorem 6.0.4 under the conditions (IE) and (NA).

For results in this chapter, we don’t necessarily assume that the holonomy group of
π1(O) is strongly irreducible. Also, we will not explicitly mention Proposition 1.4.2 since
its usage is well-established.

6.0.1. SPC-structures and its properties.

DEFINITION 6.0.1. For a strongly tame orbifold O ,
(IE) O or π1(O) satisfies infinite end index condition IE if [π1(O) : π1(E)] = ∞ for

the end fundamental group π1(E) of each end E.
(NA) O or π1(O) satisfies the nonparallel end condition NA if

π1(Ẽ1)∩π1(Ẽ2)

is finite for two distinct p-ends Ẽ1, Ẽ2 of O .

(NA) implies that π1(E) contains every element g ∈ π1(O) normalizing ⟨h⟩ for an
infinite order h ∈ π1(E) for an end fundamental group π1(E) of an end E. These conditions
are satisfied by complete hyperbolic manifolds with cusps. These are group-theoretical
properties with respect to the end groups.

DEFINITION 6.0.2 (Definition 6.2.3). An SPC on an n-orbifold is the structure of a
properly convex real projective orbifold with a stable and irreducible holonomy group.

DEFINITION 6.0.3 (Definition 6.2.4). Suppose that O has an SPC-structure. Let Ũ be
the inverse image in Õ ⊂RPn of the union U of some choice of a collection of disjoint end
neighborhoods of O . If every straight arc and every non-C1-point in bdÕ are contained in
the closure of a component of Ũ , then O is said to be strictly convex with respect to the
collection of the ends. And O is also said to have a sSPC with respect to the collection of
ends.

By a strongly tame orbifold with real projective structures with generalized lens-
shaped or horospherical R- or T -ends, we mean one with a real projective structure

141
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that has R-type or T -type assigned for each end and each R-end is either generalized
lens-shaped or horospherical and each T -end is lens-shaped or horospherical.

Notice that the definition depends on the choice of U . However, we will show that if
each end is required to be a lens-shaped or horospherical R- or T -end, then we show that
the definition is independent of U in Corollary 6.2.2.

We will prove the following in Section 6.3. The significance is that topological condi-
tions imply the stability:

THEOREM 6.0.4. Let O be a noncompact strongly tame properly convex real pro-
jective n-orbifold, n ≥ 2, with lens-shaped or horospherical R- or T -ends and satisfies
(IE) and (NA). Then the holonomy group is strongly irreducible and is not contained in a
proper parabolic subgroup of PGL(n+1,R) (resp. SL±(n+1,R)). That is, the holonomy
is stable.

6.1. The openness of lens properties.

As conditions on representations of π1(Ẽ), the condition for generalized lens-shaped
ends and one for lens-shaped ends are the same. Given a holonomy group of π1(Ẽ) acting
on a generalized lens-shaped cone p-end neighborhood, the holonomy group satisfies the
uniform middle eigenvalue condition by Theorem 5.3.21. We can find a lens-cone by
choosing our orbifold to be TvẼ

(Σ̃Ẽ)
o/π1(Ẽ) by Proposition 5.3.14.

Let

HomE (π1(Ẽ),SL±(n+1,R)) (resp. HomE (π1(Ẽ),PGL(n+1,R)))

denote the space of representations of the fundamental group of an (n−1)-orbifold ΣẼ .
Recall Definition 5.3.13 for strictly generalized lens-shaped R-ends. A (resp. general-

ized) lens-shaped representation for an R-end fundamental group is a representation acting
on a (resp. generalized) lens-cone as a p-end neighborhood.

THEOREM 6.1.1. Let O be a strongly tame properly convex real projective orbifold.
Assume that the universal cover Õ is a subset of Sn (resp. RPn). Let Ẽ be a properly
convex R-p-end of the universal cover Õ . Then

(i) Ẽ is a generalized lens-shaped R-end if and only if Ẽ is a strictly generalized
lens-shaped R-end.

(ii) The subspace of generalized lens-shaped representations of an R-end is open in

HomE (π1(Ẽ),SL±(n+1,R)) (resp. HomE (π1(Ẽ),PGL(n+1,R))).

Finally, if O is properly convex and satisfies the triangle condition or Ẽ is virtually factor-
izable, then we can replace the term “generalized lens-shaped” to “lens-shaped” in each
of the above statements.

PROOF. We will assume Õ ⊂ Sn first. (i) If π1(Ẽ) is non-virtually-factorizable, then
the equivalence is given in Theorem 5.4.2 (i), and if π1(Ẽ) is virtually factorizable, then it
is in Theorem 5.4.3 (ii). The converse is obvious.

(ii) Let µ be a representation π1(Ẽ) → SL±(n+ 1,R) associated with a generalized
lens-cone. By Theorem 5.1.5, we obtain that π1(Ẽ) satisfies the uniform middle eigen-
value condition with respect to vẼ . By Theorem 5.1.4, we obtain a lens K in TvẼ

(Σ̃Ẽ)

with smooth convex boundary components A∪B since TvẼ
(Σ̃Ẽ) itself satisfies the triangle

condition although it is not properly convex. (Note we don’t need K to be in Õ for the
proof.)
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K/µ(π1(Ẽ)) is a compact orbifold whose boundary is the union of two closed n-
orbifold components A/µ(π1(Ẽ))∪B/µ(π1(Ẽ)). Suppose that µ ′ is sufficiently near µ .
We may assume that vẼ is fixed by conjugating µ ′ by a bounded projective transformation.
By considering the radial segments in K, we obtain a foliation by radial lines in {vẼ}∗K
also. By Proposition 5.3.11, applying Proposition 5.3.12 to the both boundary components
of the lens, we obtain a lens-cone in a tube domain T ′

vẼ
in general different from the

original one. This implies that the sufficiently small change of holonomy keeps Ẽ to have
a concave p-end neighborhood. This completes the proof of (ii).

The final statement follows by Lemma 5.3.20. [SnT] □

THEOREM 6.1.2. Let O be a strongly tame properly convex real projective orbifold.
Assume that the universal cover Õ is a subset of Sn (resp. of RPn). Let Ẽ be a T-p-end of the
universal cover Õ . Let HomE (π1(Ẽ),SL±(n+1,R)) (resp. HomE (π1(Ẽ),PGL(n+1,R)))
be the space of representations of the fundamental group of an n−1-orbifold ΣẼ . Then the
subspace of lens-shaped representations of a T-p-end is open.

PROOF. By Theorem 5.5.4, the condition of the lens T-p-end is equivalent to the uni-
form middle eigenvalue condition for the end. Proposition 5.5.3 and Theorems 5.1.5 and
6.1.1 complete the proof. [SnT] □

COROLLARY 6.1.3. We are given a properly convex R- or T-end Ẽ of a strongly tame
convex orbifold O . Assume that Õ ⊂ Sn (resp. Õ ⊂ RPn). Then the subset of

HomE (π1(Ẽ),SL±(n+1,R)) (resp.HomE (π1(Ẽ),PGL(n+1,R)))

consisting of representations satisfying the uniform middle-eigenvalue condition with re-
spect to some choices of fixed points or fixed hyperplanes of the holonomy group is open.

PROOF. For R-p-ends, this follows by Theorems 5.3.21 and 6.1.1. For T-p-ends, this
follows by dual results: Theorem 5.5.4 and Theorems 6.1.2. [SnT] □

6.2. The end and the limit sets.

DEFINITION 6.2.1.

• Define the limit set Λ(Ẽ) of an R-p-end Ẽ with a generalized p-end-neighborhood
to be bdD−∂D for a generalized lens D of Ẽ in Sn (resp. RPn). This is identical
with the set ΛẼ in Definition 5.3.4 by Corollary 5.3.5.

• The limit set Λ(Ẽ) of a lens-shaped T-p-end Ẽ to be Cl(S̃Ẽ)− S̃Ẽ for the ideal
boundary component S̃Ẽ of Ẽ.

• The limit set of a horospherical end is the set of the end vertex.

The definition does depend on whether we work on Sn or RPn. However, by Propo-
sition 1.4.2, there are always straightforward one-to-one correspondences. We remark that
this may not equal to the closure of the union of the attracting fixed set for some cases.

COROLLARY 6.2.2. Let O be a strongly tame convex real projective n-orbifold where
Õ ⊂ Sn (resp. ⊂RPn). Let U be a p-end-neighborhood of Ẽ where Ẽ is a lens-shaped T-p-
end or a generalized lens-shaped or lens-shaped or horospherical R-p-end. Then Cl(U)∩
bdÕ equals Cl(S̃Ẽ) or Cl(

⋃
S(vẼ)) or {vẼ} depending on whether Ẽ is a lens-shaped T-

p-end or a generalized lens-shaped or horospherical R-p-end. Furthermore, this set is
independent of the choice of U and so is the limit set Λ(Ẽ) of Ẽ.
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PROOF. We first assume Õ ⊂ Sn. Let Ẽ be a generalized lens-shaped R-p-end. Then
by Theorem 5.3.21, Ẽ satisfies the uniform middle eigenvalue condition. Suppose that
π1(Ẽ) is not virtually factorizable. Let Lb denote ∂TvẼ

(Σ̃Ẽ)∩L for a distanced compact
convex set L where ΓΓΓẼ acts on. We have Lb = Λ(Ẽ) by Proposition 5.3.10. Since S(vẼ) is
an h(π1(Ẽ))-invariant set, and the convex hull of bd

⋃
S(vẼ) is a distanced compact convex

set by the proper convexity of Σ̃Ẽ , Theorems 5.4.2 and 5.4.3 show that the limit set is
determined by the set Lb in

⋃
S(vẼ), and Cl(U)∩bdÕ =

⋃
S(vẼ).

Suppose now that π1(Ẽ) is virtually factorizable. Then by Theorem 5.4.3, Ẽ is a totally
geodesic R-p-end. Proposition 5.3.10 and Theorem 5.4.3 again imply the result.

Let Ẽ be a T-p-end. Theorems 5.5.4 and 4.4.1 imply

Cl(A)−A ⊂ Cl(S̃Ẽ) for A = bdL∩ Õ

for a CA-lens neighborhood L by the strictness of the lens. Thus, Cl(U)∩ bdÕ equals
Cl(S̃Ẽ).

For horospherical ones, we simply use the definition to obtain the result. [SnT] □

DEFINITION 6.2.3. An SPC-structure or a stable properly-convex real projective struc-
ture on an n-orbifold is a convex real projective structure so that the orbifold has a stable
irreducible holonomy group. That is, it is projectively diffeomorphic to a quotient orb-
ifold of a properly convex domain in Sn (resp. in RPn) by a discrete group of projective
automorphisms that is stable and irreducible.

DEFINITION 6.2.4. Suppose that O has an SPC-structure. Let Ũ be the inverse image
in Õ in Sn (resp. in RPn) of the union U of some choice of a collection of mutually disjoint
end neighborhoods of O . If every straight arc in the boundary of the domain Õ and every
non-C1-point is contained in the closure of a component of Ũ for some choice of U , then
O is said to be strictly convex with respect to the collection of the ends. And O is also said
to have a strict SPC-structure with respect to the collection of ends.

Proposition 1.4.2 shows that this definition is equvalent to Definition 6.0.3. Corol-
lary 6.2.5 shows the independence of the definition with respect to the choice of the end-
neighborhoods when the ends are generalized lens-type R-end or lens-shaped T -ends. We
conjecture that this holds also for the ends of four types given by Ballas-Cooper-Leitner
[8].

COROLLARY 6.2.5. Suppose that O is a strongly tame strictly SPC-orbifold with gen-
eralized lens-shaped R-ends or lens-shaped T-ends or horospherical ends. Let Õ is a prop-
erly convex domain in RPn ( resp. in Sn ) covering O . Choose any disjoint collection of
end neighborhoods in O . Let U denote their union. Let pO : Õ → O denote the univer-
sal cover. Then any segment or a non-C1-point of bdÕ is contained in the closure of a
component of p−1

O (U) for any choice of U.

PROOF. We first assume Õ ⊂ Sn. By the definition of a strict SPC-orbifold, any seg-
ment or a non-C1-point has to be in the closure of a p-end neighborhood. Corollary 6.2.2
proves the claim. [SnT] □

6.2.1. Convex hulls of ends. We will sharpen Corollary 6.2.2 and the convex hull part
in Lemma 6.2.8. Again, these sets are all defined in Sn and we define the corresponding
objects for RPn by their images under RPn by Proposition 1.4.2.

One can associate a convex hull I(Ẽ) of a p-end Ẽ of Õ as follows:
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• For horospherical p-ends, the convex hull of each is defined to be the set of the
end vertex actually.

• The convex hull of a lens-shaped totally geodesic p-end Ẽ is the closure Cl(S̃Ẽ)
the totally geodesic ideal boundary component S̃Ẽ corresponding to Ẽ.

• For a generalized lens-shaped p-end Ẽ, the convex hull of Ẽ is the convex hull of⋃
S(vẼ) in Cl(Õ); that is,

I(Ẽ) := C H (
⋃

S(vẼ)).

The first two equal Cl(U)∩ bdÕ for any p-end neighborhood U of Ẽ by Corollary 6.2.2.
Corollary 6.2.2 and Proposition 6.2.7 imply that the convex hull of an end is well-defined.
We can also characterize as the intersection

I(Ẽ) =
⋂

U1∈U

C H (Cl(U1))

for the collection U of p-end neighborhoods U1 of vẼ by Proposition 6.2.7.
We define ∂SI(Ẽ) as the set of endpoints of maximal rays from vẼ ending at bdI(Ẽ)

and in the directions of Σ̃Ẽ . It is homeomorphic to Σ̃Ẽ by the rays and has a compact
quotient under ΓẼ . Since the convex hull of

⋃
S(vẼ) is a subset of the tube with a vertex

vẼ in the directions of elements of Cl(ΠvẼ
(RvẼ

(ΣẼ))), we obtain

(6.2.1) bdI(Ẽ) = ∂SI(Ẽ)∪
⋃

S(vẼ).

LEMMA 6.2.6. If σ ∈ Si meets ∂SI(Ẽ), then σo ⊂ ∂SI(Ẽ) and the vertices of σ are
endpoints of maximal segments in S(vẼ).

PROOF. Suppose that x ∈ ∂SI(Ẽ) and x ∈ σo for a simplex σ ∈ Si for minimal i. The
vertices are in

⋃
S(vẼ). If at least one vertex v1 is in the interior point of a segment in

S(vẼ), then by taking points in the neighborhood of x in
⋃

S(vẼ), we can deduce that σo is
not in the boundary of the convex hull. Moreover, σo is a subset of ∂ IẼ by Lemma 1.4.4.
Hence, the vertices are endpoints of the maximal segments in S(vẼ).

Suppose that a point of σo is in a segment in S(vẼ). Then an interior point of ΠvẼ
(σ)

meets the boundary of Cl(RvẼ
(Õ)). By Lemma 1.4.4, ΠvẼ

(σ) ⊂ bd(RvẼ
(Õ)). Thus, σ

is in a union of segments from vẼ in the directions of bd(RvẼ
(Õ)). By Theorems 5.4.2

and 5.4.3, such segments are contained in
⋃

S(vẼ). We obtain σ ⊂
⋃

S(vẼ). This is a
contradiction. By (6.2.1), σo ⊂ ∂SIẼ . □

A topological orbifold is one where we are allowed to use continuous maps as charts.
We say that two very good topological orbifolds O1 and O2 are homeomorphic if there is a
homeomorphism of the base spaces and that is induced from a homeomorphism f : M1 →
M2 of respective very good manifold covers M1 and M2 where f induces the isomorphism
of the deck transformation group of M1 → O1 to that of M2 → O2.

PROPOSITION 6.2.7. Let O be a strongly tame properly convex real projective orbifold
with radial ends or lens-shaped totally geodesic ends and satisfy (IE) and (NA). Let Ẽ be
a generalized lens-shaped R-p-end and vẼ an associated p-end vertex. Let I(Ẽ) be the
convex hull of Ẽ.

(i) Suppose that Ẽ is a lens-shaped radial p-end. Then ∂SI(Ẽ) = bdI(Ẽ)∩ Õ , and
∂SI(Ẽ) is contained in the lens in a lens-shaped p-end neighborhood.
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(ii) I(Ẽ) contains any concave p-end-neighborhood of Ẽ and

I(Ẽ) = C H (Cl(U))

I(Ẽ)∩ Õ = C H (Cl(U))∩ Õ

for a concave p-end neighborhood U of Ẽ. Thus, I(Ẽ) has a nonempty interior.
(iii) Each segment from vẼ maximal in Õ meets the set ∂SI(Ẽ) exactly once and

∂SI(Ẽ)/ΓΓΓẼ is homeomorphic to ΣE for very good covers.
(iv) There exists a nonempty interior of the convex hull I(Ẽ) of Ẽ where ΓΓΓẼ acts so

that I(Ẽ)o/ΓΓΓẼ is homeomorphic to the end orbifold times an interval.

PROOF. Assume first that Õ ⊂ Sn. (i) Suppose that Ẽ is lens-shaped. We define S1 as
the set of 1-simplices with endpoints in segments in

⋃
S(vẼ) and we inductively define Si

to be the set of i-simplices with faces in Si−1. Then

I(Ẽ) =
⋃

σ∈S1∪S2∪···∪Sm

σ .

Since any point of ∂SI(Ẽ) is in some simplex σ , σ ∈ Si, we obtain that ∂SI(Ẽ) is the
union ⋃

σ∈S1∪S2∪···∪Sm,σo⊂∂SI(Ẽ)

σ
o

by Lemma 6.2.6.
Suppose that σ ∈ Si with σo ⊂ ∂SI(Ẽ). Then each of its vertices must be in an endpoint

of a segment in S(vẼ) by Lemma 6.2.6. By Theorems 5.4.2 and 5.4.3, the endpoints of the
segments in S(vẼ) are in Λ(Ẽ). Hence, σo is contained in a CA-lens-shaped domain L as
the vertices of σ is in bdL−∂L = Λ(Ẽ) by the convexity of L.

Thus, each point of ∂SI(Ẽ) is in Lo ⊂ Σ̃. Hence ∂SI(Ẽ) ⊂ bdI(Ẽ)∩ Õ . Conversely, a
point of ∂ I(Ẽ)∩ Õ is an endpoint of a maximal segment in a direction of Σ̃Ẽ . By (6.2.1),
we obtain ∂SI(Ẽ) = ∂ I(Ẽ)∩ Õ .

(ii) Since I(Ẽ) contains the segments in S(vẼ) and is convex, and so does a concave p-
end neighborhood U , we obtain bdU ⊂ I(Ẽ): Otherwise, let x be a point of bdU ∩bdI(Ẽ)∩
Õ where some neighborhood in bdU is not in I(Ẽ). Then since bdU is a union of a strictly
convex hypersurface bdU ∩ Õ and S(vẼ), each sharply supporting hyperspace at x of the
convex set bdU ∩ Õ meets a segment in S(vẼ) in its interior: consider the lens L so that
one of the boundary components is bdU . The supporting hyperspace at the boundary
component cannot meet the closure of L in other points by the strict convexity.

This is a contradiction since x must be then in I(Ẽ)o. Thus, U ⊂ I(Ẽ). Thus,

C H (Cl(U))⊂ I(Ẽ).

Conversely, since Cl(U)⊃
⋃

S(vẼ) by Theorems 5.4.2 and 5.4.3, we obtain that

C H (Cl(U))⊃ I(Ẽ).

(iii) We again use Proposition 1.1.19. It is sufficient to prove the result by taking a
very good cover of O and considering the corresponding end to Ẽ. Each point of it meets a
maximal segment from vẼ in the end but not in S(vẼ) at exactly one point since a maximal
segment must leave the lens cone eventually. Thus ∂SI(Ẽ) is homeomorphic to an (n−1)-
cell and the result follows.

(iv) This follows from (iii) since we can use rays from x meeting bdI(Ẽ)∩ Õ at unique
points and use them as leaves of a fibration. [SnP] □
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Bd I

I

S(x)

FIGURE 1. The structure of a lens-shaped p-end.

6.2.2. Expansion of lens or horospherical p-end-neighborhoods.

LEMMA 6.2.8. Let O have a strongly tame properly convex real projective structure
µ .

• Let U1 be a p-end neighborhood of a horospherical or a lens-shaped R-p-end Ẽ
with the p-end vertex vẼ ; or

• Let U1 be a lens-shaped p-end neighborhood of a T-p-end Ẽ.

Let ΓΓΓẼ denote the p-end holonomy group corresponding to Ẽ. Then we can construct a
sequence of lens-cone or lens p-end neighborhoods Ui, i = 1,2, . . . , satisfying Ui ⊂U j ⊂ Õ
for every pair i, j, i > j where the following hold :

• Given a compact subset of Õ , there exists an integer i0 such that Ui for i > i0
contains it.

• The Hausdorff distance between Ui and Õ can be made as small as possible, i.e.,

∀ε > 0,∃J,J > 0, so that dH(Ui,Õ)< ε for i > J.

• There exists a sequence of convex open p-end neighborhoods Ui of Ẽ in Õ so
that (Ui−U j)/ΓΓΓẼ for a fixed j and i > j is diffeomorphic to a product of an open
interval with the end orbifold.

• We can choose Ui so that bdUi ∩ Õ is smoothly embedded and strictly convex
with Cl(bdUi)− Õ ⊂ Λ(Ẽ).

PROOF. Suppose that Õ ⊂ Sn first. Suppose that Ẽ is a lens-shaped R-end first. Let
U1 be a lens-cone. Take a union of finitely many geodesic leaves L from vẼ in Õ of dÕ -
length t outside the lens-cone U1 and take the convex hull of U1 and ΓΓΓẼ(L) in Õ . Denote
the result by Ωt . Thus, the endpoints of L not equal to vẼ are in Õ .

We claim that

• bdΩt ∩ Õ is a connected (n−1)-cell,
• (bdΩt ∩ Õ)/ΓΓΓẼ is a compact (n−1)-orbifold diffeomorphic to ΣẼ , and
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• bdU1 ∩ Õ bounds a compact orbifold diffeomorphic to the product of a closed
interval with (bdΩt ∩ Õ)/ΓΓΓẼ :

First, each leaf of g(l),g∈ΓΓΓẼ for l in L is so that any converging subsequence of {gi(l)},gi ∈
ΓΓΓẼ , converges to a segment in S(vẼ) for a sequence {gi} of mutually distinct elements.
This follows since a limit is a segment in bdÕ with an endpoint vẼ and must belong to
S(vẼ) by Theorems 5.4.2 and 5.4.3.

Let S1 be the set of segments with endpoints in ΓΓΓẼ(L)∪
⋃

S(vẼ). We define inductively
Si to be the set of simplices with sides in Si−1. Then the convex hull of ΓΓΓẼ(L) in Cl(Õ) is
a union of S1 ∪·· ·∪Sm.

We claim that for each maximal segment s in Cl(Õ) from vẼ not in S(vẼ), so meets
bdΩt ∩ Õ at a unique point: Suppose not. Then let v′ be its other endpoint of s in bdÕ with
so ∩bdΩt ∩ Õ = /0. Thus, v′ ∈ bdΩt .

Now, v′ is contained in the interior of a simplex σ in Si for some i. Since σo∩bdÕ ̸= /0,
σ ⊂ bdÕ by Lemma 1.4.4. Since the endpoints ΓΓΓẼ(L) are in Õ , the only possibility is that
the vertices of σ are in

⋃
S(vẼ). Also, σo is transverse to radial rays since otherwise v′

is not in bdÕ . Thus, σo projects to an open simplex of same dimension in Σ̃Ẽ . Since
U1 is convex and contains

⋃
S(vẼ) in its boundary, σ is in the lens-cone Cl(U1). Since a

lens-cone has boundary a union of a strictly convex open hypersurface A and
⋃

S(vẼ), and
σo cannot meet A tangentially, it follows that σo is in the interior of the lens-cone. and no
interior point of σ is in bdÕ , a contradiction. Therefore, each maximal segment s from vẼ
meets the boundary bdΩt ∩ Õ exactly once.

As in Lemma 5.3.16, bdΩt ∩ Õ contains no segment ending in bdÕ . The strictness
of convexity of bdΩt ∩ Õ follows by smoothing as in the proof of Proposition 5.3.14. By
taking sufficiently many leaves for L with sufficiently large dÕ -lengths ti, we can show that
any compact subset is inside Ωt . Choose some sequence {ti} so that {ti} → ∞ as i → ∞.
Now, let Ui := Ωti . From this, the final item follows. The first three items now follow if Ẽ
is an R-end.

Suppose now that Ẽ is horospherical and U1 is a horospherical p-end neighborhood.
We can smooth the boundary to be strictly convex. ΓΓΓẼ is in a parabolic or cusp subgroup of
a conjugate of SO(n,1) by Theorem 8.1.4. By taking L sufficiently densely, we can choose
similarly to above a sequence Ωi of polyhedral convex horospherical open sets at vẼ so that
eventually any compact subset of Õ is in it for sufficiently large i. Theorem 4.4.5 gives us
a smooth strictly convex horospherical p-end neighborhood Ui.

Suppose now that Ẽ is totally geodesic. Now we use the dual domain Õ∗ and the
group ΓΓΓ

∗
Ẽ . Let vẼ∗ denote the vertex dual to the hyperspace containing S̃Ẽ . By the diffeo-

morphism induced by great segments with the common endpoint v∗Ẽ , we obtain an orbifold
homeomorphism

(bdÕ∗−
⋃

S(vẼ∗))/ΓΓΓ
∗
Ẽ
∼= ΣẼ∗/ΓΓΓ

∗
Ẽ ,

a compact orbifold. Then we obtain Ui containing Õ∗ in TvẼ
(Σ̃Ẽ) by taking finitely many

hyperspace Fi disjoint from Õ∗ but meeting TvẼ
(Σ̃Ẽ)

o. Let Hi be the open hemisphere con-
taining Õ∗ bounded by Fi. Then we form U1 :=

⋂
g∈ΓΓΓẼ

g(Hi). By taking more hyperspaces,
we obtain a sequence

U1 ⊃U2 ⊃ ·· · ⊃Ui ⊃Ui+1 ⊃ ·· · ⊃ Õ∗

so that Cl(Ui+1)⊂Ui and ⋂
i

Cl(Ui) = Cl(Õ∗).
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That is, by using sufficiently many hyperspaces, we can make Ui disjoint from any compact
subset disjoint from Cl(Õ∗). Now taking the dual U∗

i of Ui and by equation (1.5.2) we
obtain

U∗
1 ⊂U∗

2 ⊂ ·· · ⊂U∗
i ⊂U∗

i+1 ⊂ ·· · ⊂ Õ.

Then U∗
i ⊂ Õ is an increasing sequence eventually containing all compact subset of Õ by

duality from the above disjointness. This completes the proof for the first three items.
The fourth item follows from Corollary 6.2.2. [SnP] □

6.2.3. Shrinking of lens and horospherical p-end-neighborhoods. We now discuss
the “shrinking” of p-end-neighborhoods. These repeat some results.

COROLLARY 6.2.9. Suppose that O is a strongly tame properly convex real projective
orbifold and let Õ be a properly convex domain in Sn (resp. RPn) covering O . Then the
following statements hold :

(i) If Ẽ is a horospherical R-p-end, every p-end-neighborhood of Ẽ contains a horo-
spherical p-end-neighborhood.

(ii) Suppose that Ẽ is a generalized lens-shaped or lens-shaped R-p-end. Let I(Ẽ) be
the convex hull of

⋃
S(vẼ), and let V be a p-end-neighborhood V where (bdV ∩

Õ)/π1(Ẽ) is a compact orbifold. If V o ⊃ I(Ẽ)∩ Õ , then V contains a lens-cone
p-end neighborhood of Ẽ.

(iii) If Ẽ is a generalized lens-shaped R-p-end or satisfies the uniform middle eigen-
value condition, every p-end-neighborhood of Ẽ contains a concave p-end-neighborhood.

(iv) Suppose that Ẽ is a lens-shaped T-p-end or satisfies the uniform middle eigen-
value condition. Then every p-end-neighborhood contains a lens p-end-neighborhood
L with strictly convex boundary in Õ .

(v) We can choose a collection of mutually disjoint end neighborhoods for all ends
that are lens-shaped T-end neighborhood, concave R-end neighborhood or a
hospherical ones.

PROOF. Suppose that Õ ⊂ Sn first.
(i) Let vẼ denote the R-p-end vertex corresponding to Ẽ. By Theorem 8.1.4, we obtain

a conjugate G of a subgroup of a parabolic or cusp subgroup of SO(n,1) as the finite
index subgroup of h(π1(Ẽ)) acting on U , a p-end-neighborhood of Ẽ. We can choose a
G-invariant ellipsoid of d-diameter ≤ ε for any ε > 0 in U containing vẼ .

(ii) This follows from Proposition 5.3.14 since the convex hull of
⋃

S(vẼ) contains a
generalized lens with the right properties.

(iii) This was proved in Proposition 5.4.1.
(iv) The existence of a lens-shaped p-end neighborhood of S̃Ẽ follows from Theorem

4.4.1.
(v) We choose a mutually disjoint end neighborhoods for all ends. Then we choose

the desired ones by the above. [SnT] □

6.2.4. The mc-p-end neighborhoods. The mc-p-end neighborhood will be useful in
other papers.

DEFINITION 6.2.10. Let Ẽ be a lens-shaped R-end of a strongly tame convex projec-
tive orbifold O with the universal cover Õ ⊂ Sn (resp. RPn). Let C H (Λ(Ẽ)) denote the
convex hull of Λ(Ẽ). Let U ′ be any p-end neighborhood of Ẽ containing C H (Λ(Ẽ))∩ Õ .
We define a maximal concave p-end neighborhood or mc-p-end-neighborhood U to be
one of the components of U ′−C H (Λ(Ẽ)) containing a p-end neighborhood of Ẽ. The
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closed maximal concave p-end neighborhood is Cl(U)∩ Õ . An ε-dÕ -neighborhood U ′′ of
a maximal concave p-end neighborhood is called an ε-mc-p-end-neighborhood.

In fact, these are independent of choices of U ′. Note that a maximal concave p-end
neighborhood U is uniquely determined since so is Λ(Ẽ).

Each radial segment s in Õ from vẼ meets bdU ∩ Õ at a unique point since the point
s∩ bdU is in an n− 1-dimensional ball D = P∩U for a hyperspace P sharply supporting
C H (Λ(Ẽ)) with ∂Cl(D)⊂

⋃
S(vẼ).

LEMMA 6.2.11. Let D be an i-dimensional totally geodesic compact convex domain,
i ≥ 1. Let Ẽ be a generalized lens-shaped R-p-end with the p-end vertex vẼ . Suppose
∂D ⊂

⋃
S(vẼ). Then Do ⊂ V for a maximal concave p-end neighborhood V , and for

sufficiently small ε > 0, an ε-dÕ -neighborhood of Do is contained in V ′ for any ε-mc-p-
end neighborhood V ′.

PROOF. Suppose that Õ ⊂ Sn first. Assume that U is a generalized lens-cone of vẼ .
Then Λ(Ẽ) is the set of endpoints of segments in S(vẼ) which are not vẼ by Theorems
5.4.2 and 5.4.3. Let P be the subspace spanned by D∪{vẼ}. Since

∂D,Λ(Ẽ)∩P ⊂
⋃

S(vẼ)∩P,

and ∂D∩P is closer than Λ(Ẽ)∩P from vẼ , it follows that P∩Cl(U)−D has a component
C1 containing vẼ and Cl(P∩Cl(U)−C1) contains Λ(Ẽ)∩P. Hence

Cl(P∩Cl(U)−C1)⊃ C H (Λ(Ẽ))∩P

by the convexity of Cl(P∩Cl(U)−C1). Since C H (Λ(Ẽ))∩P is a convex set in P, we
have only two possibilities:

• D is disjoint from C H (Λ(Ẽ))o or
• D contains C H (Λ(Ẽ))∩P.

Let V be an mc-p-end neighborhood of U . Since Cl(V ) includes the closure of the compo-
nent of U −C H (Λ(Ẽ)) with a limit point vẼ , it follows that Cl(V ) includes D.

Since D is in Cl(V ), the boundary bdV ′ ∩ Õ of the ε-mc-p-end neighborhood V ′ do
not meet D. Hence Do ⊂V ′. [SnT] □

The following gives us a characterization of ε-mc-p-end neighborhoods of Ẽ.

COROLLARY 6.2.12. Let O be a properly convex real projective orbifold with general-
ized lens-shaped or horospherical R- or T -ends and satisfies (IE). Let Ẽ be a generalized
lens-shaped R-end. Then the following statements hold:

(i) A concave p-end neighborhood of Ẽ is always a subset of an mc-p-end-neighborhood
of the same R-p-end.

(ii) The closed mc-p-end-neighborhood of Ẽ is the closure in Õ of a union of all
concave end neighborhoods of Ẽ.

(iii) The mc-p-end-neighborhood V of Ẽ is a proper p-end neighborhood, and covers
an end-neighborhood with compact boundary in O .

(iv) An ε-mc-p-end-neighborhood of Ẽ for sufficiently small ε > 0 is a proper p-end
neighborhood.

(v) For sufficiently small ε > 0, the image end-neighborhoods in O of ε-mc-p-end
neighborhoods of R-p-ends are mutually disjoint or identical.

PROOF. Suppose first that Õ ⊂ Sn. (i) Since the limit set Λ(Ẽ) is in any general-
ized CA-lens L by Corollary 6.2.2, a generalized lens-cone p-end neighborhood U of Ẽ
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contains C H (Λ)∩ Õ . Hence, a concave end neighborhood is contained in an mc-p-end-
neighborhood.

(ii) Let V be an mc-p-end neighborhood of Ẽ. Then define S to be the subspace of end-
points in Cl(Õ) of maximal segments in V from vẼ in directions of Σ̃Ẽ . Then S is home-
omorphic to Σ̃Ẽ by the map induced by radial segments as shown in the paragraph before.
Thus, S/π1(Ẽ) is a compact set since S is contractible and Σ̃Ẽ/π1(Ẽ) is a K(π1(Ẽ))-space
up to taking a torsion-free finite-index subgroup by Theorem 1.1.19 (Selberg’s lemma). We
can approximate S in the dÕ -sense by smooth convex boundary component Sε outwards of
a generalized CA-lens by Theorem 4.4.4 since Ẽ satisfies the uniform middle-eigenvalue
condition. A component U −Sε is a concave p-end neighborhood. (ii) follows from this.

(iii) Since a concave p-end neighborhood is a proper p-end neighborhood by Theorems
5.4.2(iv) and 5.4.3, and V is a union of concave p-end neighborhoods, we obtain

g(V )∩V = /0 or g(V ) =V for g ∈ π1(O) by (ii).

Suppose that g(Cl(V )∩ Õ)∩Cl(V ) ̸= /0. Then g(V ) = V and g ∈ π1(Ẽ): Otherwise,
g(V )∩V = /0, and g(Cl(V )∩ Õ) meets Cl(V ) in a totally geodesic hypersurface S equal to
C H (Λ)o by the concavity of V . Furthermore, for every g ∈ π1(O), g(S) = S, since S is
a maximal totally geodesic hypersurface in Õ . Hence, g(V )∪ S∪V = Õ since these are
subsets of a properly convex domain Õ , the boundary of V and g(V ) are in S, and S is now
in the interior of Õ . Then π1(O) acts on S, and S/G is homotopy equivalent to Õ/G for a
finite-index torsion-free subgroup G of π1(O) by Theorem 1.1.19 (Selberg’s lemma). This
contradicts the condition (IE).

Hence, only possibility is that Cl(V )∩ Õ =V ∪S for a hypersurface S and

g(V ∪S)∩V ∪S = /0 or g(V ∪S) =V ∪S for g ∈ π1(O).

Now suppose that S∩bdÕ ̸= /0. Let S′ be a maximal totally geodesic domain in Cl(V )
containing S. Then S′ ⊂ bdÕ by convexity and Lemma 1.4.4, meaning that S′ = S ⊂ bdÕ .
In this case, Õ is a cone over S and the end vertex vẼ of Ẽ. For each g ∈ π1(O),

g(V )∩V ̸= /0 implies g(V ) =V

since g(vẼ) is on Cl(S). Thus, π1(O) = π1(Ẽ). This contradicts the condition (IE) of
π1(Ẽ).

We showed that Cl(V )∩Õ =V ∪S for a hypersurface S and covers a submanifold in O
which is a closure of an end-neighborhood covered by V . Thus, an mc-p-end-neighborhood
Cl(V )∩ Õ is a proper end neighborhood of Ẽ with compact embedded boundary S/π1(Ẽ).

(iv) Obviously, we can choose positive ε so that an ε-mc-p-end-neighborhood is a
proper p-end neighborhood also.

(v) For two mc-p-end neighborhoods U and V for different R-p-ends, we have U ∩V =
/0 by reasoning as in (iii) replacing g(V ) with U : We showed that Cl(V )∩ Õ for an mc-p-
end-neighborhood V covers an end neighborhood in O .

Suppose that U is another mc-p-end neighborhood different from V . We claim that
Cl(U)∩Cl(V )∩ Õ = /0: Suppose not. g(Cl(V )) for g ̸∈ ΓΓΓẼ must be a subset of U since
otherwise we have a situation of (iii) for V and g(V ). Since the preimage of the end
neighborhoods are disjoint, g(V ) is a p-end neighborhood of the same end as U . Since
both are ε-mc-p-end-neighborhood which are canonically defined, we obtain U = g(V ).
This was ruled out in (iii). [SnT] □
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6.3. The strong irreducibility of the real projective orbifolds.

The main purpose of this section is to prove Theorem 6.0.4, the strong irreducibility
result. But we will discuss the convex hull of the ends first. We show that the closure of
convex hulls of p-end neighborhoods are disjoint in bdÕ . The infinity of the number of
these will show the strong irreducibility.

For the following, we need a stronger condition of lens-shaped ends, and not just
the generalized lens-shaped property, to obtain the disjointedness of the closures of p-end
neighborhoods. For now, we cannot do the following for the generalized lens.

COROLLARY 6.3.1. Let O be a strongly tame properly convex real projective orbifold
with lens-shaped or horospherical R- or T -ends and satisfy (NA). Let U be the collection
of the components of the inverse image in Õ of the union of disjoint collection of end neigh-
borhoods of O . Now replace each R-p-end neighborhood of collection U by a concave
p-end neighborhood by Corollary 6.2.9 (iii). Then the following statements hold :

(i) Given horospherical, concave, or one-sided lens p-end-neighborhoods U1 and
U2 contained in

⋃
U , we have U1 ∩U2 = /0 or U1 =U2.

(ii) Let U1 and U2 be in U . Then Cl(U1)∩Cl(U2)∩bdÕ = /0 or U1 =U2 holds.

PROOF. Suppose first that Õ ⊂ Sn. Suppose that O has end E1, . . . ,Em. Since the
neighborhoods in U are mutually disjoint,

• Cl(U ′′
1 )∩Cl(U ′′

2 )∩ Õ = /0 or
• U ′′

1 =U ′′
2 for any pair U ′′

1 ,U
′′
2 ∈ U .

(i) Assume without loss of generality that E1 and E2 are R-ends. Suppose that U1 and
U2 are concave p-end neighborhoods of R-p-ends Ẽ1 and Ẽ2 respectively. Let U ′

1 be the
interior of the associated generalized lens-cone of U1 in Cl(Õ) and U ′

2 be that of U2. Let
U ′′

i be the concave p-end-neighborhood of U ′
i for i = 1,2 by Corollary 6.2.9 (iii) that cover

respective end neighborhoods in O .
Assume that U ′′

i ∈ U , i = 1,2, and U ′′
1 ̸=U ′′

2 . Suppose that the closures of U ′′
1 and U ′′

2
intersect in bdÕ . Suppose that they are both R-p-end neighborhoods. Then the respective
closures of convex hulls I1 and I2 as obtained by Proposition 6.2.7 intersect as well. Take
a point z ∈ Cl(U ′′

1 )∩Cl(U ′′
2 )∩ bdÕ . Suppose that we choose pi = vẼi

, i = 1,2, for each
p-end Ẽi.

Suppose that p1 p2
o ⊂ bdÕ . Then there exists a segment in bdÕ from vẼ1

to vẼ2
. By

Theorems 5.4.2 and 5.4.3, these vertices are in the closures of p-end neighborhoods of one
other. Since Cl(U ′′

1 ) and Cl(U ′′
2 ) contains some open metric ball neighborhoods of p1 and

p2 respectively for the metric d restricted to Cl(Õ), and U ′′
j is dense in Cl(U ′′

j ), j = 1,2,
we obtain U ′′

1 ∩U ′′
2 ̸= /0. This is a contradiction.

Hence, p1 p2
o ⊂ Õ holds. Then p1z ⊂ S(vẼ2

) and p2z ⊂ S(vẼ1
) and these segments

are maximal since otherwise U ′′
1 ∩U ′′

2 ̸= /0. The segments intersect transversely at z since
otherwise we violated the maximality in Theorems 5.4.2 and 5.4.3. We obtain a triangle
△(p1 p2z) in Cl(Õ) with vertices p1, p2,z.

There is a lens Li for each Ẽi so that Li ∗ pi is a p-end neighborhood of Ẽi. Propo-
sition 5.5.8 contradicts the existence of above triangle because of the uniqueness of the
supporting hyperspace at z which is in both of Cl(Li)−Li for i = 1,2.

Now, consider when U1 is a one-sided lens-neighborhood of a T-p-end and let U2
be a concave R-p-end neighborhood of an R-p-end of Õ . Let z be the intersection point
in Cl(U1)∩Cl(U2). Suppose that the hyperspace containing the ideal boundary of U1 is
transversal to the line (z⃗vẼ2

). We can use the same reasoning as above by choosing any p1
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in Σ̃Ẽ1
so that p1z passes the interior of Ẽ1. Let p2 be the R-p-end vertex of U2. Now we

obtain the triangle with vertices p1, p2, and z as above. Proposition 5.5.8 again contradicts.
Suppose that the hyperspace containing the ideal boundary of U1 is tangent to the line

(z⃗vẼ2
). We take the convex hull of z with the convex domain Σ̃Ẽ2

in the hyperspace S
containing them. The convex hull is in Cl(Õ)∩ S where π1(Ẽ2) acts on. The uniqueness
part of Theorem 1.4.15 shows that the interior of the convex hull is still Σ̃Ẽ2

. This is a
contradiction.

Next, consider when U1 and U2 are one-sided lens-neighborhoods of T-p-ends respec-
tively. If the hyperspaces Si containing the ideal boundary Σ̃Ẽi

for i = 1,2, are the same,
then we can again take the convex hull as in the above paragraph and obtain the contradic-
tion.

Suppose that these hyperspaces S1 and S2 are transversal. Let z be a point of inter-
section of Cl(Ω1) and Cl(Ω2). Then Si must be an asymptotic hyperspace of Ω j at z for
i ̸= j, i, j = 1,2. clear?

We can see that Cl(Õ) meets Si at Cl(Σ̃Ẽi
) again by the uniqueness part of Theorem

1.4.15. Hence, (π1(Ẽi), Σ̃Ẽi
,Õo)is a properly convex triple.

Let Hi denote the open half-space containing Õo bounded by Si. Let B = H1 ∩H2 be
the convex domain containing Õo.

Let L= S1∩S2. Then L is sharply supporting Ωi at z in Si. Let Ai denote the asymptotic
hyperspace to Ui at z containing L. We use Lemma 4.2.11 as in the proof of Theorem 4.3.8
to show that Õo cannot intersect the supporting hyperplanes A1 and A2.

Since Ai is asymptotic to Ui, S j, j ̸= i, it follows that Si ∩B cannot separate B. Since
Si must meet the boundary of Õ , the only possibility is S1 = A2 and S2 = A1. This proves
our claim.

This means that Lo
1 ∩Lo

2 ̸= /0 by the asympototpicity of A1 and A2. Moreover for any
choices of lens L′

1 and L′
2 their interiors meet. This contradicts that there is some p-end

neighborhoods of lens type in any proper end-neighborhoods by Theorem 4.4.1.
We finally consider when U is a horospherical R-p-end. Since Cl(U)∩bdÕ is a unique

point, Lemma 3.1.9. implies the result. [SnP] □

We modify Theorem 5.4.3 by replacing some conditions. In particular, we don’t as-
sume that h(π1(O)) is strongly irreducible.

LEMMA 6.3.2. Let O be a strongly tame properly convex real projective orbifold and
satisfy (IE). Let Ẽ be a virtually factorizable R-p-end of Õ of generalized lens-shaped.
Then

• there exists a totally geodesic hyperspace P on which h(π1(Ẽ)) acts,
• D := P∩ Õ is a properly convex domain,
• Do ⊂ Õ , and
• Do/π1(Ẽ) is a compact orbifold.

PROOF. Assume first that Õ ⊂ Sn. The proof of Theorem 5.4.3 shows that

• either Cl(Õ) is a strict join {vẼ}∗D′ for a properly convex domain D in a hyper-
space, or

• the conclusion of Theorem 5.4.3 holds.

In both cases, π1(Ẽ) acts on a totally geodesic convex compact domain D of codimension
1. D is the intersection PẼ ∩Cl(Õ) for a π1(Ẽ)-invariant subspace PẼ . Suppose that Do is
not a subset of Õ . Then by Lemma 1.4.4, D ⊂ bdÕ .
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In the former case, Cl(Õ) is the join vẼ ∗D. For each g ∈ π1(Ẽ) satisfying g({vẼ}) ̸=
vẼ , we have g(D) ̸=D since g(vẼ)∗g(D) = {vẼ}∗D. The intersection g(D)∩D is a proper
compact convex subset of D and g(D). Moreover,

Cl(Õ) = {vẼ}∗g({vẼ})∗ (D∩g(D)).

We can continue as many times as there is a mutually distinct collection of vertices of form
g(vẼ). Since this process must stop, we have a contradiction since by Condition (IE), there
are infinitely many distinct end vertices of form g(vẼ) for g ∈ π1(O).

Now, we go to the alternative Do ⊂ Õ where Do/ΓΓΓẼ is projectively diffeomorphic to
Σ̃Ẽ/ΓΓΓẼ . [SnS] □

Proof of Theorem 6.0.4. It is sufficient to prove for Õ ⊂ Sn. Let h : π1(O)→ SL±(n+
1,R) be the holonomy homomorphism. Suppose that h(π1(O)) is virtually reducible. Then
we can choose a finite cover O1 so that h(π1(O1)) is reducible since it is sufficient to prove
for the finite index groups.

By Theorem 5.4.3, all generalized lens R-ends are lens R-ends. We may assume that
π1(O) is torsion-free by taking a finite cover by Theorem 1.1.19.

We denote O1 by O for simplicity. Let S denote a proper subspace where π1(O) acts
on. Suppose that S meets Õ . Then π1(Ẽ) acts on a properly convex open domain S∩ Õ for
each p-end Ẽ. Then S∩ Õ for any p-end neighborhood gives a submanifold of a closed end
orbifold homotopy equivalent to it. Thus, (S∩ Õ)/π1(Ẽ) is a compact orbifold homotopy
equivalent to one of the end orbifold and S must be of codimension one. However, S∩ Õ
is π1(Ẽ ′)-invariant and cocompact for any other p-end Ẽ ′. Hence, each p-end fundamental
group π1(Ẽ) is virtually identical to any other p-end fundamental group. This contradicts
(NA). Therefore,

(6.3.1) K := S∩Cl(Õ)⊂ bdÕ,

where g(K) = K for every g ∈ h(π1(O)).
We divide into steps:
(A) First, we show K ̸= /0.
(B) We show K = D j or K = {vẼ} ∗D j for some properly convex domain D j ⊂

bdÕ ∩Cl(U) for a p-end neighborhood U of Ẽ.
(C) Finally g(D j) = D j for g ∈ ΓΓΓ

′ for a finite index subgroup ΓΓΓ
′ of ΓΓΓ, and we use

Corollary 6.3.1 to obtain a contradiction.
(A) We show that K := Cl(Õ)∩S ̸= /0: Let Ẽ be a p-end. If Ẽ is horospherical, π(Ẽ)

acts on a great sphere Ŝ tangent to an end vertex. Since S is ΓΓΓ-invariant, S has to be a
subspace in Ŝ containing the end vertex by Theorem 8.1.3(iii). This implies that every
horospherical p-end vertex is in S. Let p be one. Since there is no nontrivial segment in
bdÕ containing p by Theorem 8.1.3(v), p equals S∩Cl(Õ). Hence, p is ΓΓΓ-invariant and
ΓΓΓ = ΓΓΓẼ . This contradicts the condition (IE).

Suppose that Ẽ is a generalized lens-shaped R-p-end. Then by the existence of attract-
ing subspaces of some elements of ΓΓΓẼ , we have

• either S passes the end vertex vẼ or
• there exists a subspace S′ containing S and vẼ that is ΓΓΓẼ -invariant.

In the first case, we have S∩Cl(Õ) ̸= /0, and we are done for the step (A).
In the second case, S′ corresponds to a subspace in Sn−1

vẼ
and S is a hyperspace of

dimension ≤ n − 1 disjoint from vẼ . Thus, Ẽ is a virtually factorizable R-p-end. By
Theorem 1.3.12, we obtain some attracting fixed points in the limit sets of π1(Ẽ). If S′ is
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a proper subspace, then Ẽ is factorizable, and S′ contains the attracting fixed set of some
positive bi-semi-proximal g, g ∈ ΓΓΓE . The uniform middle eigenvalue condition shows that
positive bi-semi-proximal g has attracting fixed sets in Cl(L). Since g acts on S, we obtain
S∩Cl(L) ̸= /0 by the uniform middle eigenvalue condition.

If S′ is not a proper subspace, then g acts on S, and S contains the attracting fixed set
of g by the uniform middle eigenvalue condition. Thus, S∩Cl(L) ̸= /0.

If Ẽ is a lens-shaped T-p-end, we can apply a similar argument using the attracting
fixed sets. Therefore, S∩Cl(Õ) is a subset K of bdÕ of dimK ≥ 0 and is not empty. In
fact, we showed that the closure of each p-end neighborhood meets K.

(B) By taking a dual orbifold if necessary, we assume without loss of generality that
there exists a generalized lens-shaped R-p-end Ẽ with a radial p-end vertex vẼ .

As above in (A), suppose that vẼ ∈ K. There exists g ∈ π1(O), so that

g(vẼ) ̸= vẼ , and g(vẼ) ∈ K ⊂ bdÕ

since g acts on K. The point g(vẼ) is outside the closure of the concave p-end neighbor-
hood of Ẽ by Corollary 6.3.1. Since K is connected, K meets Cl(L) for the CA-lens or
generalized CA-lens L of Ẽ.

If vẼ ̸∈ K, then again K ∩ Cl(L) ̸= /0 as in (A) using attracting fixed sets of some
elements of π1(Ẽ). Hence, we conclude K ∩Cl(L) ̸= /0 for a generalized CA-lens L of Ẽ.

Let Σ′
Ẽ denote Do from Lemma 6.3.2. Since K ⊂ bdO , it follows that K cannot contain

Σ′
Ẽ . Thus, K∩Cl(Σ′

Ẽ) is a proper subspace of Cl(Σ′
Ẽ), and Ẽ must be a virtually factorizable

end.
By Lemma 6.3.2, there exists a totally geodesic domain Σ′

Ẽ in the CA-lens. A p-end
neighborhood of vẼ equals UvẼ

:= ({vẼ}∗Σ′
Ẽ)

o. Since π1(Ẽ) acts reducibly,

Cl(Σ′
Ẽ) = D1 ∗ · · · ∗Dm,

where K∩Cl(UvẼ
) contains a join DJ := ∗i∈JDi for a proper subcollection J of {1, . . . ,m}.

Moreover, K ∩Cl(Σ′
Ẽ) = DJ .

Since g(UvẼ
) is a p-end neighborhood of g(vẼ), we obtain g(UvẼ

) = Ug(vẼ )
. Since

g(K) = K for g ∈ Γ, we obtain that

K ∩g(Cl(Σ′
Ẽ)) = g(DJ).

Lemma 6.3.2 implies that

Ug(vẼ )
∩UvẼ

= /0 for g ̸∈ π1(Ẽ) or

Ug(vẼ )
=UvẼ

for g ∈ π1(Ẽ)(6.3.2)

by the similar properties of S(g(vẼ)) and S(vẼ) and the fact that bdUvẼ
∩ Õ and bdUg(vẼ )

∩
Õ are totally geodesic domains.

Let λJ(g) denote the (dimDJ + 1)-th root of the norm of the determinant of the sub-
matrix of g associated with DJ for the unit norm matrix of g. There exists a sequence of
virtually central diagonalizable elements γi ∈ π1(Ẽ) by Proposition 4.4 of [21] so that

{γi|DJ}→ I,{γi|DJc}→ I satisfying
{

λJ(γi)

λJc(γi)

}
→ ∞
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for the complement Jc := {1,2, . . . ,m}−J. Since the lens-shaped ends satisfy the uniform
middle eigenvalue condition by Theorem 5.4.3, we obtain

{γi|DJ}→ I,{γi|DJc}→ I for the complement Jc := {1,2, . . . ,m}− J,{
λJ(γi)

λvẼ
(γi)

}
→ ∞,

{
λJc(γi)

λvẼ
(γi)

}
→ 0,

{
λJ(γi)

λJc(γi)

}
→ ∞.(6.3.3)

(See Theorem 1.4.10.)
Since vẼ ,DJ ⊂ K, the uniform middle eigenvalue condition for ΓΓΓẼ implies that one of

the following holds:

K = DJ ,K = {vẼ}∗DJ or K = {vẼ}∗DJ ∪{vẼ−}∗DJ

by the invariance of K under γ
−1
i and the fact that K∩Cl(Σ′

Ẽ) = DJ . Since K ⊂ Cl(Õ), the
third case is not possible by the proper convexity of Cl(Õ). We obtain

(6.3.4) K = DJ or K = {vẼ}∗DJ .

(C) We will explore the two cases of (6.3.4). Assume the second case. Let g be an
arbitrary element of π1(O)− π1(Ẽ). Since DJ ⊂ K, we obtain g(DJ) ⊂ K. Recall that
UvẼ

∪S(vẼ)
o is a neighborhood of points of S(vẼ)

o in Cl(Õ). Thus, g(UvẼ
∪S(vẼ)

o) is a
neighborhood of points of g(S(vẼ)

o).
Recall that Do

J is in the closure of UvẼ
. If Do

J meets

g({vẼ}∗DJ −DJ)⊂ g(UvẼ
∪S(vẼ)

o)⊃ g(S(vẼ)
o),

then
UvẼ

∩g(UvẼ
) ̸= /0, and S(vẼ)

o ∩g(S(vẼ)
o) ̸= /0

since these are components of Õ with some totally geodesic hyperspaces removed. Hence,
vẼ = g(vẼ) by Theorems 5.4.2 and 5.4.3. Finally, we obtain DJ = g(DJ) since

K = {vẼ}∗DJ = g({vẼ})∗g(DJ).

If Do
J is disjoint from g({vẼ} ∗DJ −DJ), then g(DJ) ⊂ DJ since K = {vẼ} ∗DJ and

g(K) = K. Since DJ and g(DJ) are intersections of a hyperspace with bdÕ , we obtain
g(DJ) = DJ .

Both cases of (6.3.4) imply that g(DJ) = DJ for g ∈ π1(O). This implies g(DJ) = DJ
for g ∈ π1(O). Since vẼ and g(vẼ) are not equal for g ∈ π1(O)−π1(Ẽ), we obtain

Cl(U1)∩g(Cl(U1)) ̸= /0.

Since every virtually reducible R-ends are totally geodesic, all R-ends are lens-type ones
by Theorem 5.4.3. Corollary 6.3.1 gives us a contradiction. Therefore, we deduced that
the h(π1(O))-invariant subspace S does not exist.

Since parabolic subgroups of PGL(n+ 1,R) or SL±(n+ 1,R) are reducible, we are
done. [SnS]

□

6.3.1. Equivalence of lens-ends and generalized lens-ends for strict SPC-orbifolds.

COROLLARY 6.3.3. Suppose that O is a strongly tame strictly SPC-orbifold with gen-
eralized lens-shaped or horospherical R- or T -ends and satisfying the conditions (IE) and
(NA). Then O satisfies the triangle condition and every generalized lens-shaped R-ends are
lens-shaped R-ends.
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PROOF. Assume first Õ ⊂ Sn. Let Ẽ be a generalized lens-shaped p-end neighborhood
of Õ . Let L be the generalized CA-lens so that the interior U of {vẼ} ∗L is a lens p-end
neighborhood. Then U −L is a concave p-end neighborhood. Recall the triangle condition
of Definition 5.3.18. Let T be a triangle with

∂T ⊂ bdÕ,T o ⊂ Õ and ∂T ∩Cl(U) ̸= /0

for an R-p-end neighborhood U . By the strict convexity Õ , each edge of T has to be inside
a set of form Cl(V )∩ bdÕ for a p-end neighborhood V . Corollary 6.3.1 implies that the
edges are all in Cl(U)∩ bdÕ for a single R-p-end neighborhood U . Hence, the triangle
condition is satisfied. By Theorem 5.3.21, Ẽ is a lens-shaped p-end. [SnT] □





CHAPTER 7

The convex but nonproperly convex and
non-complete-affine radial ends

In previous chapters, we classified properly convex or complete radial ends under
suitable conditions. In this chapter, we will study radial ends that are convex but not
properly convex nor complete affine. The main techniques are the theory of Fried and
Goldman on affine manifolds, and a generalization of the work on Riemannian foliations
by Molino, Carrière, and so on. We will show that these are quasi-joins of horospheres and
totally geodesic radial ends under transverse weak middle eigenvalue conditions. These
are suitable deformations of joins of horospheres and totally geodesic radial ends. Since
this is the most technical chapter, we will give outlines at some places in addition to the
main outline in Section 7.1.3.

7.1. Introduction

7.1.1. General setting. In this chapter, we will work with Sn and SL±(n+1,R) with
only a few exceptions since the purpose is to classify some objects modulo projective
automorphisms. However, the corresponding results for RPn can be obtained easily by
results in Section 1.1.8 and then projecting back to RPn. Let Ẽ be a R-p-end of a convex
real projective orbifold O with end orbifold ΣẼ and its universal cover Σ̃Ẽ and the p-end
vertex vẼ . We recall Proposition 1.1.4. If Σ̃Ẽ is convex but not properly convex and not
complete affine, then we call E a nonproperly convex and noncomplete end (NPNC-end.)
The closure Cl(Σ̃Ẽ) contains a great (i0−1)-dimensional sphere Si0−1

∞ , and the convex open
domain Σ̃Ẽ is foliated by i0-dimensional hemispheres with this boundary Si0−1

∞ . (These
follow from Section 1.4 of [36]. See also [71].)

The space of i0-dimensional hemispheres in Sn−1
vẼ

with boundary Si0−1
∞ forms a pro-

jective sphere Sn−i0−1: This follows since a complementary subspace S isomorphic to
Sn−i0−1 parameterize the space by the intersection points with S. The fibration with fibers
open hemispheres of dimension i0 with boundary Si0−1

∞

Π̂K : Sn−1
vẼ

−Si0−1
∞ −→ Sn−i0−1(7.1.1)

↑ ↑
Σ̃Ẽ −→ Ko

gives us an image of Σ̃Ẽ that is the interior Ko of a properly convex compact set K.
Let Si0

∞ be a great i0-dimensional sphere in Sn containing vẼ corresponding to the
directions of Si0−1

∞ from vẼ . The space of (i0 + 1)-dimensional hemispheres in Sn with
boundary Si0

∞ again has the structure of the projective sphere Sn−i0−1, identifiable with the
above one.

159
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Each i0-dimensional hemisphere H i0 in Sn−1
vẼ

with bdH i0 = Si0−1
∞ corresponds to an

(i0 +1)-dimensional hemisphere H i0+1 in Sn with common boundary Si0
∞ that contains vẼ .

There is also a fibration with fibers open hemispheres of dimension i0 +1 and bound-
ary Si0

∞:

ΠK : Sn −Si0
∞ −→ Sn−i0−1(7.1.2)

↑ ↑
U −→ Ko

since Si0−1
∞ corresponds to Si0

∞ in the projection Sn −{vẼ ,vẼ−}→ Sn−1.
Let SL±(n+ 1,R)

Si0
∞ ,vẼ

denote the subgroup of Aut(Sn) acting on Si0
∞ and vẼ . The

projection ΠK induces a homomorphism

Π
∗
K : SL±(n+1,R)

Si0
∞ ,vẼ

→ SL±(n− i0,R).

Suppose that Si0
∞ is h(π1(Ẽ))-invariant. We let N be the subgroup of h(π1(Ẽ)) of

elements inducing trivial actions on Sn−i0−1. The above exact sequence

(7.1.3) 1 → N → h(π1(Ẽ))
Π∗

K−→ NK → 1

is so that the kernel normal subgroup N acts trivially on Sn−i0−1 but acts on each hemi-
sphere with boundary equal to Si0

∞ and NK acts faithfully by the action induced from Π∗
K .

Since K is a properly convex domain, Ko admits a Hilbert metric dK and Aut(K) is a
subgroup of isometries of Ko. Here NK is a subgroup of the group Aut(K) of the group of
projective automorphisms of K, and NK is called the properly convex quotient of h(π1(Ẽ))
or ΓΓΓẼ .

We showed:

THEOREM 7.1.1. Let ΣẼ be the end orbifold of an NPNC R-p-end Ẽ of a strongly
tame properly convex n-orbifold O with radial or totally geodesic ends. Let Õ be the
universal cover in Sn. We consider the induced action of h(π1(Ẽ)) on Aut(Sn−1

vẼ
) for the

corresponding end vertex vẼ . Then the following hold :
• Σ̃Ẽ is foliated by complete affine subspaces of dimension i0, i0 > 0. Let K be the

properly convex compact domain of dimension n− i0 − 1 whose interior is the
space of complete affine subspaces of dimension i0.

• h(π1(Ẽ)) fixes the great sphere Si0−1
∞ of dimension i0 −1 in Sn−1

vẼ
.

• There exists an exact sequence

1 → N → π1(Ẽ)
Π∗

K−→ NK → 1

where N acts trivially on quotient great sphere Sn−i0−1 and NK acts faithfully on
a properly convex domain Ko in Sn−i0−1 isometrically with respect to the Hilbert
metric dK .

□

7.1.2. Main results. We begin with a definition of quasi-joined R-ends.

DEFINITION 7.1.2. We have the following:
• Let K̂ be a compact properly convex subset of dimension
• n− i−2 in Sn for i ≥ 1. Let Si

∞ be a subspace of dimension i complementary to
the subspace containing K̂.
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FIGURE 1. A partial development of the boundary of a quasi-joined R-
p-end-neighborhood in an affine patch with Euclidean coordinates where
((0,0,0,1)) in S3 corresponds to (0,0,0). In the notation of Definition
7.1.2, v is the point (0,0,0), K̂ is the singleton of (1,0,0), Hx contains
the upper-part of the yz-plane, and S1

∞ contains the y-axis. A cusp group
acts on each hyperspace containing the y-axis. Hx and S1

∞ and these
hyperspaces are not in the affine space of the projection. (See the math-
ematica file [40])

• Let v be a point in Si
∞.

• A group G acts on K̂, Si
∞, and v and on an open set U containing v in the bound-

ary.
• U/G is required to be diffeomorphic to a compact orbifold times an interval.
• There is a fibration ΠK : Sn − Si

∞ → Sn−i−1 with fibers equal to open (i+ 1)-
hemispheres with boundary Si

∞.
– The set of fibering open (i+1)-hemispheres H so that H ∩U is a nonempty

open set is projected to a convex open set in Sn−i−1 onto the interior of
{x}∗ΠK(K̂) in Sn−i−1 for a point x not in ΠK(K̂).

– For each fibering open hemisphere H, H ∩U is an open set bounded by an
ellipsoid containing v unless H ∩U is empty.

– Cl(Hx)∩Cl(U) = {v} for Hx the fibering open (i+1)-hemisphere over x.
If an R-end E of a real projective orbifold has an end neighborhood projectively diffeo-
morphic to U/G with the induced radial foliation corresponding to v, then E is called a
quasi-joined end (of a totally geodesic R-end and a horospherical end with respect to v)
and a corresponding R-p-end is said to be a quasi-joined R-p-end also. Also, any R-end
with an end-neighborhood covered by an end-neighborhood of a quasi-joined R-end is
called by the same name. In these cases, the end holonomy group is a quasi-joined end
group (of a totally geodesic R-end and a horospherical end with respect to v)

We will see the example later. In this chapter, we will characterize the NPNC-ends.
See Proposition 7.3.19 and Remark 7.3.20 for detailed understanding of quasi-joined ends.

Let Ẽ be an NPNC-end. Recall from Chapter 3 that the universal cover Σ̃Ẽ of the end
orbifold ΣẼ is foliated by complete affine i0-dimensional totally geodesic leaves for i0 > 1.
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The end fundamental group π1(Ẽ) acts on a properly convex domain K that is the space of
i0-dimensional totally geodesic hemispheres foliating Σ̃Ẽ .

DEFINITION 7.1.3. A countable group G satisfies the property NS if every normal
solvable subgroup N of a finite-index subgroup G′ is virtually central in G′; that is, N ∩G′′

is central in G′′ for a finite-index subgroup G′′ of G′.

By Corollary 1.4.11, the fundamental group of a closed orbifold admitting a properly
convex structure has the property (NS). Clearly a virtually abelian group satisfies (NS).
Obviously, the groups of Benoist are somewhat related to this condition. (see Proposition
1.4.8.)

The main result of this chapter is the following. We need the proper convexity of
Õ . The following theorem shows that given that Σ̃Ẽ is convex but not properly convex,
the transverse weak middle eigenvalue condition implies the end is quasi-joined type. For
example, this implies that the holonomy group decomposes into semi-simple part and horo-
spherical part. (see (7.3.52)). This type is much easier to understand. Section 7.3.19 gives
some detailed discussions.

THEOREM 7.1.4. Let O be a strongly tame properly convex real projective orbifold
with radial or totally geodesic ends. Assume that the holonomy group of O is strongly
irreducible. Let Ẽ be an NPNC R-p-end with the end orbifold ΣẼ . The universal cover
Σ̃Ẽ is foliated by i0-dimensional totally geodesic hemispheres. The leaf space naturally
identifies with the interior of a compact convex set K. Suppose that the following hold:

• the end fundamental group satisfies the property (NS) or dimKo = 0,1 for the
leaf space Ko of Ẽ.

• the p-end holonomy group h(π1(Ẽ)) virtually satisfies the transverse weak middle-
eigenvalue condition with respect to a p-end vertex vẼ .

Then Ẽ is a quasi-joined type R-p-end for vẼ .

See Definition 7.2.2 for the transverse weak middle-eigenvalue condition for NPNC-
ends. Without this condition, we doubt that we can obtain this type of results. However,
it is open to investigations. In this case, Ẽ does not satisfy the uniform middle-eigenvalue
condition as stated in Chapter 3 for properly convex ends.

We again remark that Cooper and Leitner have classified the ends when the end funda-
mental group is abelian. (See Leitner [119], [118] and [120].) Also, Ballas [5] and [4] has
found some examples of quasi-joined ends when the upper-left parts are diagonal groups.
Our quasi-joined ends are also classified by [8] when the holonomy group is nilpotent.
(For virtually abelian groups, Ballas-Cooper-Leitner [8], [9] had covered much of these
material but not in our generality. )

Recall the dual orbifold O∗ given a properly convex real projective orbifold O . (See
Section 5.5.2.) The set of ends of O is in a one-to-one correspondence with the set of
ends of O∗. We show that a dual of a quasi-joined NPNC R-p-end is a quasi-joined NPNC
R-p-end.

COROLLARY 7.1.5. Let O be a strongly tame properly convex real projective orbifold
with radial or totally geodesic ends. Assume that the holonomy group of O is strongly
irreducible. Let Ẽ be a quasi-joined NPNC R-p-end for an end E of O virtually satisfying
the transverse weak middle-eigenvalue condition with respect to the p-end vertex. Suppose
that the end fundamental group satisfies the property (NS) or dimKo = 1 for the leaf space
Ko of Ẽ.
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Let O∗ denote the dual real projective orbifold of O . Let Ẽ∗ be a p-end corresponding
to a dual end of E. Then Ẽ∗ has a p-end neighborhood of a quasi-joined type R-p-end for
the universal cover of O∗ for a unique choice of a p-end vertex.

In short, we are saying that Ẽ∗ can be considered a quasi-joined type R-p-end by
choosing its p-end vertex well. However, this does involve artificially introducing a radial
foliation structure in an end neighborhood. We mention that the choice of the p-end vertex
is uniquely determined for Ẽ∗ to be quasi-joined.

7.1.3. Outline. In Section 7.2, we discuss the R-ends that are NPNC. We introduce
the transverse week middle eigenvalue condition. We will explain the main eigenvalue
estimates following from the transverse weak middle eigenvalue condition for NPNC-ends.
Then we will explain our plan to prove Theorem 7.1.4.

In Section 7.3, we introduce the example of the joining of horospherical and totally
geodesic R-ends. We will now study a bit more general situation introducing Hypothesis
7.3.4. We will try to obtain the splitting under some hypothesis. We will outline the sub-
section there. By computations involving the normalization conditions, we show that the
above exact sequence is virtually split under the condition (NS), and we can surprisingly
show that the R-p-ends are of strictly joined or quasi-joined types. Then we show using the
irreducibility of the holonomy group of π1(O) that they can only be of quasi-joined type.
We divide the tasks:

• In Section 7.3.2, we introduce Hypothesis 7.3.4 under which we work. We show
that K has to be a cone, and the conjugation action on N has to be scalar orthog-
onal type changes. Finally, we show the splitting of the NPNC-ends. We will
outline more completely in there.

• In Section 7.3.3, we introduce Hypothesis 7.3.15, requiring more than Hypoth-
esis 7.3.4. We will prove Proposition 7.3.19 that the ends are quasi-joins under
the hypothesis.

As a final part of this section in Section 7.3.4, we discuss the case when NK is discrete. We
prove Theorem 7.1.4 for this case by showing that the above two hypotheses are satisfied.

In Section 7.4, we discuss when NK is not discrete. There is a foliation by complete
affine subspaces as above. We use some estimates on eigenvalues to show that each leaf is
of polynomial growth. The leaf closures are suborbifolds Vl by the theory of Carrière [35]
and Molino [131] on Riemannian foliations. They form the fibration with compact fibers.
π1(Vl) is solvable using the work of Carrière [35]. One can then take the syndetic closure
to obtain a bigger group that acts transitively on each leaf following Fried and Goldman
[82]. We find a unipotent cusp group acting on each leaf transitively normalized by ΓΓΓẼ .
Then we show that the end also splits virtually using the theory of Section 7.3. This proves
Theorem 7.1.4 for this case.

In Section 7.5, we prove Corollary 7.1.5 showing that the duals of NPNC-ends are
NPNS-ends, and in Section 8.1.3, we classify complete ends that are not cusps. This was
needed in the proof of Theorem 8.1.2.

In Section 8.2, we will discuss some miscellaneous results. In Section 7.5.2, we dis-
cuss a counterexample to Theorem 7.3.22 when the condition (NS) is dropped.

7.1.3.1. The plan of the proof of Theorem 7.1.4. We will show that our NPNC-ends
are quasi-joined type ones; i.e., we prove Theorem 7.1.4 by proving for discrete NK in
Section 7.3.4 in Section 7.3 and proving for nondiscrete NK in Section 7.4.3 in Section 7.4.

• Assume Hypotheses 7.3.4.
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– We show that ΓΓΓẼ acts as R+ times an orthogonal group on a Lie group N
as realized as an real unipotent abelian group Ri0 . See Lemmas 7.3.7. This
is done by computations and coordinate change arguments and the distal
group theory of Fried [80].

– We show that K is a cone in Lemma 7.3.9.
– We refine the matrix forms in Lemma 7.3.10 when µg = 1. Here the matrices

are in almost desired forms.
– Proposition 7.3.14 shows the splitting of the representation of ΓΓΓẼ . One

uses the transverse weak middle eigenvalue condition to realize the compact
(n− i0 −1)-dimensional totally geodesic domain independent of Si0

∞ where
ΓΓΓẼ acts on.

• Now we can assume Hypothesis 7.3.15 additionally. In Section 7.3.3, we dis-
cuss joins and quasi-joins. The idea is to show that the join cannot occur by
Propositions 1.4.18 and 1.4.19.

• This will settle the cases of discrete NK in Theorem 7.3.22 in Section 7.3.4.
• In Section 7.4, we will settle for the cases of non-discrete NK . See above for the

outline of this section.
We remark that we can often take a finite index subgroup of ΓΓΓẼ during our proofs

since Definition 7.3.20 is a definition given up to finite index subgroups.

REMARK 7.1.6. The main result of this chapter Theorem 7.1.4 and Corollary 7.1.5
are stated without references to Sn or RPn. We will work in the space Sn only. Often the
result for Sn implies the result for RPn. In this case, we only prove for Sn. In other cases,
we can easily modify the Sn-version proof to one for the RPn-version proof.

7.2. The transverse weak middle eigenvalue conditions for NPNC ends

We will now study the ends where the transverse real projective structures are not
properly convex but not projectively diffeomorphic to a complete affine subspace. Let Ẽ
be an R-p-end of O , and let U be the corresponding p-end-neighborhood in Õ with the
p-end vertex vẼ . Let Σ̃Ẽ denote the universal cover of the p-end orbifold ΣẼ as a domain
in Sn−1

vẼ
.

In Section 7.1.1, we will discuss the general setting that the NPNC-ends satisfy. In
Section 7.1.3.1, we will give a plan to prove Theorem 7.1.4. We accomplished this proof
in Sections 7.3 and 7.4.

We denote by FẼ the foliation on Σ̃Ẽ or the corresponding one in ΣẼ .
7.2.0.1. The main eigenvalue estimations. We denote by ΓΓΓẼ the p-end holonomy

group acting on U fixing vẼ . Denote the induced foliations on ΣẼ and Σ̃Ẽ by FẼ . We
recall

lengthK(g) := inf{dK(x,g(x))|x ∈ Ko},g ∈ ΓΓΓẼ .

We recall Definition 1.3.1. Let V i0+1
∞ denote the subspace of Rn+1 corresponding to

Si0
∞ . By invariance of Si0

∞ , if

Rµ(g)∩V i0+1
∞ ̸= {0},µ > 0,

then Rµ(g)∩V i0+1
∞ always contains a C-eigenvector of g.

DEFINITION 7.2.1. Let ΣẼ be the end orbifold of a nonproperly convex R-p-end Ẽ of
a strongly tame properly convex n-orbifold O . Let ΓΓΓẼ be the p-end holonomy group.
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• Let λ Tr
max(g) denote the largest norm of the eigenvalue of g ∈ ΓΓΓẼ affiliated with

v⃗ ̸= 0, ((⃗v)) ∈ Sn −Si0
∞ , i.e.,

λ
Tr
max(g) := max{µ |∃ v⃗ ∈ Rµ(g)−V i0+1

∞ },
which is the maximal norm of transverse eigenvalues.

• Also, let λ Tr
min(g) denote the smallest one affiliated with a nonzero vector v⃗, ((⃗v))∈

Sn −Si0
∞ , i.e.,

λ
Tr
min(g) := min{µ |∃⃗v ∈ Rµ(g)−V i0+1

∞ },
which is the minimal norm of transverse eigenvalues.

• Let λSi0
∞

max(g) be the largest of the norms of the eigenvalues of g with C-eigenvectors

of form v⃗, ((⃗v)) ∈ Si0
∞ and λ

Si0
∞

min(g) the smallest such one.

DEFINITION 7.2.2. Let λvẼ
(g) denote the eigenvalue of g at vẼ . The transverse weak

middle eigenvalue condition with respect to vẼ or the R-p-end structure is that each element
g of h(π1(Ẽ)) satisfies

(7.2.1) λ
Tr
max(g)≥ λvẼ

(g).

Theorem A.2.1 somewhat justifies our approach. We do believe that the weak middle
eigenvalue conditions implies the transverse ones at least for relevant cases.

The following proposition is very important in this chapter and shows that λ Tr
max(g)

and λ Tr
min(g) are true largest and smallest norms of the eigenvalues of g.

PROPOSITION 7.2.3. Let ΣẼ be the end orbifold of an NPNC R-p-end Ẽ of a strongly
tame properly convex n-orbifold O with radial or totally geodesic ends. Suppose that Õ
in Sn (resp. RPn) covers O as a universal cover. Let ΓΓΓẼ be the p-end holonomy group
satisfying the transverse weak middle eigenvalue condition for the R-p-end structure. Let
g ∈ ΓΓΓẼ . Then the following hold:

λ
Tr
max(g)≥ λ

Si0
∞

max(g)≥ λvẼ
(g)≥ λ

Si0
∞

min(g)≥ λ
Tr
min(g),

λ1(g) = λ
Tr
max(g), and λn+1 = λ

Tr
min(g).(7.2.2)

PROOF. We may assume that g is of infinite order. Suppose that λSi0
∞

max(g) > λ Tr
max(g).

We have λSi0
∞

max(g)> λvẼ
(g) by the transverse weak uniform middle eigenvalue condition.

Now, λ Tr
max(g)< λSi0

∞
max(g) implies that

R
λ
Si0

∞
max(g)

:=
⊕

|µ|=λ
Si0

∞
max(g)

Rµ(g)

is a subspace of V i0+1
∞ and corresponds to a great sphere S j, S j ⊂ Si0

∞ . Hence, a great sphere
S j, j ≥ 0, in Si0

∞ is disjoint from {vẼ ,vẼ−}. Since vẼ ∈ Si0
∞ is not contained in S j, we obtain

j+1 ≤ i0.
A vector space V1 corresponds

⊕
|µ|<λ

Si0
∞

max(g)
Rµ(g) where g has strictly smaller norm

eigenvalues and is complementary to R
λ
Si0

∞
max(g)

. Let C1 = S(V1). The great sphere C1 is

disjoint from S j but C1 contains vẼ . Moreover, C1 is of complementary dimension to S j,
i.e., dimC1 = n− j−1.

Since C1 is complementary to S j ⊂ Si0
∞ , C1 contains a complementary subspace C′

1 to
Si0

∞ of dimension n− i0−1 in Sn. Considering the sphere Sn−1
vẼ

at vẼ , it follows that C′
1 goes
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FIGURE 2. The figure for the proof of Proposition 7.2.3.

to an n− i0 −1-dimensional subspace C′′
1 in Sn−1

vẼ
disjoint from ∂ l for any complete affine

leaf l. Each complete affine leaf l of Σ̃Ẽ has the dimension i0 and meets C′′
1 in Sn−1

vẼ
by the

dimension consideration.
Hence, a small ball B′ in U meets C1 in its interior.

For any ((⃗v)) ∈ B′, v⃗ ∈ Rn+1, v⃗ = v⃗1 + v⃗2 where ((⃗v1)) ∈C1 and ((⃗v2)) ∈ S j.

We obtain gk(((⃗v))) =
((

gk (⃗v1)+gk (⃗v2)
))

,(7.2.3)

where we used g to represent the linear transformation of determinant ±1 as well (See
Remark 1.1.5.) By Proposition 1.3.2, the action of gk as k → ∞ makes the former vectors
very small compared to the latter ones, i.e.,{∣∣∣∣∣∣gk (⃗v1)

∣∣∣∣∣∣/ ∣∣∣∣∣∣gk (⃗v2)
∣∣∣∣∣∣}→ 0 as k → ∞.

Hence, {gk(((⃗v)))} converges to the limit of {gk(((⃗v2)))} if it exists.
Now choose ((w⃗)) in C1∩B′ and v⃗,((⃗v))∈ S j. We let w⃗1 = ((w⃗+ ε v⃗)) and w⃗2 = ((w⃗− ε v⃗))

in B′ for small ε > 0. Choose a subsequence {ki} so that {gki(w⃗1)} converges to a point of
Sn. The above estimation shows that {gki(w⃗1)} and {gki(w⃗2)} converge to an antipodal pair
of points in Cl(U) respectively. This contradicts the proper convexity of U as gk(B′)⊂U
and the geometric limit is in Cl(U).

Also the consideration of g−1 completes the inequality, and the second equation fol-
lows from the first one. [SnT] □

7.3. The general theory

7.3.1. Examples. First, we give some examples.
7.3.1.1. The standard quadric in Ri0+1 and the group acting on it. Let us consider

an affine subspace Ai0+1 of Si0+1 with coordinates x0,x1, . . . ,xi0+1 given by x0 > 0. The
standard quadric in Ai0+1 is given by

xi0+1 =
1
2
(x2

1 + · · ·+ x2
i0).
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Clearly the group of the orthogonal maps O(i0) acting on the planes given by xi0+1 = const
acts on the quadric also. Also, the group of the matrices of the form 1 0 0

v⃗T Ii0 0
||⃗v||2

2 v⃗ 1


acts on the quadric.

The group of affine transformations that acts on the quadric is exactly the Lie group
generated by the above cusp group and O(i0). The action is transitive and each of the
stabilizer is a conjugate of O(i0) by elements of the above cusp group.

The proof of this fact is simply that such a group of affine transformations is conjugate
into a parabolic isometry group in the i0 + 1-dimensional complete hyperbolic space H
where the ideal fixed point is identified with ((0, . . . ,0,1)) ∈ Si0+1 and with bdH tangent to
bdAi0 .

The group of projective automorphisms of the following forms is a unipotent cusp
group.

(7.3.1) N ′(⃗v) :=

 1 0⃗ 0
v⃗T Ii0−1 0⃗T

||⃗v||2
2 v⃗ 1

 for v⃗ ∈ Ri0 .

(see [68] for details.) We can make each translation direction of generators of N in Σ̃Ẽ to
be one of the standard vector. Therefore, we can find a coordinate system of V i0+2 so that
the generators are of (i0 +2)× (i0 +2)-matrix forms

(7.3.2) N ′
j (s) :=

 1 0⃗ 0
s⃗eT

j Ii0 0
1
2 s⃗e j 1


where s ∈ R and (⃗e j)k = δ jk a row i-vector for j = 1, . . . , i0. That is,

N ′(⃗v) = N ′
1 (v1) · · ·N ′

i0(vi0).

7.3.1.2. Examples of generalized joined ends. We first begin with examples. In the
following, we will explain the generalized joined type end.

EXAMPLE 7.3.1. Let us consider two ends E1, a totally geodesic R-end, with the
p-end-neighborhood U1 in the universal cover of a real projective orbifold O1 in Sn−i0−1

of dimension n− i0 − 1 with the p-end vertex v1, and E2 the p-end-neighborhood U2, a
horospherical type one, in the universal cover of a real projective orbifold O2 of dimension
i0 +1 with the p-end vertex v2.

• Let ΓΓΓ1 denote the projective automorphism group in Aut(Sn−i0−1) acting on U1
corresponding to E1. We assume that ΓΓΓ1 acts on a great sphere Sn−i0−2 ⊂ Sn−i0−1

disjoint from v1. There exists a properly convex open domain K′ in Sn−i0−2

where ΓΓΓ1 acts cocompactly but not necessarily freely. We change U1 to be the
interior of the join of K′ and v1.

• Let ΓΓΓ2 denote the one in Aut(Si0+1) acting on U2 as a subgroup of a cusp group.
• We embed Sn−i0−1 and Si0+1 in Sn meeting transversely at v = v1 = v2.
• We embed U2 in Si0+1 and ΓΓΓ2 in Aut(Sn) fixing each point of Sn−i0−1.
• We can embed U1 in Sn−i0−1 and ΓΓΓ1 in Aut(Sn) acting on the embedded U1

so that ΓΓΓ1 acts on Si0−1 normalizing ΓΓΓ2 and acting on U1. One can find some
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such embeddings by finding an arbitrary homomorphism ρ : ΓΓΓ1 → N(ΓΓΓ2) for a
normalizer N(ΓΓΓ2) of ΓΓΓ2 in Aut(Sn).

We find an element ζ ∈ Aut(Sn) fixing each point of Sn−i0−2 and acting on Si0+1 as
a unipotent element normalizing ΓΓΓ2 so that the corresponding matrix has only two norms
of eigenvalues. Then ζ centralizes ΓΓΓ1|Sn−i0−2 and normalizes ΓΓΓ2. Let U be the strict join
of U1 and U2, a properly convex domain. U/⟨ΓΓΓ1,ΓΓΓ2,ζ ⟩ gives us an R-p-end of dimen-
sion n diffeomorphic to ΣE1 ×ΣE2 ×S1 ×R and the transverse real projective manifold is
diffeomorphic to ΣE1 ×ΣE2 ×S1. We call the results the a generalized joined end and the
generalized joined end-neighborhoods. Those ends with end-neighborhoods finitely cov-
ered by these are also called a generalized joined end. The generated group ⟨ΓΓΓ1,ΓΓΓ2,ζ ⟩ is
called a generalized joined group.

Now we generalize this construction slightly: Suppose that ΓΓΓ1 and ΓΓΓ2 are Lie groups
and they have compact stabilizers at points of U1 and U2 respectively, and we have a pa-
rameter of ζ t for t ∈ R centralizing ΓΓΓ1|Sn−i0−2 and normalizing ΓΓΓ2 and restricting to a
unipotent action on Si0 acting on U2. The other conditions remain the same. We obtain a
generalized joined homogeneous action of the properly convex actions and cusp actions.
Let U be the properly convex open subset obtained as above as a join of U1 and U2. Let
G denote the constructed Lie group by taking the embeddings of ΓΓΓ1 and ΓΓΓ2 as above. G
also has a compact stabilizer on U . Given a discrete cocompact subgroup of G, we ob-
tained a p-end-neighborhood of a generalized joined p-end by taking the quotient of U . An
end with an end-neighborhood finitely covered by such a one are also called a generalized
joined end.

REMARK 7.3.2. We will deform this construction to a construction of quasi-joined
ends (see Definition 7.1.2). This will be done by adding some translations appropriately.

We continue the above example to a more specific situation.

EXAMPLE 7.3.3. Let N be as in (7.3.10). Let N be a cusp group in conjugate to one
in SO(i0 +1,1) acting on an i0-dimensional ellipsoid in Si0+1.

We find a closed properly convex real projective orbifold Σ of dimension n− i0 − 2
and find a homomorphism from π1(Σ) to a subgroup of Aut(Si0+1) normalizing N. (We
will use a trivial one to begin with. ) Using this, we obtain a group Γ so that

1 → N → Γ → π1(Σ)→ 1.

Actually, we assume that this is “split”, i.e., π1(Σ) acts trivially on N.
We now consider an example where i0 = 1. Let N be 1-dimensional and be generated

by N1 as in (7.3.3).

(7.3.3) N1 :=


In−i0−1 0 0 0

0⃗ 1 0 0

0⃗ 1 1 0

0⃗ 1
2 1 1


where i0 = 1.

We take a discrete faithful proximal semisimple representation

h̃ : π1(Σ)→ GL(n− i0,R)
acting on a convex cone CΣ in Rn−i0 . We define

h : π1(Σ)→ GL(n+1,R)



7.3. THE GENERAL THEORY 169

by matrices

(7.3.4) h(g) :=


h̃(g) 0 0

d⃗1(g) a1(g) 0

d⃗2(g) c(g) λvẼ
(g)


where d⃗1(g) and d⃗2(g) are n− i0-vectors and g 7→ λvẼ

(g) is a homomorphism as defined
above for the p-end vertex and det h̃(g)a1(g)λvẼ

(g) = 1.

(7.3.5) h(g−1) :=


h̃(g)−1 0 0

−

 d⃗1(g)
a1(g)

−c(g)d⃗1(g)
a1(g)λvẼ

(g) +
d⃗2(g)

λvẼ
(g)

 h̃(g)−1
1

a1(g)
0

−c(g)
a1(g)λvẼ

(g)
1

λvẼ
(g)

 .

Then the conjugation of N1 by h(g) gives us

(7.3.6)


In−i0 0 0 0⃗ a1(g)

∗⃗ ∗

 h̃(g)−1 1 0
λvẼ

(g)
a1(g)

1

 .

Our condition on the form of N1 shows that (0,0, . . . ,0,1)︸ ︷︷ ︸
n−i0

has to be a common eigenvec-

tor by h̃(π1(Ẽ)), and we also assume that a1(g) = λvẼ
(g). The last row of h̃(g) equals

(⃗0,λvẼ
(g)). Thus, the upper left (n− i0)× (n− i0)-part of h(π1(Ẽ)) is reducible.

Some further computations show that we can take any

h : π1(Ẽ)→ SL(n− i0,R)

with matrices of form

(7.3.7) h(g) :=


Sn−i0−1(g) 0 0 0

0⃗ λvẼ
(g) 0 0

0⃗ 0 λvẼ
(g) 0

0⃗ 0 0 λvẼ
(g)


for g ∈ π1(Ẽ)−N by a choice of coordinates by the semisimple property of the (n− i0)×
(n− i0)-upper left part of h(g).

Since h̃(π1(Ẽ)) has a common eigenvector, Theorem 1.1 of Benoist [21] shows that the
open convex domain K that is the image of ΠK is reducible. We assume that NK = N′

K ×Z
for another subgroup N′

K , and the image of the homomorphism g ∈ N′
K → Sn−i0−1(g) gives

a discrete projective automorphism group acting properly discontinuously on a properly
convex subset K′ in Sn−i0−2 with a compact quotient.

Let E be the one-dimensional ellipsoid where lower-right 3× 3-matrices of N acts
on. From this, the end is of the join form K′o/N′

K ×S1 ×E /Z by taking a double cover if
necessary and π1(Ẽ) is isomorphic to N′

K ×Z×Z up to taking an index two subgroups.
We can think of this as the join of K′o/N′

K with E /Z as K′ and E are on disjoint
complementary projective spaces of respective dimensions n−3 and 2 to be denoted S(K′)
and S(E ) respectively.
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7.3.2. Hypotheses to derive the splitting result. These hypotheses will help us to
obtain the splitting. Afterward, we will show the NPNC-ends with transverse weak middle
eigenvalue conditions will satisfy these.

We will outline this subsection. In Section 7.3.2.1, we will introduce a standard co-
ordinate system to work on, where we introduce the unipotent cusp group N ∼= Ri0 . Our
group ΓΓΓẼ normalizes N by the hypothesis. Similarity Lemma 7.3.7 shows that the conju-
gation in N by an element of ΓΓΓẼ acts as a similarity, a simple consequence of the normal-
ization property. We use this similarity and the Benoist theory [21] to prove K-is-a-cone
Lemma 7.3.9 that K decomposes into a cone {k}∗K′′ where N has a nice expression for
the adopted coordinates. (If an orthogonal group acts cocompactly on an open manifold,
then the manifold is zero-dimensional.) In Section 7.3.2.3, splitting Proposition 7.3.14
shows that the end holonomy group splits. To do that we find a sequence of elements of
the virtual center expanding neighborhoods of a copy of K′′. Here, we explicitly find a
part corresponding to K′′ ⊂ bdÕ explicitly and k is realized by an (i0 + 1)-dimensional
hemisphere where N acts on.

7.3.2.1. The matrix form of the end holonomy group. Let ΓΓΓẼ be an R-p-end holonomy
group, and let l ⊂ Sn−1

vẼ
be a complete i0-dimensional leaf in Σ̃Ẽ . Then a great sphere Si0+1

l

contains the great segments from vẼ in the direction of l. Let V i0+1 denote the subspace
corresponding to Si0

∞ containing vẼ , and V i0+2 the subspace corresponding to Si0+1
l . We

choose the coordinate system so that

vẼ = ((0, · · · ,0,1))︸ ︷︷ ︸
n+1

and points of V i0+1 and those of V i0+2 respectively correspond to n−i0︷ ︸︸ ︷
0, . . . ,0,∗, · · · ,∗

 ,

 n−i0−1︷ ︸︸ ︷
0, . . . ,0,∗, · · · ,∗

 .

Since Si0
∞ and vẼ are g-invariant, g, g ∈ ΓΓΓẼ , is of standard form

(7.3.8)


S(g) s1(g) 0 0
s2(g) a1(g) 0 0
C1(g) a4(g) A5(g) 0
c2(g) a7(g) a8(g) a9(g)


where S(g) is an (n− i0 − 1)× (n− i0 − 1)-matrix and s1(g) is an (n− i0 − 1)-column
vector, s2(g) and c2(g) are (n− i0 − 1)-row vectors, C1(g) is an i0 × (n− i0 − 1)-matrix,
a4(g) is an i0-column vectors, A5(g) is an i0 × i0-matrix, a8(g) is an i0-row vector, and
a1(g),a7(g), and a9(g) are scalars.

Denote

Ŝ(g) =

(
S(g) s1(g)
s2(g) a1(g)

)
,

and is called a upper-left part of g.
Let N be a unipotent group acting on Si0

∞ and inducing I on Sn−i0−1 also restricting to
a cusp group for at least one great (i0 +1)-dimensional sphere Si0+1 containing Si0

∞ .
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We can write each element g ∈ N as an (n+1)× (n+1)-matrix

(7.3.9)

 In−i0−1 0 0
0⃗ 1 0

Cg ∗ Ug


where Cg > 0 is an (i0+1)×(n− i0−1)-matrix, Ug is a unipotent (i0+1)×(i0+1)-matrix,
0 indicates various zero row or column vectors, 0⃗ denotes the zero row-vector of dimension
n− i0 −1, and In−i0−1 is the (n− i0 −1)× (n− i0 −1)-identity matrix. This follows since
g acts trivially on Rn+1/V i0+1 and g acts as a cusp group element on the subspace V i0+2.

For v⃗ ∈ Ri0 , we define

(7.3.10) N (⃗v) :=



In−i0−1 0 0 0 . . . 0

0⃗ 1 0 0 . . . 0

c⃗1(⃗v) v1 1 0 . . . 0

c⃗2(⃗v) v2 0 1 . . . 0
...

...
...

...
. . .

...

c⃗i0+1(⃗v) 1
2 ||⃗v||

2 v1 v2 . . . 1


where ||v|| is the norm of v⃗ = (v1, · · · ,vi0) ∈ Ri0 . We assume that

N := {N (⃗v)|⃗v ∈ Ri0}
is a group, which must be nilpotent. The elements of our nilpotent group N are of this
form since N (⃗v) is the product ∏

i0
j=1 N (e j)

v j . By the way we defined this, for each k,
k = 1, . . . , i0, c⃗k : Ri0 → Rn−i0−1 are linear functions of v⃗ defined as

c⃗k (⃗v) =
i0

∑
j=1

c⃗k jv j for v⃗ = (v1,v2, . . . ,vi0)

so that we form a group. (We do not need the property of c⃗i0+1 at the moment.)
From now on, we denote by C1(⃗v) the (n− i0 − 1)× i0-matrix given by the matrix

with rows c⃗ j (⃗v) for j = 1, . . . , i0 and by c2(⃗v) the row (n− i0 − 1)-vector c⃗i0+1(⃗v). The
lower-right (i0 +2)× (i0 +2)-matrix is form is called the standard cusp matrix form.

We denote by Â the matrix

(7.3.11)


In−i0−1 0 0 0

0 1 0 0

0 0 A 0

0 0 0 1


for A an i0 × i0-matrix. Denote by the group of form

{Ô5|O5 ∈ O(i0)}

by Ô(n+1, i0).
If N can be put the form (7.3.10) with C1(⃗v) = 0,c2(⃗v) = 0 for all v⃗, we call N

the standard cusp group (of type (n+1, i0)) in the standard form. The standard parabolic
group (of type (n+1, i0)) is a group conjugate to N Ô(n+1, i0) where N is in the standard
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cusp group in the standard form. Ones conjugate to these are called standard cusp group
and standard parabolic group respectively.

The assumptions for this subsection are as follows: We will assume that the group
satisfies the condition virtually only since this will be sufficient for our purposes.

HYPOTHESIS 7.3.4.

• Let K be defined as above for an R-p-end Ẽ. Assume that NK acts on Ko cocom-
pactly.

• ΓΓΓẼ satisfies the transverse weak middle eigenvalue condition for the R-p-end
structure.

• Elements are in the matrix form of (7.3.8) under a common coordinate system.
• A group N of form (7.3.10) in the same coordinate system acts on each hemi-

sphere with boundary Si
∞, and fixes vẼ ∈ Si

∞ with coordinates ((0, · · · ,0,1)).
• N ⊂ N in the same coordinate system as above.
• The p-end holonomy group ΓΓΓẼ normalizes N .
• N acts on a p-end neighborhood U of Ẽ, and acts on U ∩Si0+1 for each great

sphere Si0+1 containing Si0
∞ whenever U ∩Si0+1 ̸= /0.

• N freely, faithfully, and transitively acts on the space of i0-dimensional leaves
of Σ̃Ẽ by an induced action.

Let U be a p-end neighborhood of Ẽ. Let l′ be an i0-dimensional leaf of Σ̃Ẽ . The
consideration of the projection ΠK shows us that the leaf l′ corresponds to a hemisphere
H i0+1

l′ where

(7.3.12) Ul′ := (H i0+1
l′ −Si0

∞)∩U ̸= /0

holds.

LEMMA 7.3.5 (Cusp). Assume Hypothesis 7.3.4. Let l′ be an i0-dimensional leaf of
Σ̃Ẽ . Let H i0+1

l′ denote the i0 +1-dimensional hemisphere with boundary Si0
∞ corresponding

to l′. Then N acts transitively on bdUl′ for Ul′ = U ∩Hl′ bounded by an ellipsoid in a
component of H i0+1

l′ −Si0
∞ .

PROOF. Since l′ is an i0 + 1-dimensional leaf of Σ̃Ẽ , we obtain H i0
l′ ∩U ̸= /0. Let

Jl′ := H i0+1
l′ ∩U ̸= /0 where N acts on.

Now, l′ corresponds to an interior point of K. We need to change coordinates of
Sn−i0−1 so that l′ goes to

((0, · · · ,0,1))︸ ︷︷ ︸
n−i0

under ΠK .

This involves the coordinate changes of the first n− i0 coordinates. Now, we can restrict g
to H i0+1

l′ so that the matrix form is with respect to Ul′ . Now give a coordinate system on
the open hemisphere H i0+1,o

l′ given by((
1, x⃗,xi0+1

))︸ ︷︷ ︸
i0+2

for x⃗ ∈ Ri0 where ((1,0, . . . ,0))︸ ︷︷ ︸
i0+2

is the origin,

and (⃗x,xi0+1) gives the affine coordinate system on H i0+1,o
l′ .

Using (7.3.10) restricted to Si0 , the lowest row of the lower-right (i0 + 1)× (i0 + 1)
restriction matrix has to be of form (∗, v⃗,1). We obtain that each g ∈ N then has the form
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in H i0+1
l′ as 

1 0 0

L(⃗vT ) Ii0 0

κ(v) v⃗ 1


where L : Ri0 → Ri0 is a linear map. The linearity of L is the consequence of the group
property. κ : Ri0 → R is some function. We consider L as an i0 × i0-matrix.

Suppose that there exists a kernel K1 of L. We use t⃗v ∈ K1 −{O}. As t → ∞, consider
each orbit of the subgroup N (R⃗v)⊂ N given by((

1, x⃗,xi0+1
))
→
((

1, x⃗,κ(t⃗v)+ t⃗v · x⃗+ xi0+1
))
.

This action fixes coordinates from the 2-nd to i0 + 1-st ones to be x⃗. Hence, each orbit
lies on an affine line from ((0,0, . . . ,1)). Since the eigenvalues of every elements of N all
equal 1, the action is unipotent. Since the action is unipotent, either the action is trivial or
the orbit is the entire complete affine line on H i0

l′ . Since the action on each leaf l′ is free,
the action cannot be trivial. Thus, the orbit is the complete affine line, and this contradicts
the proper convexity of Õ .

Also, since N is abelian, the computations of

N (⃗v)N (w⃗) = N (w⃗)N (⃗v)

shows that v⃗Lw⃗T = w⃗L⃗vT for every pair of vectors v⃗ and w⃗ in Ri0 . Thus, L is a symmetric
matrix.

We may obtain new coordinates xn−i0+1, . . . ,xn by taking linear combinations of these.
Since L hence is nonsingular, we can find new coordinates xn−i0+1, . . . ,xn so that N is now
of standard form: We conjugate N by

1 0 0

0 A 0

0 0 1


for nonsingular A. We obtain 

1 0 0

AL⃗vT Ii0 0

κ (⃗v) v⃗A−1 1

 .

We thus need to solve for A−1A−1T = L, which can be done since L is nonsingular and
symmetric as we showed above.

Now, we conjugate as we wished to. We can factorize each element of N into forms
1 0 0

0 Ii0 0

κ (⃗v)− ||⃗v||2
2 0 1




1 0 0

v⃗T Ii0 0
||⃗v||2

2 v⃗ 1

 .
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Again, by the group property, ℵ7(⃗v) := κ (⃗v)− ||⃗v||2
2 gives us a linear function ℵ7 :Ri0 →R.

Hence ℵ7(⃗v) = κα · v⃗ for κα ∈ Ri0 . Now, we conjugate N by the matrix
1 0 0

0 Ii0 0

0 −κα 1


and this will put N into the standard form.

Now it is clear that the orbit of N (x0) for a point x0 of Jl′ is an ellipsoid with a point
removed since N acts so in the standard form since the standard form can be recognized as
that of the parabolic group in the hyperbolic space in the Klein model in some appropriate
coordinates. □

Recall standard cusp group from the end of Section 7.3.2.1. For later purposes, we
need:

LEMMA 7.3.6. Let C be standard cusp group acting on a hemisphere H of dimension
i0 +1 with boundary Si0 fixing a point p in Si0 . Then the following hold:

• There exists an affine space An
C with Si0 ⊂ bdAn

C and Ho ⊂An
C where orbits of

points have three types:
– The orbit of each point inAn

C is an ellipsoid in an affine subspace of dimen-
sion i0 parallel to the affine subspace Ho.

– The orbit of each point of a great sphere Sn−i0 ⊂ bdAn of dimension n− i0
containing p transverse to Si0 where the orbits are singletons.

– The orbit of every point of bdAn
C − Sn−i0 is not contained in a properly

convex domain.
• The affine spaceAn

C with these orbit properties is uniquely determined.

PROOF. We choose the affine spaceAn
C is given by xn−i0 > 0 for the coordinate system

where C is written as in (7.3.10) with ci, i = 1, . . . , i0 + 1, are zero. Since C is standard,
There exists a sphere of dimension Sn−i0−1 complementary to Si0 in bdAn

C where C acts
trivially. Let Sn−i0 be the join {p, p−} ∗Sn−i0−1. On Sn−i0 the orbits are singletons. The
orbits of points of bdAn

C − Sn−i0 can be understood by the matrix form. The orbits will
always contain a pair of antipodal points in the closures by considering N with the n− i0-
th rows and the n− i0-th columns removed. The affine translations commute with each
element of C. This shows that each orbit inAn

C is as claimed.
Also, since the orbit types are characterized,An

C is uniquely determined. □

Let a5(g) denote
∣∣det(A5

g)
∣∣ 1

i0 . Define µg := a5(g)
a1(g)

= a9(g)
a5(g)

for g ∈ ΓΓΓẼ from Lemma
7.3.7.

LEMMA 7.3.7 (Similarity). Assume Hypothesis 7.3.4. Then any element g ∈ ΓΓΓẼ in-
duces an (i0 × i0)-matrix Mg given by

gN (⃗v)g−1 = N (⃗vMg) where

Mg =
1

a1(g)
(A5(g))−1 = µgO5(g)−1

for O5(g) in a compact Lie group GẼ , and the following hold.

• (a5(g))2 = a1(g)a9(g) or equivalently a5(g)
a1(g)

= a9(g)
a5(g)

.
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• Finally, a1(g),a5(g), and a9(g) are all positive.

PROOF. Since the conjugation by g sends elements of N to itself in a one-to-one
manner, the correspondence between the set of v⃗ for N and v⃗′ is one-to-one.

Since we have gN (⃗v) = N (⃗v′)g for vectors v⃗ and v⃗′ in Ri0 by Hypothesis 7.3.4, we
consider
(7.3.13)

S(g) s1(g) 0 0

s2(g) a1(g) 0 0

C1(g) a4(g) A5(g) 0

c2(g) a7(g) a8(g) a9(g)




In−i0−1 0 0 0

0 1 0 0

C1(⃗v) v⃗T Ii0 0

c2(⃗v)
||⃗v||2

2 v⃗ 1


where C1(⃗v) is an (n− i0 −1)× i0-matrix where each row is a linear function of v⃗, c2(⃗v) is
a (n− i0 −1)-row vector, and v⃗ is an i0-row vector. This must equal the following matrix
for some v⃗′ ∈ R
(7.3.14)

In−i0−1 0 0 0

0 1 0 0

C1(⃗v′) v⃗′
T

Ii0 0

c2(⃗v′)

∣∣∣∣∣∣⃗v′∣∣∣∣∣∣2
2 v⃗′ 1




S(g) s1(g) 0 0

s2(g) a1(g) 0 0

C1(g) a4(g) A5(g) 0

c2(g) a7(g) a8(g) a9(g)

 .

From (7.3.13), we compute the (4,3)-block of the result to be a8(g) + a9(g)⃗v. From
(7.3.14), the (4,3)-block is v⃗′A5(g)+ a8(g). We obtain the relation a9(g)⃗v = v⃗′A5(g) for
every v⃗. Since the correspondence between v⃗ and v⃗′ is one-to-one, we obtain

(7.3.15) v⃗′ = a9(g)⃗v(A5(g))−1

for the i0 × i0-matrix A5(g) and we also infer a9(g) ̸= 0 and det(A5(g)) ̸= 0. The (3,2)-
block of the result of (7.3.13) equals

a4(g)+A5(g)⃗vT .

The (3,2)-block of the result of (7.3.14) equals

(7.3.16) C1(⃗v′)s1(g)+a1(g)⃗v′T +a4(g).

Thus,

(7.3.17) A5(g)⃗vT =C1(⃗v′)s1(g)+a1(g)⃗v′T .

For each g, we can choose a coordinate system so that s1(g) = 0 since by the Brouwer
fixed point theorem, there is a fixed point in the compact convex set K ⊂ Sn−i0−1. This
involves the coordinate changes of the first n− i0 coordinate functions only.

Let l′ denote the fixed point of g. Since N acts on Si0+1
l′ for l′ as a cusp group by

Lemma 7.3.5, there exists a coordinate change involving the last (i0 +1)-coordinates

xn−i0+1, . . . ,xn,xn+1

so that the matrix form of the lower-right (i0 +2)× (i0 +2)-matrix of each element N is
of the standard cusp form. This will not affect s1(g) = 0 as we can check from conjugating
matrices used in the proof of Lemma 7.3.5 as the change involves the above coordinates
only. Denote this coordinate system by Φg,l′ .
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We may assume that the transition to this coordinate system from the original one is
uniformly bounded: First, we change for Sn−i0−1 with a bounded elliptic coordinate change
since we are only picking out a single point to be a coordinate axis. This makes L and κ

in the proof of Lemma 7.3.5 to be uniformly bounded functions. Hence, A and κα in the
proof are also uniformly bounded.

Let us use Φg,l′ for a while using primes for new set of coordinates functions. Now
A′

5(g) is conjugate to A5(g) as we can check in the proof of Lemma 7.3.5. Under this
coordinate system for given g, we obtain a′1(g) ̸= 0 and we can recompute to show that
a′9(g)⃗v = v⃗′A′

5(g) for every v⃗ as in (7.3.15). By (7.3.17) recomputed for this case, we
obtain

(7.3.18) v⃗′ =
1

a′1(g)
v⃗(A′

5(g))
T

as s′1(g) = 0 here since we are using the coordinate system Φg,l′ . Since this holds for every
v⃗ ∈ Ri0 , we obtain

a′9(g)(A
′
5(g))

−1 =
1

a′1(g)
(A′

5(g))
T .

Hence 1
|det(A′

5(g))|
1/i0

A′
5(g) ∈ O(i0). Also,

a′9(g)
a′5(g)

=
a′5(g)
a′1(g)

.

Here, A′
5(g) is a conjugate of the original matrix A5(g) by linear coordinate changes

as we can see from the above processes to obtain the new coordinate system.
This implies that the original matrix A5(g) is conjugate to an orthogonal matrix mul-

tiplied by a positive scalar for every g. The set of matrices {A5(g)|g ∈ ΓΓΓẼ} forms a group
since every g is of a standard matrix form (see (7.3.8)). Given such a group of matrices
normalized to have determinant ±1, we obtain a compact group

GẼ :=

{
1

|detA5(g)|
1
i0

A5(g)

∣∣∣∣∣g ∈ ΓẼ

}
by Lemma 7.3.8. This group has a coordinate system where every element is orthogonal
by a coordinate change of coordinates xn−i0+1, . . . ,xn.

Also, a1(g),a5(g),a9(g) are conjugation invariant. Hence, we proved

(7.3.19)
a9(g)
a5(g)

=
a5(g)
a1(g)

(= µg)

We have a9(g)= λvẼ
(g)> 0. Since a5(g)2 = a1(g)a9(g), we obtain a1(g)> 0. Finally,

a5(g)> 0 by definition. □

LEMMA 7.3.8. Suppose that G is a subgroup of a linear group GL(i0,R) where each
element is conjugate to an orthogonal element by a uniformly boounded conjugating ma-
trices. Then G is in a compact Lie group.

PROOF. Clearly, the norms of eigenvalues of g ∈ G are all 1. Hence, G is virtually
an orthopotent group by Theorem 1.3.7. (See [132] and [62]).) Hence, Ri0 has subspaces
{0} = V0 ⊂ V1 ⊂ ·· · ⊂ Vm = Ri0 where G acts as orthogonal on Vi+1/Vi up to a choice of
coordinates. Hence, the Zariski closure Z (G) of G is also orthopotent.
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If G is discrete, Theorem 1.3.7 shows that G is virtually unipotent. The unipotent
subgroup of G is trivial since the elements must be conjugate to orthogonal elements.
Thus, G is a finite group, and we finished the proof.

Suppose now that the closure Ḡ of G is a Lie group of dimension ≥ 1. Let O(⊕m
i=1Vi/Vi−1)

denote the group of linear transformations acting on each Vi/Vi−1 orthogonally for each
i = 1, . . . ,m. By Theorem 1.3.7, there is a homomorphism Z (G) → O(⊕m

i=1Vi/Vi−1)

whose kernel Ui0 is the a group of unipotent matrices. Let Ĝ denote the image of Ḡ in
the second group. Then Ḡ∩Ui0 is trivial since every element of Ḡ is elliptic or is the
identity. Thus, Ḡ is isomorphic to a compact group Ĝ. □

From now on, we denote by (C1(⃗v), v⃗T ) the matrix obtained from C1(⃗v) by adding a
column vector v⃗T and denote O5(g) := 1

|detA5(g)|
1
i0

A5(g). We also let

Ŝ(g) :=

 S(g), s1(g)

s2(g), a1(g)

 .

LEMMA 7.3.9 (K is a cone). Assume Hypothesis 7.3.4. Suppose that ΓΓΓẼ acts semisim-
ply on Ko. Then the following hold:

• K is a cone over a totally geodesic (n− i0 −2)-dimensional domain K′′.
• The rows of (C1(⃗v), v⃗T ) are proportional to a single vector, and we can find a

coordinate system where C1(⃗v) = 0 not changing any entries of the lower-right
(i0 +2)× (i0 +2)-submatrices for all v⃗ ∈ Ri0 .

• We can find a common coordinate system where

O5(g)−1 = O5(g)T ,O5(g) ∈ O(i0),

s1(g) = s2(g) = 0 for all g ∈ ΓΓΓẼ(7.3.20)

where O5(g) =
∣∣det(A5

g)
∣∣ 1

i0 A5(g).
• In this coordinate system, we have

(7.3.21) s1(g) = 0,s2(g) = 0,a9(g)c2(⃗v) = c2(µg⃗vO5(g)−1)S(g)+µg⃗vO5(g)−1C1(g).

PROOF. The assumption implies that Mg = µgO5(g)−1 by Lemma 7.3.7. We consider
the equation

(7.3.22) gN (⃗v)g−1 = N (µg⃗vO5(g)−1).

We change to

(7.3.23) gN (⃗v) = N (µg⃗vO5(g)−1)g.

Considering the lower left (n− i0)× (i0 +1)-matrix of the left side of (7.3.23), we obtain

(7.3.24)

 C1(g), a4(g)

c2(g), a7(g)

+

 a5(g)O5(g)C1(⃗v), a5(g)O5(g)⃗vT

a8(g)C1(⃗v)+a9c2(⃗v), a8(g)·⃗vT +a9(g)⃗v · v⃗/2


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where the entry sizes are clear. From the right side of (7.3.23), we obtain C1(µg⃗vO5(g)−1), µgO5(g)−1,T v⃗T

c2(µg⃗vO5(g)−1), v⃗ · v⃗/2

 Ŝ(g)+

 C1(g), a4(g)

µg⃗vO5(g)−1 ·C1(g)+ c2(g), a7(g)+µg⃗vO5(g)−1 ·a4(g)

 .

(7.3.25)

From the top rows of (7.3.24) and (7.3.25), we obtain that(
a5(g)O5(g)C1(⃗v),a5(g)O5(g)⃗vT

)
=(

µgC1
(⃗
vO5(g)−1) ,µgO5(g)−1,T v⃗T

)
Ŝ(g).

(7.3.26)

We multiplied the both sides by O5(g)−1 from the right and by Ŝ(g)−1 from the left to
obtain (

a5(g)C1(⃗v),a5(g)⃗vT
)

Ŝ(g−1) =(
µgO5(g)−1C1(⃗vO5(g)−1),µgO5(g)−1O5(g)−1,T v⃗T

)
.

(7.3.27)

Let us form the subspace VC in the dual sphere Rn−i0∗ spanned by row vectors of (C1(⃗v), v⃗T ).
Let S∗C denote the corresponding subspace in Sn−i0−1∗. Then{

1

det Ŝ(g)
1

n−i0−1
Ŝ(g)|g ∈ ΓΓΓẼ

}
acts on VC as a group of bounded linear automorphisms since O5(g) ∈ G for a compact
group G. Therefore, {Ŝ(g)|g ∈ ΓΓΓẼ} on S∗C is in a compact group of projective automor-
phisms by (7.3.27).

We recall that the dual group N∗
K of NK acts on the properly convex dual domain K∗

of K cocompactly by Proposition 1.5.11. Notice that a finite irreducible group cannot act
cocompactly on a convex open set unless the set is a singleton. Since N∗

K acts as a compact
group on S∗C, it must be that N∗

K is reducible.
Now, we apply the theory of Vey [151] and Benoist [21]: Since N∗

K is semisimple by
above premises, N∗

K acts on a complementary subspace of S∗N . By Proposition 1.4.13, K∗

has an invariant subspace K∗
1 and K∗

2 so that we have strict join

K∗ = K∗
1 ∗K∗

2 where dimK∗
1 = dimS∗C,dimK∗

2 = dimS∗N
where

K∗
1 = K∗∩S∗C,K∗

2 = K∗∩S∗N .
Also, N∗

K is isomorphic to a cocompact subgroup of

N∗
K,1 ×N∗

K,2 ×A

where
• A is a diagonalizable subgroup with positive eigenvalues only isomorphic to a

subgroup of R+,
• N∗

k,i is the restriction image of N∗
K to K∗

i for i = 1,2, and
• N∗

K,i acts on the interior of K∗
i properly and cocompactly.
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But since N∗
K,1 acts orthogonally on S∗C, the only possibility is that dimS∗C = 0: Otherwise

K∗o
1 /NK is not compact contradicting Proposition 1.4.13. Hence, dimS∗C = 0 and K∗

1 is a
singleton and K∗

2 is n− i0 −2-dimensional properly convex domain.
Rows of (C1(⃗v), v⃗T ) are elements of the 1-dimensional subspace in Rn−i0−1∗ corre-

sponding to S∗C. Therefore this shows that the rows of (C1(⃗v), v⃗T ) are proportional to a
single row vector.

Since (C1(⃗e j), e⃗T
j ) has 0 as the last column element except for the jth one, only the

jth row of C1(⃗e j) is nonzero. Let C1(1, e⃗1) be the first row of C1(⃗e1). Thus, each row of
(C1(⃗e j), e⃗T

j ) equals to a scalar multiple of (C1(1, e⃗1),1) for every j. Now we can choose
coordinates of Rn−i0∗ so that this (n− i0)-row-vector now has coordinates (0, . . . ,0,1). We
can also choose the coordinates so that K∗

2 is in the zero set of the last coordinate. With this
change, we need to do conjugation by matrices with the top left (n− i0 −1)× (n− i0 −1)-
submatrix being different from I and the rest of the entries staying the same. This will not
affect the expressions of matrices of lower right (i0 +2)× (i0 +2)-matrices involved here.
Thus, C1(⃗v) = 0 in this coordinate for all v⃗ ∈ Ri0 . Also, ((0, . . . ,0,1))︸ ︷︷ ︸

n−i0

is an eigenvector of

every elements of N∗
K .

The hyperspace containing K∗
2 is also N∗

K-invariant. Thus, the (n−i0)-vector (0, . . . ,0,1)
corresponds to an eigenvector of every element of NK . In this coordinate system, K is a
strict join of a point for an (n− i0)-vector

k = ((0, . . . ,0,1))︸ ︷︷ ︸
n−i0

and a domain K′′ given by setting xn−i0 = 0 in a totally geodesic sphere of dimension
n− i0 −2 by duality. We also obtain

s1(g) = 0,s2(g) = 0.

For the final item we have under our coordinate system.

(7.3.28) g =


S(g) 0 0 0

0 a1(g) 0 0

C1(g) a4(g) a5(g)O5(g) 0

c2(g) a7(g) a8(g) a9(g)

 ,

(7.3.29) N (⃗v) =


In−i0−1 0 0 0

0 1 0 0

0 v⃗T I 0

c2(⃗v) 1
2 ||⃗v||

2 v⃗ 1

 .

The normalization of N shows as in the proof of Lemma 7.3.7 that O5(g) is orthogo-
nal now. (See (7.3.15) and (7.3.17).) By (7.3.22), we have

gN (⃗v) = N (⃗v′)g, v⃗′ = µg⃗vO5(g)−1.
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We consider the lower-right (i0 + 1)× (n− i0)-submatrices of gN (⃗v) and N (⃗v′)g. For
the first one, we obtain C1(g), a4(g)

c2(g), a7(g)

+

 a5(g)O5(g), 0

a8(g), a9(g)

 0, v⃗T

c2(⃗v), 1
2 ||⃗v||

2


For N (⃗v′)g, we obtain 0, v⃗′

T

c2(⃗v′), 1
2 ||⃗v

′||2

 S(g), 0

0, a1(g)

+

 I, 0

v⃗′, 1

 C1(g), a4(g)

c2(g), a9(g)

 .

Considering (2,1)-blocks, we obtain

□ c2(g)+a9(g)c2(⃗v) = c2(⃗v′)S(g)+ v⃗′C1(g)+ c2(g).

□

From now on, we denote O5(g) :=
∣∣det(A5

g)
∣∣ 1

i0 A5(g).

LEMMA 7.3.10. Assume Hypothesis 7.3.4 and NK acts semi-simply. Then we can find
coordinates so that the following holds for all g :

a9(g)
a5(g)

O5(g)−1a4(g) = a8(g)T or
a9(g)
a5(g)

a4(g)T O5(g) = a8(g).(7.3.30)

If µg = 1, then a1(g) = a9(g) = λvẼ
(g) and A5(g) = λvẼ

(g)O5(g).(7.3.31)

PROOF. Again, we use (7.3.13) and (7.3.14). We only need to consider lower right
(i0 +2)× (i0 +2)-matrices.

a1(g) 0 0

a4(g) a5(g)O5(g) 0

a7(g) a8(g) a9(g)




1 0 0

v⃗T I 0
1
2 ||⃗v||

2 v⃗ 1

(7.3.32)

=


a1(g) 0 0

a4(g)+a5(g)O5(g)⃗vT a5(g)O5(g) 0

a7(g)+a8(g)⃗vT + a9(g)
2 ||⃗v||2 a8(g)+a9(g)⃗v a9(g)

 .(7.3.33)

This equals 
1 0 0

v⃗′
T

I 0
1
2

∣∣∣∣∣∣⃗v′∣∣∣∣∣∣2 v⃗′ 1




a1(g) 0 0

a4(g) a5(g)O5
g 0

a7(g) a8(g) a9(g)

(7.3.34)

=


a1(g) 0 0

a1(g)⃗v′
T
+a4(g) a5(g)O5(g) 0

a1(g)
2

∣∣∣∣∣∣⃗v′∣∣∣∣∣∣2 + v⃗′a4(g)+a7(g) a5(g)⃗v′O5(g)+a8(g) a9(g)

 .(7.3.35)

Then by comparing the (3,2)-blocks, we obtain

a8(g)+a9(g)⃗v = a8(g)+a5(g)⃗v′O5(g).
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Thus, v⃗ = a5(g)
a9(g)

v⃗′O5(g).
From the (3,1)-blocks, we obtain

a1(g)⃗v′ · v⃗′/2+ v⃗′a4(g) = a8(g)⃗vT +a9(g)⃗v · v⃗/2.

Since the quadratic forms have to equal each other, we obtain

a9(g)
a5(g)

v⃗O5(g)−1 ·a4(g) = v⃗ ·a8(g) for all v⃗ ∈ Ri0 .

Thus, a9(g)
a5(g)

(O5(g)T a4(g))T = a8(g)T .
Since we have µg = 1, we obtain

a1(g) = a9(g) = a5(g) = λvẼ
(g) and A5(g) = λvẼ

(g)O5(g)

by Lemma 7.3.7. Also, a1(g) = a9(g) = a5(g) = λvẼ
(g). □

Under Hypothesis 7.3.4 and assuming that NK acts semisimply, we conclude by (7.3.30)
and (7.3.19) that each g ∈ ΓΓΓẼ has the form

(7.3.36)


S(g) 0 0 0

0 a1(g) 0 0

C1(g) a1(g)⃗vT
g a5(g)O5(g) 0

c2(g) a7(g) a5(g)⃗vgO5(g) a9(g)


defining v⃗g := a4(g)

a1(g)
.

REMARK 7.3.11. Since the matrices are of form (7.3.36), g 7→ µg is a homomorphism.

COROLLARY 7.3.12. If g of form (7.3.36) centralizes a Zariski dense subset A′ of N ,
then µg = 1 and O5(g) = Ii0 .

PROOF. N is isomorphic to Ri0 . The subset A′′ of Ri0 corresponding to A′ is also
Zariski dense in Ri0 . gN (⃗v) = N (⃗v)g shows that v⃗ = v⃗O5(g) for all v⃗ ∈ A′′. Hence
O5(g) = I. □

7.3.2.2. Invariant ℵ7. We assume µg = 1, g ∈ ΓΓΓẼ , identically in this subsubsection.
When µg = 1 for all g ∈ ΓΓΓẼ , by taking a finite index subgroup of ΓΓΓẼ , we conclude that
each g ∈ ΓΓΓẼ has the form by Lemma 7.3.10

(7.3.37) M(g) :=


S(g) 0 0 0

0 λvẼ
(g) 0 0

C1(g) λvẼ
(g)⃗vT

g λvẼ
(g)O5(g) 0

c2(g) a7(g) λvẼ
(g)⃗vgO5(g) λvẼ

(g)

 .

We define an invariant:

ℵ7(g) :=
a7(g)

λvẼ
(g)

−
∣∣∣∣⃗vg
∣∣∣∣2

2
.
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We denote by M̂(g) the lower right (i0 + 1)× (i0 + 1)-submatrix of M(g). An easy com-
putation shows that M̂(g)M̂(h) = M̂(gh) where v⃗gh = v⃗+O5(g)⃗vh holds. Then it is easy to
show that

(7.3.38) ℵ7(gn) = nℵ7(g) and ℵ7(gh) = ℵ7(g)+ℵ7(h), whenever g,h,gh ∈ G.

We obtain a homomorphism to the additive group R

(7.3.39) ℵ7 : ΓΓΓẼ → R.

(See (7.3.40).)
Here ℵ7(g) is also determined by factoring the matrix of g into commuting matrices

of form

(7.3.40)


In−i0−1 0 0 0

0 1 0 0

0 0 Ii0 0

0 ℵ7(g) 0⃗ 1

×


Sg 0 0 0

0 λvẼ
(g) 0 0

C1(g) λvẼ
(g)⃗vg λvẼ

(g)O5(g) 0

c2(g) λvẼ
(g) ||v⃗g||2

2 λvẼ
(g)⃗vgO5(g) λvẼ

(g)

 .

REMARK 7.3.13. We give a bit more explanations. Recall that the space of segments
in a hemisphere H i0+1 with the vertices vẼ ,vẼ− forms an affine subspaceAi one-dimension
lower, and the group Aut(H i0+1)vẼ

of projective automorphisms of the hemisphere fixing
vẼ maps to Aff(Ai0) with kernel K equal to transformations of an (i0+2)×(i0+2)-matrix
form

(7.3.41)


1 0⃗T 0

O Ii0 0⃗

b 0⃗T 1


where vẼ is given coordinates ((0,0, . . . ,1)), 0⃗ denote the 0-vector in Ri0 and a center point
of H i0+1

l the coordinates ((1,0, . . . ,0)). In other words, the transformations are of form

1

x1
...

xi0

xi0+1


7→



1

x1
...

xi0

xi0+1 +b


(7.3.42)

and hence b determines the kernel element. Hence ℵ7(g) indicates the translation towards
vẼ = ((0, . . . ,1)). (Actually the vertex corresponds to (1,0, . . . ,+∞)-point in this view. )
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We denote by T (n+1,n− i0) the group of matrices restricting to (7.3.41) in the lower-
right (i0 +2)× (i0 +2)-submatrices and equal to I on upper-left (n− i0 −1)× (n− i0 −1)-
submatrices and zero elsewhere.

7.3.2.3. Splitting the NPNC end.

PROPOSITION 7.3.14 (Splitting). Assume Hypothesis 7.3.4 for ΓΓΓẼ . Suppose addition-
ally the following:

• Suppose that NK acts on K in a semi-simple manner.
• K = {k} ∗K′′ a strict join, and Ko/NK is compact with k a common fixed point

of NK .
• Let H be a commutant of a finite index subgroup of NK that is positive diagonal-

izable. Assume that NK ∩H contains a free abelian group of rank l0 provided K′′

is a strict join of compact convex subsets K1, . . . ,Kl0 where H acts trivially on
each K j, j = 1, . . . , l0.

Then the following hold:

• there exists an exact sequence

1 → N → ⟨ΓΓΓẼ ,N ⟩
Π∗

K−→ NK → 1.

• K′′ embeds projectively in the closure of bdÕ whose image is ΓΓΓẼ -invariant, and
• one can find a coordinate system so that every N (⃗v) for v⃗∈Ri0 is in the standard

form and each element g of ΓΓΓẼ is written so that
– C1(⃗v) = 0,c2(⃗v) = 0, and
– C1(g) = 0 and c2(g) = 0.

PROOF. (A) Let Z denote ⟨ΓΓΓẼ ,N ⟩. Since N ⊂ N , we have homomorphism

Z
Π∗

K−→ NK → 1

extending Π∗
K of (7.1.3). We now determine the kernel.

The function λvẼ
: ΓΓΓẼ → R+ extends to λvẼ

: Z → R+. By (7.3.36), we deduce that
every element g of Z is of form:

(7.3.43)


S(g) 0 0 0

0 a1(g) 0 0

C1(g) a1(g)⃗vT
g a5(g)O5(g) 0

c2(g) a7(g) a5(g)⃗vgO5(g) a9(g)


for some functions C1,c2,ai : Z →R for i = 1,5,9. Notice that ℵ7 is identical zero on N .
Since N ⊂ N by Hypothesis 7.3.4, ℵ7 is zero on the kernel N. For g ∈ N , there is an
element v⃗g ∈ Ri0 such that exp(⃗vg) = g. We define C1,c2 : Ri0 → R by setting C1(⃗vg) =
C1(g),c2(⃗vg) = c2(g) for each g ∈ N . Hence, g ∈ N is of form

(7.3.44) g =


In−i0−1 0 0 0

0 1 0 0

C1(⃗vg) v⃗T
g O5(g) 0

c2(⃗vg)
||⃗vg||2

2 v⃗gO5(g) 1


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since ℵ7(g) = 0, and S(g) = λgIn−i0−1 and the (n− i0,n− i0)-term must be λg for some
λg > 0 so that it goes to I in K.

Theorem 1.3.7 shows that N is a subgroup of N by taking a finite index subgroup of
ΓΓΓẼ . Since the kernel of Π∗

K |Z is generated by N and N, we proved the first item.
(B) Lemma 7.3.9 shows that C1(⃗v) = 0 for all v⃗ ∈Ri0 for a coordinate system where k

has the form
((0, . . . ,0,1)) ∈ Sn−i0−1.

Let λSg denote the maximal norm of the eigenvalues of the upper-left part Sg of g. We
define

ΓΓΓẼ,S := {g|λSg(g)> a1(g)}.
There is always an element like this because ΓΓΓẼ acts on a subspace of dimension n −
i0 − 1 containing a compact set projectively diffeomorphic to K. In particular, we take
the inverse image of suitable diagonalizable elements of the center H ∩ NK denoted in
Proposition 7.4.7. We take the diagonalizable element in NK with K′′ having a largest
norm eigenvalue. Let g be such an element. Since O5(g) is orthogonal, the transversal
weak middle eigenvalue condition tells us

max{λS(g),a5(g),a1(g)} ≥ a9(g) = λvẼ
(g).

We have either a9(g)≥ a5(g)≥ a1(g) or a1(g)≥ a5(g)≥ a9(g) by (7.3.19) depending on
µg ≥ 1 or ≤ 1. The second case can be ignored since a9(g) is the smallest eigenvalue in that
case and we can consider g−1 to obtain that a1(g) = a5(g) = a9(g) by Proposition 7.2.3
reducing to the first case. Hence,for g∈ΓΓΓẼ,S, we have µg ≥ 1 and that λS(g) is the largest of
norms of every eigenvalue by Proposition 7.2.3 and a9(g) = λvẼ

(g). max{a1(g),a5(g)} ≤
a9(g) and hence µg ≥ 1, we have

(7.3.45) a1(g)≤ a5(g)≤ a9(g)≤ λS(g) and µg ≥ 1 for g ∈ ΓΓΓẼ,S.

(C) Applying Lemma 7.3.9, we modify the coordinates so that the elements of N are
of form:

(7.3.46) k =


In−i0−1 0 0 0

0 1 0 0

C1(⃗vk) v⃗T
k Ii0 0

c2(⃗vk)
||⃗vk||2

2 v⃗k 1

 where C1(⃗vk) = 0.

By the group property, v⃗ 7→ c2(⃗v) is a linear map.
We have coordinates so that K′′ ⊂ Sn−i0−2. There exists a sequence of elements zi of

NK ∩H in the virtual center H so that a largest norm eigenvalue has a direction in K′′ and
zi|K′′ → IK′′ .

Since Cl(U) is in properly convex Cl(Õ), it is in an affine patch where vẼ is the origin.
That is, vẼ = ((0,0,0,1)). Let gi ∈ ΓΓΓẼ+ be the element going to zi under Π∗

K . Then {gi(x)}
for a point x of U converges to ((λ a⃗,0, w⃗,1)) for ((a)) ∈ K′′ and some w⃗ ∈Ri0 , λ ∈R. Here,
λ > 0 since our point must project to the limit of zi(ΠK(x)) as i → ∞. Hence by (7.3.45)
and

(7.3.47) ((λ a⃗,0, w⃗,1)) ∈ Cl(U)

Since zi|K′′ → IK′′ , we may assume that an open subset of K′′ can be realized as ((⃗a)) in the
above.
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By (7.3.46)

(7.3.48) N (⃗v1)
k ((λ a⃗,0, w⃗,1)) = ((λ a⃗,0, w⃗,kλ a⃗ · c2(⃗v1)+ k⃗v1 · w⃗+1))

as C1(⃗v1) = 0 for every v⃗1 ∈ Ri0 . Suppose that λ a⃗ · c2(⃗v1)+ v⃗1 · w⃗ ̸= 0. Then as k → ∞,
{N (k⃗v1)(((⃗a)))} converges to a point and as k → −∞, it converges to its antipode. The
limits form an antipodal pair of points in Cl(U). This contradicts the proper convexity of
Õ .

Hence, λ a⃗ · c2(⃗v1)+ w⃗ · v⃗1 = 0 holds for every v⃗1 ∈ Ri0 . We write ĉ2 as (n− i0)× i0-
matrix. Then w⃗T :=−λ ĉT

2 a⃗T . Let K̂ denote the image of

((⃗a)) 7→ ((λ a⃗,0, w⃗,0)) , w⃗T :=−λ ĉT
2 a⃗T ,((⃗a)) ∈ K′′.

Under ΠK , the compact convex set K̂ embeds onto a compact convex set K′′ of the same
dimension.

Since every point of K
′′o is a limit point of the orbit of a point of Ko under zi, under

giΓΓΓẼ,S∩Π
∗−1
K (NK ∩H), every point of K̂o is a limit point of a point of U . Hence, we obtain

K̂ ⊂ bdÕ by convexity by (7.3.47).
Also, N acts on K̂ by our discussion and hence on K̂. We choose the coordinates so

that K̂ corresponds to x1 = x2 = · · ·= xn−i0−1 = 0. Under this coordinate system,

(7.3.49) C1(⃗v) = 0,c2(⃗v) = 0 for every v⃗ ∈ Ri0 .

(D) Consider a sequence {gi} of elements gi ∈ ΓΓΓẼ,S with {Π∗
K(gi)(y)} converging to

x ∈ K′′. We claim that every limit point x′ of gi(u) for u ∈ U is in K̂: In our coordinates
as above (7.3.49), we have x′ = ((λ a⃗,0, w⃗,1)). (7.3.48) still holds, and since c2(⃗v1) = 0,
v⃗1 · w⃗ = 0 for every v⃗1 ∈ Ri0 . Thus, w⃗ = 0, and x′ ∈ K̂.

Since the set of such sequences are invariant under the conjugation by ΓΓΓẼ , it follows
that the set of accumulations points of such sequence of elements in K̂ is ΓΓΓẼ -invariant.
Since each point of K′′ can be an accumulation point of some sequence of elements in NK ,
it follows that K̂ is ΓΓΓẼ -invariant. This implies that K̂ is ⟨ΓΓΓẼ ,N ⟩-invariant.

We may assume in our chosen coordinates that

(7.3.50) C1(g) = c2(g) =C1(⃗v) = c2(⃗v) = 0 for every g ∈ ΓΓΓẼ , v⃗ ∈ Ri0 .

□

7.3.3. Strictly joined and quasi-joined ends for µ ≡ 1. We will now discuss joins
and their generalizations in-depth in this subsection. That is we will only consider when
µg = 1 for all g ∈ ΓΓΓẼ . We will use a hypothesis and later show that the hypothesis is true
in our cases to prove the main results. Again, we assume the hypothesis virtually since it
will be sufficient.

HYPOTHESIS 7.3.15 (µ ≡ 1). Let ΓΓΓẼ be a p-end holonomy group. We continue to
assume Hypothesis 7.3.4 for ΓΓΓẼ .

• Every g ∈ ΓΓΓẼ → Mg is so that Mg is in a fixed orthogonal group O(i0). Thus,
µg = 1 identically.

• ΓΓΓẼ acts on a subspace Si0
∞ containing vẼ and the properly convex domain K′′′ in

the subspace Sn−i0−2 forming an independent pair with Si0
∞ mapping homeomor-

phic to the factor K′′ of K = {k}∗K′′ under ΠK .
• N acts on these two subspaces fixing every point of Sn−i0−2.
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Let H be the closed n-hemisphere defined by xn−i0 ≥ 0. Then by the convexity of Σ̃Ẽ ,
we can choose H so that U ⊂ Ho, K′′′ ⊂ H and Si0

∞ ⊂ bdH. We identify Ho with an affine
space An. (See Section 1.1.6.)

By Hypothesis 7.3.15, elements of N have the form of (7.3.10) with

C1(⃗v) = 0,c2(⃗v) = 0 for all v⃗ ∈ Ri0 ,

and the elements of ΓΓΓẼ has the form of (7.3.37) with

s1(g) = 0,s2(g) = 0,C1(g) = 0, and c2(g) = 0.

Again we recall the projection ΠK : Sn −Si0
∞ → Sn−i0−1. ΓΓΓẼ has an induced action on

Sn−i0−1 and acts on a properly convex set K′′ in Sn−i0−1 so that K equals a strict join k∗K′′

for k corresponding to Si0+1. (Recall the projection Sn −Si0
∞ to Sn−i0−1. )

We recall the invariants from the form of (7.3.40).

ℵ7(g) :=
a7(g)

λvẼ
(g)

−
∣∣∣∣⃗vg
∣∣∣∣2

2

for every g ∈ ΓΓΓẼ . Recall

(7.3.51) ℵ7(gn) = nℵ7(g) and ℵ7(gh) = ℵ7(g)+ℵ7(h), whenever g,h,gh ∈ ΓΓΓẼ .

Under Hypothesis 7.3.15, Lemma 7.3.10 shows that every g ∈ ΓΓΓẼ is of form:

(7.3.52)



Sg 0 0 0

0 λg 0 0

0 λg⃗vT
g λgO5(g) 0

0 λg

(
ℵ7(g)+

||⃗vg||2
2

)
λg⃗vgO5(g) λg


,

and every element of N is of form

(7.3.53) N (⃗v) =


In−i0−1 0 0 0

0 1 0 0

0 v⃗T Ii0 0

0 ||⃗v||2
2 v⃗ 1

 .

We assumed µ ≡ 1. We define

(7.3.54) λk(g) := λvẼ
(g) for g ∈ ΓΓΓẼ .

We define λK′′(g) to be the maximal norm of the eigenvalue occurring for S(g). We define
ΓΓΓẼ,+ to be a subset of ΓΓΓẼ consisting of elements g so that the following hold:

• the largest norm λ Tr
max(g) of the eigenvalues occurs at the vertex k, i.e., λ1(g) =

λk(g), and
• all other norms of the eigenvalues occurring at K′′′ is strictly less than λvẼ

(g).

Then since µg = 1, we necessarily have λk(g)= a1(g)= a5(g)= λvẼ
(g) and hence λ Tr

max(g)=
λvẼ

(g) for g ∈ ΓΓΓẼ,+.
The second largest norm λ2(g) equals λK′′(g). Thus, ΓΓΓẼ,+ is a semigroup. The con-

dition that ℵ7(g) ≥ 0 for g ∈ ΓΓΓẼ,+ is said to be the nonnegative translation condition.
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Again, we define

µ7(g) :=
ℵ7(g)

log
λvẼ

(g)
λ2(g)

for g ∈ ΓΓΓẼ,+.

The condition

(7.3.55) µ7(g)>C0,g ∈ ΓΓΓẼ,+ for a uniform constant C0,C0 > 0

is called the uniform positive translation condition. (Heuristically, the condition means

that we don’t translate in the negative direction by too much for bounded
λvẼ

(g)
λ2(g)

.)

LEMMA 7.3.16. The condition ℵ7(g) ≥ 0 for g ∈ ΓΓΓẼ,+ is a necessary condition so
that ΓΓΓẼ acts on a properly convex domain.

PROOF. Suppose that ℵ7(g) < 0 for some g ∈ ΓΓΓẼ,+. Let k′ ∈ Ko. Now, we use
(7.3.12) and see that {gn(Uk′)} converges geometrically to an (i0 + 1)-dimensional hemi-
sphere since {ℵ7(gn)} → −∞ as n → ∞ implies that g translates the affine subspace Ho

k′
a component to Ho

gn(k′) toward ((−1,0, . . . ,0)) in the above coordinate system by (7.3.52).
Thus, ΓΓΓẼ cannot act on a properly convex domain. (See Remark 7.3.13 also.) □

From the matrix equation (7.3.52), we define v⃗g for every g ∈ ⟨ΓΓΓẼ ,N ⟩. (We just need
to do this under a single coordinate system. )

LEMMA 7.3.17. Given ΓΓΓẼ satisfying Hypotheses 7.3.4 and 7.3.15, let γm be any se-
quence of elements of ΓΓΓẼ,+ so that {λk(γm)/λK′′(γm)} → ∞. Then we can replace it by
another sequence {g−1

m γm} for gm ∈ ΓΓΓẼ so that∣∣∣∣∣∣⃗vg−1
m γm

∣∣∣∣∣∣ and Π
∗
K(gm) ∈ Aut(K)

are uniformly bounded, and {
λk(g−1

m γm)

λK′′(g−1
m γm)

}
→ ∞.

PROOF. Denote v⃗m := v⃗γm . Suppose that NK is discrete. Then since its action on the
interior of K is properly discontinous, we have an orbifold bundle bdU/ΓΓΓẼ →Ko/NK . This
means that the subgroup ΓΓΓẼ,lof ΓΓΓẼ acting on a complete affine leaf l acts cocompactly on
l giving us the fibers. Since the stabilizer of NK on each point of Ko is finite, ΓΓΓẼ ∩kerΠ∗

K
acts on l cocompactly. The action of N Ô(i0) is proper on each leaf. Hence, ΓΓΓẼ ∩N Ô(i0)
is a lattice in N Ô(i0). By cocompactness of ΓΓΓẼ ∩N Ô(i0) in N Ô(i0), we can multiply
γm by g−1

m for an element gm of ΓΓΓẼ ∩N Ô(i0) nearest to N (⃗vm). The result follows since
the action on Sn−1

vẼ
is given by only v⃗g and Sg for g ∈ ΓΓΓẼ as we can see from (7.3.52). The

last convergence follows since S(gm) = In−i0 and the matrix multiplication form of g−1
m γm

considering the top left (n− i0)×(n− i0)-submatrix and the bottom right (i0+2)×(i0+2)-
submatrix.

We now assume that NK is non-discrete. Σ̃Ẽ has a compact fundamental domain F .
Thus, given v⃗m, for x ∈ F ,

N (⃗vm)(x) ∈ gm(F) for some gm ∈ ΓΓΓẼ .

Then g−1
m N (⃗vm)(x) ∈ F . Since

gm(y) = N (⃗vm)(x) ∈ gm(F) for y ∈ F and x ∈ F,
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it follows that

(7.3.56) dK

(
ΠK(y),Π∗

K(gm)(ΠK(y)) = ΠK(x)
)
<CF

for a constant CF depending on F .
(i) gm is of form of matrix (7.3.52)

(ii) Sgm is in a bounded neighborhood of I by above (7.3.56) since Ŝgm moves a point
of a compact set F to a uniformly bounded set. (This follows by considering the
Hilbert metric.)

From the linear block form of g−1
m N (⃗vm) and the fact that g−1

m N (⃗vm)(x) ∈ F , we obtain
that the corresponding v⃗g−1

m N (⃗vm)
can be made uniformly bounded independent of v⃗m.

For element γm above, we take its vector v⃗γm and find our gm for N (⃗vγm). We obtain
γ ′m := g−1

m γm. Then the corresponding v⃗g−1
m γm

is uniformly bounded as we can see from

the block multiplications and the action on Σ̃Ẽ in Sn−1
Ẽ . The final part follows from (ii)

and the fact that {λk(γm)/λK′′(γm)} → ∞ and the matrix multiplication form of g−1
m γm.

considering the top left (n− i0)×(n− i0)-submatrix and the bottom right (i0+2)×(i0+2)-
submatrix. □

LEMMA 7.3.18. Suppose that the holonomy group of O is strongly irreducible. Given
ΓΓΓẼ satisfying Hypotheses 7.3.4 and 7.3.15. let U be the properly convex p-end neighbor-
hood of Ẽ. Let Hk be the i0 + 1-hemisphere mapping to the vertex k of Hypothesis 7.3.15
under ΠK . Then the interior of Cl(U)∩Hk is not an open domain B with bdB ∋ vẼ .

PROOF. Since N acts on Hk, it acts on B also. The matrix form of N is given by
the coordinates where Hk is the projectivization of the span of en−k, . . . ,en+1 as we can see
from (7.3.28) in the proof of Lemma 7.3.9. Hence, B is an ellipsoid as we can see from the
form of N in (7.3.53). First of all,

(7.3.57) ℵ7(h) = 0 for all h ∈ ΓΓΓẼ

by Lemma 7.3.16 since otherwise by (7.3.52)

{γ
i(B)}→ Hk as i → ∞ or −∞ for γ with ℵ7(γ) ̸= 0.

Since Σ̃Ẽ/ΓΓΓẼ is compact, we have a sequence γi ∈ ΓΓΓẼ,+ where{
λvẼ

(γi)

λ2(γi)

}
→ ∞,ℵ7(γi) = 0, and {γi|K′′} are uniformly bounded.

Now modify γi to g−1
i γi by Lemma 7.3.17 for gi obtained there. Hence, rewriting γi as the

modified one, we have{
λvẼ

(γi)

λ2(γi)

}
→ ∞,ℵ7(γi) = 0, v⃗γi and γi|K′′ is uniformly bounded.

Recall that K is a strict join K′′ ∗ {k} for a properly convex domain K′′ ⊂ bdÕ of
dimension n− i0 −2 and a vertex k. Denote by S(K′′) and S(H) the subspaces spanned by
K′ and Hk forming a pair of complementary subspaces in Sn.

From the form of the lower-right (i0 + 2)× (i0 + 2)-matrix of the above matrix, hi
must act on the horosphere H ⊂ S(Hk). N also act transitively on Hk. Hence, for any such
matrix we can find an element of N so that the product is in the orthogonal group acting
on Hk.

Now, this is the final part of the proof: Let Hmax denote S(Hk)∩Cl(Õ) and K′′
max the

set S(K′′)∩Cl(Õ). Since {⃗vγm} is bounded and ℵ7(γm) = 0, we have the sequence {γm}
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• acting on K′′
max is uniformly bounded and

• γm acting on Hmax in a uniformly bounded manner as m → ∞.
By Proposition 1.4.19 for l = 2 case, Cl(Õ) equals the join of Hmax and K′′

max. This implies
that ΓΓΓ is virtually reducible by Proposition 1.4.18, contradicting the premise of the lemma.

□

For this proposition, we do not assume NK is discrete. The assumptions below are just
Hypotheses 7.3.4 and 7.3.15. Also, we don’t need the assumption of the proper convexity
of O .

PROPOSITION 7.3.19 (Quasi-joins). Let ΣẼ be the end orbifold of an NPNC R-end
Ẽ of a strongly tame convex n-orbifold O . Let ΓΓΓẼ be the p-end holonomy group. Let Ẽ
be an NPNC R-p-end and ΓΓΓẼ and N acts on a p-end-neighborhood U fixing vẼ . Let
K,K′′,K′′′,Si0

∞, and Si0+1 be as in Hypotheses (7.3.4) and (7.3.15). We assume that Ko/ΓΓΓẼ
is compact, K = K′′ ∗{k} in Sn−i0−1 with a point k corresponding to Si0+1 under the pro-
jection ΠK . Assume that

• ΓΓΓẼ satisfies the transverse weak middle-eigenvalue condition with respect to vẼ .
• ΓΓΓẼ acts on K′′′ and k.
• µg = 1 for all g ∈ ΓΓΓẼ .
• Elements of ΓΓΓẼ and N are of form (7.3.28) and (7.3.29). with

C1(⃗v) = 0,c2(⃗v) = 0,C1(g) = 0,c2(g) = 0

for every v⃗ ∈ Ri0 and g ∈ ΓΓΓẼ .
• ΓΓΓẼ normalizes N , and N acts on U and each leaf of FẼ of Σ̃Ẽ .

Then the following hold:
(i) The uniform positive translation condition is equivalent to the existence of a

properly convex p-end-neighborhood U ′ whose closure meets Si0+1
k at vẼ only.

This condition furthermore is equivalent to Ẽ being quasi-joined p-end.
(ii) ℵ7 is identically zero if and only if C H (U) is the interior of the join K′′′ ∗B for

an open ball B in Si0+1
k , and C H (U) is properly convex.

(iii) Suppose that Ẽ is a quasi-joined p-end. Then a properly convex p-end neighbor-
hood U ′ is radially foliated by line segments from vẼ , and bdU ′ ∩ Õ is strictly
convex with limit points only in K′′′ ∗{vẼ}.

(iv) Cl(U ′)∩bdAn = K′′′ ∗{vẼ}.

PROOF. (A) We will first find some coordinate system and describe the action of ΓΓΓẼ
on it.

Let H be the unique n-hemisphere containing segments in directions of Σ̃Ẽ from vẼ
where ∂H contains Si0

∞ and K′′′ in general position by Hypothesis 7.3.15. Then Ho is an
affine subspace to be also denoted by An containing U . Since ΓΓΓẼ and N act on K′′′ and
Si0

∞ , ΓΓΓẼ and N act as an affine transformation group onAn.
Let Hl denote the hemisphere with boundary Si0

∞ and corresponding to a leaf l of the
foliation on Σ̃Ẽ . Recall that Ko denote the leaf space. Let An be the affine space whose
boundary contains Si0

∞ and a leaf l is the i0 +1-dimensional affine subspace with transverse
affine space of dimension n− (i0 + 1) meeting it at a point, considered as the origin. We
may further require from vẼ the space of directions toAn contains those to U . Furthermore,
the projection to the affine space of dimension n− i0 −1 with kernel vector space parallel
to l, we obtain an affine space An−i0−1 with an origin. The image of the projection of
leaves is projectively diffeomorphic to Ko. We can consider Ko as a cone from the origin
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inAn−i0−1. The directions of the cone is isomorphic to K
′′o. We may regard K′′′ as a subset

of the ideal boundary ofAn−i0−1. Hence, we projectively identify⋃
l∈Ko

Ho
l = Ko ×Ri0+1 ⊂An.

(It might be helpful to see Figure 1 where we convert the coordinates so that (0,0,0), S1
∞,

and K̂ are now in bdAn.)
There exists a family of affine subspaces in An parallel to An−i0−1. Also, there is a

transverse family of affine spaces forming a foliation V i0+1 where each leaf is the complete
affine space parallel to Ai0+1. We denote it by {(⃗x1,1)}×Ri0+1 for x⃗1 ∈ Rn−i0−1. The
affine coodinates are given by (⃗x1,1, x⃗2,xn+1) where 1 is at the n− i0th position, x⃗1 is an
n− i0 −1-vector and x⃗2 is an i0-vector.

Now we describe Ho
l ∩U for each l ∈ Ko. We use the affine coordinate system on

An so that Ho
l are parallel affine i0 + 1-dimensional spaces with origins in An−i0−1. We

use the parallel affine coordinates. According to the matrix form (7.3.53), N acts on each
x×Ri0+1, x ∈ K̂o.

We denote each point in Ho
l by (x̃,xn+1) where x̃ is a point ofAi0 . Each of El :=Hl ∩U

is given by

(7.3.58) xn+1 > ||⃗x2||2 /2+Cl ,Cl ∈ R

since N acts on each where Cl is a constant depending on l and U by (7.3.40). (The vertex
vẼ corresponds to the ideal point in the positive infinity in terms of the xn+1-coordinate.
See Section 7.3.1.1.)

There is a family of quadrics of form Ql,C defined by xn+1 = ||⃗x2||2 /2+C for each
C ∈ R on each leaf l of Vi0+1 using the affine coordinate system. The family form a
foliation Ql for each l.

Now we describe ΓΓΓẼ -action. Since µg = 1 for all g ∈ ΓΓΓẼ , it follows that λvẼ
= λk by

definition (7.3.54). Given a point x = ((⃗v)) ∈U ′ ⊂ Sn where v⃗ = v⃗s + v⃗h where v⃗s is in the
direction of S(K′′′) and v⃗h is in one of Si0+1

k . If g ∈ ΓΓΓẼ,+, then we obtain

(7.3.59) g((⃗v)) = ((g⃗vs + g⃗vh)) where ((g⃗vs)) ∈ K′′′ and ((g⃗vh)) ∈ Hk.

Let Πi0 : U → Ri0+1 be the projection to the last i0 + 1 coordinates xn−i0 , . . . ,xn. We
obtain a commutative diagram and an affine map Lg induced from g

Ho
l

g−→ g(Ho
l )

Πi0 ↓ Πi0 ↓

Ri0+1 Lg−→ Ri0+1.(7.3.60)

By (7.3.40), Lg preserves the family of quadrics Ql to Qg(l) since N acts on the quadrics
U ∩Ho

l for each l and g normalizes N by Hypothesis 7.3.4. Also, Lg is an affine map since
Lg is a projective map sending a complete affine subspace Ho

l to a complete affine subspace
g(Ho

l ). Finally, by (7.3.40), g sends the family of quadrics shifted in the xn+1-direction by
ℵ7(g) from l to g(l) using the coordinates (⃗x,xn+1) for x⃗ ∈ Ri0 . That is,

(7.3.61) g : Ql,C 7→ Qg(l),C+ℵ7(g).

(B) Now we give proofs. By assumption, ΓΓΓẼ acts on K = K′′ ∗{k}. Choose an element
η ∈ ΓΓΓẼ,+ by Proposition 1.4.10 so that λ Tr

max(η) > λ2(η) where λ1(η) corresponds to a
vertex k and λ2(η) is associated with K′′′, and let F be the fundamental domain in the
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convex open cone Ko with respect to ⟨η⟩, which is a bounded domain in An−i0−1. This
corresponds to a radial subset from vẼ bounded away at a distance from K′′′ in U .

(i) This long proof will be devided as follows.
(i-a): Forward part: We show U has a convex hull that is properly convex.

(i-a-1): We show that the forward images of the fundamental domain of U
under ⟨η⟩ is contained in Ko ×σ ′,o for some simplex σ ′.

(i-a-2): Next, we will try to show that the backward images the fundamental
domain under ⟨η⟩ is eventually in any neighborhood of K′′′ ∗{vẼ}.

(i-a-3): Finally, we will show that the convex hull of U is in a properly convex
domain.

(i-b): Converse part: We prove the uniform positive translation condition under the
assumption.

(i-a) (i-a-1) Let λK′′′(g) denote the maximal eigenvalue associated with K′′′ for g ∈ ΓΓΓẼ .
Choose x0 ∈ F . Let ΓΓΓẼ,F := {g ∈ ΓΓΓẼ |g(x0) ∈ F}. For g ∈ ΓΓΓẼ,F ,

(7.3.62) −CF < log
λvẼ

(g)
λK′′′(g)

<CF

for a uniform CF > 0 a number depending of F only: Otherwise, we can find
• a sequence gi with gi(x0) ∈ F such that {λk(gi)/λK′′′(gi)}→ 0 or
• another sequence g′i with g′i(x0) ∈ F such that {λk(g′i)/λK′′′(g′i)}→ ∞.

However, in the first case, let x̃0 ∈ U be a point mapping to x0 under ΠK . Then {gi(x̃0)}
accumulates only to points of K′′′ by Proposition 1.3.2, which is absurd. The second case
is also absurd by taking {g−1

i (x0)} instead.
Therefore, given g ∈ ΓΓΓẼ,F , we can find a number i0 ∈ Z dependent only on F and

g such that η i0g ∈ ΓΓΓẼ,+ since log λk(η)
λK′′′ (η) is a constant bigger than 1. Now, ℵ7(η

i0g) is
bounded below by some negative number by the uniform positive eigenvalue condition

(7.3.55) and the fact that
∣∣∣∣log

λvẼ
(η i0 g)

λK′′′ (η i0 g)

∣∣∣∣ is also uniformly bounded. Since ℵ7(η
i0g) =

i0ℵ7(η)+ℵ7(g), we obtain

(7.3.63) {ℵ7(g)|g ∈ ΓΓΓẼ,F}>C

for a constant C by (7.3.55). F is covered by
⋃

g∈ΓΓΓẼ,F
g(J) for a compact fundamental

domain J of Ko by NK .
We will be using a fixed affine coordinate system on Ho

k′ parallel under the translations
preserving An−i0−1. In the above affine coordinates for k′ ∈ F of (7.3.60), the matrix
form of (7.3.52) shows that g ∈ ΓΓΓẼ send paraboloids in affine subspaces Ho

k′ for k′ ∈ Ko to
paraboloids in Ho

g(k′) for g ∈ ΓΓΓẼ . (See Section 7.3.1.1.) Now,

(7.3.64) xn(Ho
k′ ∩U)>C

for a uniform constant C ∈R by (7.3.63) and the fact that Ho
k′ is the image of Ho

k′′ for k′′ ∈ J
by an element g ∈ ΓΓΓẼ . (See Remark 7.3.13.)

Since by (7.3.64), ⋃
k′∈J

⋃
g′∈ΓΓΓẼ,F

g(Ho
k′ ∩U)

is a lower-xn-bounded set, its convex hull DF as a lower-xn-bounded subset of Ko×Ai0+1 ⊂
An. Each region DF ∩Hl′ is contained an (i0 + 1)-dimensional simplex σ0 with a face in
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the boundary of Hl′ . Since there is a lower xn-bound, we may use one σ0 and translations
to contain every U ∩Hl′ in DF .

Therefore, the convex hull DF in Cl(Õ) is a properly convex set contained in a properly
convex set F ×σ0.

On K′′′, the sequence of norms of eigenvalues of η i converges to 0 as i → ∞ and the
eigenvalue λvẼ

at Si0+1
k goes to +∞. Since

(7.3.65) ℵ7(η
i) = iℵ7(η)→+∞ as i → ∞,

we obtain that
{η

i(DF)}→ {vẼ} for i → ∞

geometrically, i.e., under the Hausdorff metric dH by (7.3.59). Again, for a sufficiently
large integer I, because of the lower bound on the xn-coordinates, we obtain

(7.3.66)
⋃
i≥I

η
i(DF)⊂ Ko ×σ0,

which is our first main result of this proof of the forward part of (i).
(i-a-2) For each k′=((⃗x1,1))∈Ko, we can find a point in Π

−1
K (k′) of form

((⃗
x1,1,⃗0,Ck′

))
in bdU ∩An for 0⃗ a zero vector in Ri0 and Ck′ ∈ R. Using the N -action, we can parame-
terize bdU ∩An starting from the point

((⃗
x1,1,⃗0,Ck′

))
. The N -orbit of this point is given

by

(7.3.67)
((⃗

x1,1, v⃗, ||⃗v||2 /2+Ck′
))

, v⃗ ∈ Ri0 .

Let

pi :=
((⃗

x1(pi),1, v⃗(pi), ||⃗v(pi)||2 /2+Ck′(pi)

))
.

We form a sequence {pi} of points on ∂U for k′(pi) = ((⃗x1(pi),1)). Consider η i in the form
(7.3.52). Since

⋃
i∈Z η i(F) covers Ko, for each pi there is an integer ji for which η ji(F)

containing ((⃗x1(pi),1)). Suppose that ji → ∞ as i → ∞. From considerations of η ji , we
deduce that

(7.3.68)
{

C((⃗x1(pi),1))
}
→+∞ as ||⃗x1(pi)|| → 0

by (7.3.65).
Similarly, suppose that ji →−∞ as i → ∞. We deduce that

(7.3.69)
{

C((⃗x1(pi),1))

||⃗x1(pi)||

}
→ 0 as ||⃗x1(pi)|| → ∞

since ℵ7(η
ji) = jiℵ7(η) → −∞ in a linear manner, and every sequence of ||⃗x1(pi)||-

coordinates of points of η ji(F) grows uniformly exponentially as ji →−∞.
We will now try to find all limit points of {pi}:

• Suppose first that ||⃗x1(pi)|| → ∞ and ||⃗x1(pi)||
||⃗v(pi)||2

→ ∞. We obtain that{((⃗
x1(pi),1, v⃗(pi), ||⃗v(pi)||2 /2+Ck′(pi)

))}
, v⃗(pi) ∈ Ri0

has only limit points of form ((⃗u,0,0,0)) for a unit vector u⃗ in the direction of K′′

by (7.3.69). Hence, the limit is in K′′′.
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• Suppose that we have ||⃗x1(pi)|| → +∞ with ||⃗v(pi)||2 → +∞ with their ratios
bounded between two real numbers. Then a limit point is of form ((⃗u,0,0,C))
for some C > 0 and a vector u⃗ in the direction a point of K′′′ by (7.3.69). Also,
every direction of K′′ occurs as a direction of u⃗ for a limit point by taking a
sequence {pi} so that {⃗x1(pi)} converges to u⃗ in directions. Hence, the limits
are in K′′′ ∗{vẼ}.

• Suppose that ||⃗x1(pi)|| → +∞ with ||⃗v(pi)||2 → +∞ and ||⃗x1(pi)||
||⃗v(pi)||2

→ 0. Then the

only limit point is
((⃗

0,0,0,1
))

since the last term dominates others.

• Suppose that 1/C′ ≤ ||⃗x1(pi)|| ≤ C′ for a constant C′. If ||⃗v(pi)|| is uniformly
bounded, then (7.3.64) shows that limit points in bdU . If ||⃗v(pi)|| → ∞, the only
limit point is ((0,0,0,1)).

• Suppose that ||⃗x1(pi)|| → 0. Then the limit is ((0,0,0,1)) by (7.3.68).

These gives all the limit points of U in bdAn as we can easily deduce. Therefore,

(7.3.70) Cl(U)∩bdAn ⊂ K′′′ ∗{vẼ}

by Theorem 1.5.12.
This also shows η i(DF) geometrically converges to K′′′ ∗{vẼ} as i →−∞: First, the

above three items show that for every ε > 0, there exists i0 so that η i(DF) ⊂ Nε(K′′′ ∗
{vẼ}) for i > i0. Finally, since ΠK(η

i(DF)) geometrically converges to K′′, and we can
find a sequence as in the first item converging to any point of K′′′, the geometric limit is
K′′′ ∗{vẼ}. A bit unclear

For every ε > 0, there exists an integer I so that⋃
i<I

η
i(DF)⊂ Nε(K′′′ ∗vẼ)∩Cl(An).

(i-a-3) Thus, except for finitely many i,

η
i(DF)⊂ (Nε(K′′′ ∗vẼ)∩Cl(An))∪K ×σ0 ⊂ Cl(An).

We use the Fubini-Study metric d on Sn where the subspaces spanned and K and
{k}×Ri0 are all orthogonal to each other.

Assume ε < π/8. Let p denote the vertex of the simplex {k}×σ0. We may assume
without loss of generality that p = k×O. Then we may assume that Nε(K′′′ ∗vẼ)∩Cl(An)
is in K̂ ∗ {k} where K̂ is a properly compact (n − 1)-ball containing K′′′ ∗ {vẼ} and is
contained its 2ε-d-neighborhood. σ∞ := σ0 ∩ bdAn is an i0-simplex containing vẼ . The
join σ∞ ∗K′′′ is properly convex since σ∞ and K′′′ are properly convex sets in independent
subspaces. The join σ∞ ∗ K̂ is contained in a 2ε-d-neighborhood of σ∞ ∗K′′′ = σk ∗K′′′ ∗
{vẼ}. Hence, for a choice of ε , σk ∗ K̂ is properly convex. Since {k}×σ0 = σ∞ ∗{p}, we
obtain that σ0 ∗K′′′ is also properly convex. Hence, σ0 × K̂ is also properly convex for a
sufficiently small ε . Thus, for a finite set L, the convex hull U1 of

⋃
i∈Z−L η i(DF) in An is

properly convex.
The convex hull of U1 and UL :=

⋃
i∈L η i(DF) is still properly convex: Suppose not.

Then there exists an antipodal pair in

Cl(C H (U1 ∪UL)) = C H (Cl(U1)∪Cl(UL)).

The antipodal pair must be in bdAn since the interior ofAn has no antipodal pair. However,
since Cl(U1)∩bdAn is a properly convex set K′′′ ∗{vẼ} and Cl(UL)∩bdAn is {vẼ}. This
is a contradiction.
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Let U ′ denote the convex hull of U1 ∪UL inAn. Hence, we showed that U ′ is properly
convex.

(i-b) Now we prove the converse part of (i). Suppose that ΓΓΓẼ acts on a properly convex
p-end-neighborhood U ′.

By Lemma 7.3.16, we have ℵ7(g)≥ 0 for g ∈ ΓΓΓẼ,+. Suppose that ℵ7(g) = 0 for some
g ∈ ΓΓΓẼ,+. Then

{gi(Cl(U)∩Hl)}→ B as i → ∞ under dH

for a leaf l and a compact domain B at Hk bounded by an ellipsoid. This contradicts the
premise of (i). Therefore,

(7.3.71) µ7(h)> 0 for every h ∈ ΓΓΓẼ,+.

Suppose that {µ7(gi)}→ 0 for a sequence gi ∈ ΓΓΓẼ,+. We can assume that

λ
Tr
max(gi)/λ2(gi)> 1+ ε for a positive constant ε > 0

since we can take powers of gi not changing µ7.
Since {µ7(gi)}→ 0, we obtain a nondecreasing sequence {ni}, ni > 0, so that

{ℵ7(g
ni
i ) = niℵ7(gi)}→ 0 and {λ

Tr
max(g

ni
i )/λ2(g

ni
i )}→ ∞.

However, from such a sequence, we use (7.3.40) to shows that

{gni
i (Cl(U)∩Hl)}→ B

to a ball B with a nonempty interior in Hk. Again the premise contradicts this. Hence
µ7(g)>C for all g ∈ ΓΓΓẼ,+ and a uniform constant C > 0. This proves the converse part of
(i).

(ii) Suppose that ℵ7 is identically zero for ΓΓΓẼ,+. Then by (7.3.71) in the proof of (i),

{gi(Cl(U)∩Hl)}→ B as i → ∞ under dH

for a leaf l and a compact domain B at Hk bounded by an ellipsoid. Choose B̂ the maximal
domain of form B as arising from the situation. Then we may show that C H (U) =
(K′′′ ∗ B̂)o by Proposition 1.4.19 since we can find a sequence gi so that gi|K′′′ is bounded
and {λK′′′(g)/λk(g)} → ∞ since (K′′ ∗ k)o/ΓΓΓẼ is compact. Also, (K′′′ ∗ B̂)o is properly
convex.

Conversely, we have ℵ7 ≥ 0 by Lemma 7.3.16. By premise C H (U) = (K′′′ ∗B)o

where B is a convex open ball in a hemisphere Hk in Si0
k . Since N acts on C H (U),

B bounded by an ellipsoid. If ℵ7(g) > 0 for some g, Then g acts on B so that g(B) is
a translated image of the region B bounded by a paraboloid in the affine subspace Ho

k .
We obtain

⋃
∞
k=1 g−k(B) = Ho

k . This contradicts the proper convexity, and hence ℵ7 is
identically 0.

(iii) Since Õ is convex, we can find a radial p-end neighborhood U of Ẽ. Let p be a
point of U . Then the orbit of p has limit points only in K′′′ ∗{vẼ} in (i-b). Then we take the
convex hull U ′ of

⋃
ΓΓΓẼ(pvẼ). Since this is a convex set, it is a radial p-end neighborhood

of Ẽ. bdU ′ is the boundary of a properly convex domain Cl(U ′), and hence is the union of
(n−1)-dimensional compact convex domains.

The boundary bdU ′ ∩ Õ is a union of compact simplices since it contains no straight
segment ending at a point of K′′′ ∗{vẼ}. Hence, bdU ′ is a polyhedral hypersurface.

Since Rp(Õ) = Σ̃Ẽ is identical with Rp(U ′) by Lemma 3.1.5,
Again, sharply supporting hyperspaces of bdU ′ ∩An at a fundamental domain under

ΓΓΓẼ is a compact set. Since bdU ′∩An does not contain segment ending in bdAn, there are
no sequence of supporting hyperplanes at a point qi where qi forms an unbounded sequence
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and meeting a fixed neighborhood of a point p in bdU ′∩An. Hence, Lemma 4.4.6 implies
that we can choose a properly convex open p-end neighborhood U ′ of Ẽ so that bdU ′∩An

is strictly convex.
(iv) We have Cl(U ′)∩bdAn ⊂K′′′∗{vẼ} since U ′ is a p-end neighborhood and we can

apply the same argument as U . Since every g ∈ ΓΓΓẼ is of form (7.3.52), the action of ΓΓΓẼ on
Ko is sweeping, the action of ΓΓΓẼ is sweeping on K′′′ ∗{vẼ} as well while the matrix forms
of elements restricted to the subspaces containing K and the second one are the same.

From (A), we see that U ′ ⊂ K ×An−i0+1 since U ′ is the convex hull of U . Consider
the projection K → K′′′ from the vertex k of K. Consider (7.1.1), and recall that U ′ is an
orbifold-bundle over ΣẼ with fibers that are radial rays. We see that there is a projection
U ′ → K′′′ that is equivariant with respect to ΓΓΓẼ -action since ΓΓΓẼ acts on K fixing the vertex
k. Since U ′ is open, it contains a generic point projecting to a point of Ko.

Let NK denote the image group of the action of ΓΓΓẼ on Ki. Since ΓΓΓẼ has a compact
fundamental domain J in ΣẼ . By taking the image of J under the projections, we see
that there are compact subsets J′ of Ko and J′′′ of K

′′′,o mapping onto Ko/NK and onto
K

′′′,o/NK respectively. We may assume that J′′′ is the image of J′ under the projection from
k. By taking a ray from k with an endpoint at J′′′, and taking a sequence of points pi on it
conveing to p in J′′′. We find gi ∈ NK so that gi(pi) ∈ J′. This means that gi(p) ∈ J′′′ for
all p. Since K′′′ is properly convex with a Hilbert metric, gi|K′′′ is bounded by Proposition
1.1.14 and we can extract a convergent sequence. Hence assume that gi|K′′′ → g∞. We may
assume that gi|K′′ is convergent. Let g′i ∈ ΓΓΓẼ be the one going to gi, Here, we can see that
λvẼ

(g′i)→ 0. Therefore, a generaic point of K′′′ is in the image of U under the sequence of
image of g′i for a point of U . This point can be an interior point of K′′′.

Since Cl(U ′)∩An is convex and ΓΓΓẼ -invariant, it contains an interior point of K′′′. By
Proposition 3 of [151], the convex hull of any orbit of a point in K

′′′,o equals K
′′′,o. We

conclude that Cl(U ′)∩An = K′′′ ∗{vẼ}.
□

DEFINITION 7.3.20.

• Generalizing Example 7.3.1, an R-p-end Ẽ satisfying the case (ii) of Proposition
7.3.19 is a strictly joined R-p-end (of a totally geodesic R-end and a horospheri-
cal end) and ΓΓΓẼ now is called a strictly joined end group. Also, any end finitely
covered by a strcitly joined R-end is called a strictly joined R-end.

• An R-p-end Ẽ satisfying the case (i) of Proposition 7.3.19, is a quasi-joined R-
p-end (of a totally geodesic R-end and a horospherical end) corresponding to
Definition 7.1.2 and ΓΓΓẼ now is a quasi-joined end holonomy group.

Also, any p-end Ẽ with ΓΓΓẼ is a finite-index subgroup of ΓΓΓẼ as above is called by the
corresponding names.

7.3.3.1. The non-existence of strictly joined cases for µ ≡ 1.

COROLLARY 7.3.21. Let ΣẼ be the end orbifold of an NPNC R-p-end Ẽ of a strongly
tame properly convex n-orbifold O with radial or totally geodesic ends. Assume that the
holonomy group of O is strongly irreducible. Let ΓΓΓẼ be the p-end holonomy group. Assume
Hypotheses 7.3.4 only and µg = 1 for all g ∈ ΓΓΓẼ . Then Ẽ is not a strictly joined end.
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PROOF. Suppose that Ẽ is a strictly joined end. By premise, µg = 1 for all g ∈ ΓΓΓẼ .
By Lemma 7.3.9 and Proposition 7.3.14, every g ∈ ΓΓΓẼ is of form:

(7.3.72)



Sg 0 0 0

0 λg 0 0

0 λg⃗vT
g λgO5(g) 0

0 λg

(
ℵ7(g)+

||⃗vg||2
2

)
λg⃗vgO5(g) λg


As in the proof of
By Proposition 7.3.14, we obtain a sequence γm of form from the step (D) of the proof:

(7.3.73)


δmSm 0 0 0

0 λm 0 0

0 λmv⃗T
m λmO5(γm) 0

0 λm

(
ℵ7(γm)+

||⃗vm||2
2

)
λmv⃗mO5(γm) λm


as C1,m = 0 and c2,m = 0 where

• {λm}→ ∞,
• {δm}→ 0,
• {Sm} is in a sequence of bounded matrices in SL±(n− i0 −1), and
• ℵ7(γm) = 0 by Proposition 7.3.19 (ii).

Moreover, Hypothesis 7.3.15 now holds. By Lemma 7.3.18, we obtain a contradiction. □

7.3.4. The proof for discrete NK . Now, we go to proving Theorem 7.1.4 when NK
is discrete. By taking a finite-index torsion-free subgroup if necessary by Theorem 1.1.19,
we may assume that NK acts freely on Ko. We have a corresponding orbifold fibration

l/N → Σ̃Ẽ/ΓΓΓẼ

↓
Ko/NK(7.3.74)

where the fiber and the quotients are compact orbifolds since ΣẼ is compact. Here the fiber
equals l/N for generic l. The action of NK on K is semisimple by Theorem 3 of Vey [151].

Since N acts on each leaf l of FẼ in Σ̃Ẽ , it also acts on a properly convex domain Õ

and vẼ in a subspace Si0+1
l in Sn corresponding to l. l/N ×R is an open real projective

orbifold diffeomorphic to (H i0+1
l ∩ Õ)/N for an open hemisphere H i0+1

l corresponding to
l. Since elements of N restricts to I on K, we obtain

λ
Tr
max(g) = λ

Tr
min(g) for all g ∈ N :

Otherwise, we see easily g acts not trivially on Sn−i0−1. By Proposition 7.2.3, all the norms
of eigenvalues are 1. Let Pl denote the smallest subspace containing vẼ in the direction of
l in Σ̃Ẽ .

• Since l is a complete affine subspace, Lemma 3.1.15 applied to Pl ∩ Õ/N shows
that l covers a horospherical end of (Si0+1

l ∩ Õ)/N.
• By Lemma 3.1.15 applied to Pl ∩Õ/N, N is virtually unipotent, and N is virtually

a cocompact subgroup of a unipotent group and N|Si0+1
l can be conjugated into
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a maximal parabolic subgroup of SO(i0 + 1,1) in Aut(Si0+1
l ) and acting on an

ellipsoid of dimension i0 in H i0+1
l .

We verify Hypothesis 7.3.4.
By the nilpotent Lie group theory of Malcev [123], the Zariski closure Z (N) of N

is a virtually simply connected nilpotent Lie group with finitely many components and
Z (N)/N is compact. Let N denote the identity component of the Zariski closure of N
so that N /(N ∩N) is compact. N ∩N acts on the great sphere Si0+1

l containing vẼ and
corresponding to l. Since N /(N ∩N) is compact, we can modify U so that N acts on U
by Lemma 3.1.8: i.e., we take the interior of

⋂
g∈N g(U) =

⋂
g∈F g(U) for the fundamental

domain F of N by N.
Since ΓΓΓẼ normalizes N, it also normalizes the identity component N .
By above, N |Si0+1

l is conjugate into a parabolic subgroup of SO(i0+1,1) in Aut(Si0+1
l ),

and N acts on U ∩Si0+1
l , which is a horoball for each leaf l of Σ̃Ẽ .

By taking a finite-index cover of U , we can assume that N ⊂N since Z (N) is a finite
extension of N . We denote the finite index group by ΓΓΓẼ again.

Since Si0+1
l corresponds to a coordinate i0 + 2-subspace, and Si0

∞ and {vẼ} are ΓΓΓẼ -
invariant, we can choose coordinates so that (7.3.8) and (7.3.10) hold. Hence, Hypothesis
7.3.4 holds.

THEOREM 7.3.22. Let ΣẼ be the end orbifold of an NPNC R-p-end Ẽ of a strongly
tame properly convex n-orbifold O with radial or totally geodesic ends. Assume that the
holonomy group of π1(O) is strongly irreducible. Let ΓΓΓẼ be the p-end holonomy group
satisfying the transverse weak middle-eigenvalue condition with respect to R-p-end struc-
ture. Assume also that NK is discrete, and Ko/NK is compact and Hausdorff. Then Ẽ is a
quasi-join of a totally geodesic R-end and a cusp R-end.

PROOF. By Lemma 7.3.7, h(g)N (⃗v)h(g)−1 = N (⃗vMg) where Mg is a scalar multi-
plied by an element of a copy of an orthogonal group O(i0).

The group N is isomorphic to Ri0 as a Lie group. Since N ⊂ N is a discrete co-
compact, N is virtually isomorphic to Zi0 . Without loss of generality, we assume that N is
a cocompact subgroup of N . By normality of N in ΓΓΓẼ , we obtain h(g)Nh(g)−1 = N for
g ∈ ΓΓΓẼ . Since N corresponds to a lattice L ⊂ Ri0 by the map N , the conjugation by h(g)
corresponds to an isomorphism Mg : L → L by Lemma 7.3.7. When we identify L with
Zi0 , Mg : L → L is represented by an element of SL±(i0,Z) since (Mg)

−1 = Mg−1 . Also, by
Lemma 7.3.7, {Mg|g ∈ ΓΓΓẼ} is a compact group as their determinants equal ±1. Hence, the
image of the homomorphism given by g ∈ h(π1(Ẽ)) 7→ Mg ∈ SL±(i0,Z)) is a finite order
group. Moreover, µg = 1 for every g ∈ ΓΓΓẼ as we can see from Lemma 7.3.7. Thus, ΓΓΓẼ has
a finite index group ΓΓΓ

′
Ẽ centralizing N .

We can now use Proposition 7.3.14 by letting G be N since NK is discrete and N̄K =
NK . We take ΣE ′ to be the corresponding cover of ΣẼ . By Lemma 7.3.9 and Proposition
7.3.14, Hypothesis 7.3.15 holds, and we have the result needed to apply Proposition 7.3.19.
Finally, Proposition 7.3.19(i) and (ii) imply that ΓΓΓẼ virtually is either a join or a quasi-
joined group. Corollary 7.3.21 shows that a strictly joined end cannot occur. □

7.4. The non-discrete case

This is in part a joint work with Y. Carriere. Let ΣẼ be the end orbifold of an NPNC R-
end Ẽ of a strongly tame properly convex n-orbifold O with radial or totally geodesic ends.
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Let ΓΓΓẼ be the p-end holonomy group. Let U be a p-end-neighborhood in Õ corresponding
to a p-end vertex vẼ .

Recall the exact sequence

1 → N → π1(Ẽ)
Π∗

K−→ NK → 1

where we assume that NK ⊂ Aut(K) is not discrete. Since Σ̃Ẽ/ΓΓΓẼ is compact, Ko/NK is
compact also. However, NK is not yet shown to be semisimple.

An element g ∈ ΓΓΓẼ is of form:

(7.4.1) g =

 K(g) 0

∗ U(g)

 .

Here K(g) is an (n− i0)× (n− i0)-matrix and U(g) is an (i0 +1)× (i0 +1)-matrix acting
on Si0

∞ . We note detK(g)detU(g) = 1.

7.4.1. Outline of Section 7.4. In Section 7.4.2, we will take the leaf closure of the
complete affine i0-dimensional leaves. The theory of Molino [131]. shows that the space
of leaf-closures will be an orbifold. In Section 7.4.2.2, we show that a leaf-closure is a
compact suborbifold in ΣẼ . In Section 7.4.2.3, we show that the fundamental group of
each leaf-closure is virtually solvable. In Section 7.4.2.4, we find a syndetic closure S
according to a theory of Fried-Goldman [82]. From this, we will find a subgroup acting
on each complete affine i0-dimensional leaf in Section 7.4.2.5 which we will show to be a
cusp group.

In Section 7.4.3, we will complete the proof of Theorem 7.1.4 not covered by Theorem
7.3.22. Proposition 7.4.7 shows that NK is semi-simple. Proposition 7.4.8 shows that
µg = 1 for every g ∈ ΓΓΓẼ . Finally, we prove Theorem 7.1.4.

7.4.2. Taking the leaf closure.
7.4.2.1. Estimations with KAU. Let U denote a maximal nilpotent subgroup of SL±(n+

1,R)
Si0

∞ ,vẼ
given by lower triangular matrices with diagonal entries equal to 1.

The foliation on Σ̃Ẽ given by fibers of ΠK has leaves that are i0-dimensional complete
affine subspaces. Let us denote it by FẼ . Then Ko admits a smooth Riemannian metric µK
invariant under NK by Lemma 1.5.10. We consider the orthogonal frame bundle FKo over
Ko. A metric on each fiber of FKo is induces from µK . Since the action of NK is isometric
on FKo with trivial stabilizers, NK acts on a smooth orbit submanifold of FKo transitively
with trivial stabilizers. (See Lemma 3.4.11 in [149].)

There exists a bundle FΣ̃Ẽ from pulling back FKo by the projection map. Here, FΣ̃Ẽ
covers FΣẼ . Since ΓΓΓẼ acts isometrically on FKo, the quotient space FΣ̃Ẽ/ΓΓΓẼ is a bundle
FΣẼ over ΣẼ with compact fibers diffeomorphic to the orthogonal group of dimension
n − i0. Also, FΣ̃Ẽ is foliated by i0-dimensional affine spaces pulled-back from the i0-
dimensional leaves on the foliation Σ̃Ẽ . One can think of these leaves as being the inverse
images of points of FKo.

LEMMA 7.4.1. Each leaf l of FΣẼ is of polynomial growth. That is, each ball BR(x)
in l of radius R for x ∈ l has an area less than equal to f (R) for a polynomial f where we
are using an arbitrary Riemannian metric on FΣ̃Ẽ induced from one on FΣẼ .

PROOF. Let us choose a fundamental domain F of FΣẼ . Then for each leaf l there
exists an index set Il so that l is a union of gi(Di) i ∈ Il for the intersection Di of a leaf
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with F and gi ∈ ΓΓΓẼ . We have that Di ⊂ D′
i where D′

i is an ε-neighborhood of Di in the leaf.
Then

{gi(D′
i)|i ∈ Il}

cover l in a locally finite manner. The subset G(l) := {gi ∈ Γ|i ∈ Il} is a discrete subset.
Choose an arbitrary point di ∈ Di for every i ∈ Il . The set {gi(di)|i ∈ Il} and l is

quasi-isometric: a map from G(l) to l is given by f1 : gi 7→ gi(di) and the multivalued map
f2 from l to G(l) given by sending each point y ∈ l to one of finitely many gi such that
gi(D′

i) ∋ y. Let ΓΓΓẼ be given the Cayley metric and Σ̃Ẽ a metric induced from ΣẼ . Both
maps are quasi-isometries since these maps are restrictions of quasi-isometries ΓΓΓẼ → Σ̃Ẽ
and Σ̃Ẽ → ΓΓΓẼ defined analogously.

The action of gi in K is bounded since it sends some points of ΠK(F) to ones of ΠK(F)
which is a compact set in Ko. Thus, Π∗

K(gi) goes to a bounded subset of Aut(K). In the
form (7.4.1),

K(gi) = det(K(gi))
1/(n−i0)K̂(gi) where K̂(gi) ∈ SL±(n− i0,R)

where K̂(gi) is uniformly bounded. Let λ̃max(gi) and λ̃min(gi) denote the largest norm and
the smallest norm of eigenvalues of K̂(gi). Since Π∗

K(gi) are in a bounded set of Aut(K),
we obtain

(7.4.2)
1
C

≤ λ̃max(gi), λ̃min(gi)≤C

for C > 1 independent of i. The largest and the smallest eigenvalues of gi equal

λ
Tr
max(gi) = det(K(gi))

1/(n−i0)λ̃max(gi) and λ
Tr
min(gi) = det(K(gi))

1/(n−i0)λ̃min(gi)

by Proposition 7.2.3. Denote by a j(gi), j = 1, . . . , i0 + 1, the norms of eigenvalues of gi

associated with Si0
∞ where a1(gi) ≥ ·· · ≥ ai0+1(g j) > 0 with repetitions allowed. Since

detgi = 1, we have
det(K(gi))a1(gi) . . .ai0+1(gi) = 1.

If {|det(K(gi))|} → 0, then {a1(g j)}→ ∞ whereas by (7.4.2)

{det(K(gi))
1/(n−i0)λ̃max(gi)}→ 0

contradicting Proposition 7.2.3. If {|det(K(gi))|} → ∞, then {ai0+1} → 0 whereas by
(7.4.2)

{det(K(gi))
1/(n−i0)λ̃min(gi)}→ ∞

contradicting Proposition 7.2.3. Therefore, we obtain

1/C < |det(K(gi))|<C

for a positive constant C. We deduce that the largest norm and the smallest norm of eigen-
values of gi

det(K(gi))
1/(n−i0)λ̃max(gi) and det(K(gi))

1/(n−i0)λ̃min(gi)

are bounded above and below by two positive numbers. Hence, λ Tr
max(gi) and λ Tr

min(gi)
are all bounded above and below by a fixed set of positive numbers. U(gi) consists of
a5(gi)O5(gi) for an orthogonal element O5(gi) and a9(gi). The remaining eigenvalues of
gi have norms a5(gi) and a9(gi). By Proposition 7.2.3, these are bounded by the same fixed
set of positive numbers.

By Corollary 1.3.4, {gi} is of bounded distance from U′. Let Nc(U′) denote a c-
neighborhood of U′. Then

G(l)⊂ Nc(U′) for some c > 0.
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Let d denote the left-invariant metric on Aut(Sn). By the discreteness of ΓΓΓẼ , the set
G(l) is discrete and there exists a lower bound to

{d(gi,g j)|gi,g j ∈ G(l), i ̸= j}.

Also given any gi ∈ G(l), there exists an element g j ∈ G(l) so that d(gi,g j) < C for a
uniform constant C. (We need to choose g j so that g j(F) is adjacent to gi(F).) Let
BR(I) denote the ball in SL(n+ 1,R) of radius R with the center I. Then BR(I)∩Nc(U′)
is of polynomial growth with respect to R, and so is G(l)∩BR(I). Since the collection
{gi(D′

i)|gi ∈ G(l)} of uniformly bounded balls cover l in a locally finite manner, l is of
polynomial grow as well. □

7.4.2.2. Closures of leaves. The foliation on Σ̃Ẽ given by fibers of ΠK has leaves that
are i0-dimensional complete affine subspaces. Let us denote it by FẼ . Then Ko admits
a smooth Riemannian metric µK invariant under NK by Lemma 1.5.10. We consider the
orthogonal frame bundle FKo over Ko. A metric on each fiber of FKo is induced from µK .
Since the action of NK is isometric on FKo with trivial stabilizers, we find that NK acts on
a smooth orbit submanifold of FKo transitively with trivial stabilizers. (See Lemma 3.4.11
in [149].)

There exists a bundle FΣ̃Ẽ from pulling back FKo by the projection map. Here, FΣ̃Ẽ
covers FΣẼ . Since ΓΓΓẼ acts isometrically on FKo, the quotient space FΣ̃Ẽ/ΓΓΓẼ is a bundle
FΣẼ over ΣẼ with a subbundle with compact fibers isomorphic to the orthogonal group of
dimension n− i0. Also, FΣ̃Ẽ is foliated by i0-dimensional affine spaces pulled-back from
the i0-dimensional leaves on the foliation Σ̃Ẽ . One can think of these leaves as being the
inverse images of points of FKo.

7.4.2.3. π1(Vl) is virtually solvable. Recall the fibration

ΠK : Σ̃Ẽ → Ko which induces Π̃K : FΣ̃Ẽ → FKo.

Since NK acts as isometries of a Riemannian metric on Ko, we can obtain a metric on ΣẼ so
that the foliation is the Riemannian foliation. Let pΣẼ

: FΣ̃Ẽ → FΣẼ be the covering map
induced from Σ̃Ẽ → ΣẼ . The foliation on Σ̃Ẽ gives us a foliation of FΣ̃Ẽ .

Let AK be the identity component of the closure of NK the image of ΓΓΓẼ in Aut(K),
which is a Lie group of dim ≥ 1.

PROPOSITION 7.4.2. AK is a normal connected nilpotent subgroup of the closure of
NK .

PROOF. Since the closure of NK is normalized by NK , AK is a normal subgroup of NK .
Since l maps to a polynomial growth leaf in FΣẼ by Lemma 7.4.1, Carrière [35] shows
that AK is a connected nilpotent Lie group in the closure of NK in Aut(K) acts on FKo

freely. □

Let l be a leaf of FΣ̃Ẽ , and p be the image of l in FKo. Moreover, we have

Π̃
−1
K (AK(p)) =: Ṽl ↪→ FΣ̃Ẽ

↓ pΣẼ
↓

Vl ↪→ FΣẼ(7.4.3)

for Vl := pΣẼ
(l) in FΣẼ . Since Ṽl is closed and is a component of the inverse image of Vl

which is a union of copies of Ṽl , the image Vl is a compact submanifold. Note Vl has a
dimension independent of l since AK acts freely.
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Now, N is precisely the subgroup of π1(Vl) fixing a leaf l in FKo. For each closure
Vl of a leaf l, the manifold Vl is a compact submanifold of FΣẼ , and we have an exact
sequence

(7.4.4) 1 → N → h(π1(Vl))
Π∗

K−→ A′
K → 1.

Since the leaf l is dense in Vl , it follows that A′
K is dense in AK . Each leaf l′ of Σ̃Ẽ has

a realization a subset in Õ . We have the norms of eigenvalues λi(g) = 1 for g ∈ N by
Proposition 7.2.3. By Theorem 1.3.7, N = Nl is virtually unipotent since the norms of
eigenvalues equal 1 identically and Nl is discrete.

We take a finite cover of ΣẼ so that N is nilpotent. Hence, h(π1(Vl)) is solvable being
an extension of a nilpotent group by a nilpotent group. We summarize below:

PROPOSITION 7.4.3. Let l be a generic fiber of FΣ̃Ẽ and p be the corresponding point
of FKo. Then there exists a nilpotent group AK acting on FKo so that Π̃

−1
K (AK(p)) = Ṽl

covers a compact suborbifold Vl in FΣẼ , a conjugate of the image of the holonomy group
of Vl is a dense subgroup of AK , and the holonomy group of Vl is solvable. Moreover, Ṽl is
homeomorphic to a torus times a cell or a cell.

PROOF. We just need to prove the last statement. Since AK is a connected nilpotent
group, AK is homeomorphic to a torus times a cell or a cell, and so is the free orbit in
FKo. Since Π̃K has fibers that are i0-dimensional open hemispheres, this last statement
follows. □

We remark that AK is nilpotent but may not be unipotent.

REMARK 7.4.4. The leaf holonomy acts on FΣ̃Ẽ/FẼ as a nilpotent killing field group
without any fixed points. Hence, each leaf l is in Ṽl with a constant dimension. Thus, FẼ
is a foliation with leaf closures of identical dimensions.

The leaf closures form another foliation F Ẽ with compact leaves by Lemma 5.2 of
Molino [131]. We let FΣẼ/F Ẽ denote the space of closures of leaves has an orbifold
structure where the projection FΣẼ → FΣẼ/F Ẽ is an orbifold morphism by Proposition
5.2 of [131].

7.4.2.4. The holonomy group for a leaf closure is normalized by the end holonomy
group. Note that ΓΓΓl is the deck transformation group of Ṽl over Vl . Since Ṽl is the inverse
image of AK(x) for x ∈ FKo, ΓΓΓl is the inverse image of NK ∩AK under Π∗

K . Since NK ∩AK
is normal in NK , ΓΓΓl is a normal subgroup of ΓΓΓẼ .

Recall that ΓΓΓl is virtually solvable, as we showed above. We let Z (ΓΓΓẼ) and Z (ΓΓΓl)
denote the Zariski closures in Aut(Sn) of ΓΓΓẼ and ΓΓΓl respectively.

By Theorem 1.6 of Fried-Goldman [82], there exists a closed virtually solvable Lie
group Sl containing ΓΓΓl with the following four properties:

• Sl has finitely many components.
• ΓΓΓl\Sl is compact.
• The Zariski closure Z (Sl) is the same as Z (ΓΓΓl).
• Finally, we have solvable ranks

(7.4.5) rank(Sl)≤ rank(ΓΓΓl).

We will call this the syndetic hull of ΓΓΓl .
We summarize:
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LEMMA 7.4.5. h(π1(Vl)) is virtually solvable and is contained in a virtually solvable
Lie group Sl ⊂ Z (h(π1(Vl)) with finitely many components, and Sl/h(π1(Vl)) is compact.
Sl acts on Ṽl . Furthermore, one can modify a p-end-neighborhood U so that Sl acts on it.
Also the Zariski closure of h(π1(Vl)) is the same as that of Sl .

PROOF. By above, Z (Sl) = Z (ΓΓΓl) acts on Ṽl and normalizes ΓΓΓl . We need to prove
about the p-end-neighborhood only. Let F be a compact fundamental domain of Sl under
the Γl . Then we have ⋂

g∈Sl

g(U) =
⋂

g∈F

g(U).

By Lemma 3.1.8, the latter set contains a Sl-invariant p-end-neighborhood. □

From now on, we will let Sl to denote the only the identity component of itself for
simplicity as Sl has finitely many components to begin with. We are taking a finite cover
of O if necessary. This will be sufficient for our purposes since we only need a cusp group.

Since Sl acts on U and hence on Σ̃Ẽ as shown in Lemma 7.4.5, we have a homomor-
phism Sl → Aut(K). We define by Sl,0 the kernel of this map. Then Sl,0 acts on each leaf
of Σ̃Ẽ . We have an exact sequence

(7.4.6) 1 → Sl,0 → Sl → AK → 1.

7.4.2.5. The form of USl,0. Let Si0+1
l denote the i0 +1-dimensional great sphere con-

taining Si0
∞ corresponding to each i0-dimensional leaf l of FẼ .

PROPOSITION 7.4.6. Let l be a generic fiber so that AK acts with trivial stabilizers.

(i) Sl acts on Ṽl cocompactly, acts on ∂U properly, and acts as isometries on these
spaces with respect to some Riemannian metrics.

(ii) A closed subgroup Cl,0 of unipotent elements of acts transitively on each leaf l
with trivial stabilizers, and Cl,0 acts on an i0-dimensional ellipsoid ∂U ∩Si0+1

l
passing vẼ with an invariant Euclidean metric. Here, we may need to modify U
further.

(iii) Sl,0 normalizes an i0-dimensional partial cusp group Cl,0 where Sl,0 ∩Cl,0 are
cocompact subgroups in both Sl,0 and Cl,0.

(iv) Cl,0 is virtually normalized by ΓΓΓẼ and also by Sl . Also, Cl,0 acts freely and
properly on m for each leaf m of FẼ .

(v) With setting N :=Cl,0, Hypothesis 7.3.4 holds virtually by ΓΓΓẼ for a coordinate
system.

PROOF. (i) By Lemma 3.1.10, Sl acts properly on Ṽl . Since ∂U is in one-to-one corre-
spondence with Σ̃Ẽ , Sl acts on ∂U properly. Hence, these spaces have compact stabilizers
with respect to Sl . The existence of an invariant metric follows from an argument similar
to one in the proof of Lemma 1.5.10. Hence, the action is proper and the orbit is closed.

Since Ṽl/ΓΓΓl is compact, Ṽl/Sl is compact also.
(ii) We may assume that ΓΓΓẼ is torsion-free by Theorem 1.1.19 taking a finite index

subgroup.
Proposition 7.2.3 implies that for g ∈ ΓΓΓl

λ
Tr
max(g)≥ λ

Si0
∞

max(g)≥ λ
Si0

∞

min(g)≥ λ
Tr
min(g).
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Since Sl = FΓl for a compact set F , the inequality

C1λ
Tr
max(g)≥ λ

Si0
∞

max(g)≥C2λ
Si0

∞

min(g)≥C3λ
Tr
min(g),g ∈ Sl ,

C1λ
Tr
max(g)≥ λ1(g)≥ λn+1(g)≥C2λ

Tr
min(g),g ∈ Sl ,(7.4.7)

hold for constants C1 > 1,1 > C2 > C3 > 0 by (7.2.3). Since Sl,0 acts trivially on Ko, we
have λ Tr

max(g) = λ Tr
min(g) for g ∈ Sl,0. Since the maximal norm λ1(g) of the eigenvalues of

g equals λ Tr
min(g) and the minimal norm of the eigenvalues of g equals λ Tr

min(g), all the norms

of the eigenvalues of g∈ Sl,0 are bounded above. (7.4.7) implies that | logλSi0
∞

max(g)|, | logλ1(g)|,g∈
Sl,0 are both uniformly bounded above. Of course we have

| logλ
Si0

∞

max(g
n)|= |n logλ

Si0
∞

max(g)|, | logλ1(gn)|= |n logλ1(g)|,g ∈ Sl,0.

We conclude that the norms of eigenvalues of g ∈ Sl,0 are all 1.
Theorem 1.3.7 implies that Sl,0 is a closed orthopotent group and hence a solvable Lie

group. Lemma 3.1.13 gives a unipotent group Cl,0 acting on l where Cl,0 is the Zariski
closure of the unipotent subgroup Su

l,0 of Sl,0. We have Cl,0 ∩Sl,0 = Su
l,0. Proposition 3.1.14

shows that Cl,0 is a cusp group. Since Sl normalizes Sl,0 and Cl,0 ∩Sl,0 = Su
l,0 is cocompact

in Sl,0, it follows that Sl normalizes Cl,0. This also proves (iii).
(iv) Proposition 3.1.14 shows that the action of Cl,0 on any leaf m is a free and proper

action. Since Cm,0 acts on m, Bm := Hm∩U is again bounded by an ellipsoid. Since Bm has
a hyperbolic metric as a Klein model, and Cl,0 is unipotent acting properly on horospheres
of Bm for vẼ , Cl,0 must also be a cusp group on Bm. Hence, Cl,0 acts as a cusp group on
each Hm ∩U .

Let g ∈ ΓΓΓẼ . By using these argument for g(l) instead of l, gCl,0g−1 also acts on an
ellipsoid Em in the subspace corresponding to m from vẼ as a unipotent Lie group freely,
transitively, and faithfully. Since El bounds a (i0 + 1)-dimensional ball with a hyperbolic
metric of the Klein model, such a unipotent group is unique and hence it follows that
gCl,0g−1 and Cl,0 restrict to a same group in Hm.

Let Ĉ denote the group generated by Cl,0 and its conjugates. Ĉ is obviously unipotent.
Also, Ĉ acts properly on Σ̃Ẽ since ΓΓΓẼ and Cl,0 preserve a Riemannian metric.

Let g′ ∈Cl,0 and g′′ ∈ gCl,0g−1 so that g′|Hm = g′′|Hm. Then g′−1g′′ fixes every point in
m. Since and the stabilizer of the unipotent group acting properly on Σ̃Ẽ is trivial, g′ = g′′.
Hence, the normality follows.

(v) The first two properties of Hypothesis 7.3.4 follow from Propositions 1.4.10 and
1.4.13. ΓΓΓẼ satisfies the third transverse weak middle eigenvalue condition by the premise.
Since Su

l,0 goes to I under Π∗
K , it is in the standard form where l corresponds to a great

sphere Si0+1 containing Si0
∞ . This proves the fourth property.

Since N acts on Ṽl , N is a subgroup of Γl virtually. Hence, N is a subgroup of Sl
and hence of Sl,0 virtually. Theorem 1.3.7 tells us that N is unipotent virtually and hence
N ∩ΓΓΓ

′
Ẽ is in Su

l,0 for a finite index subgroup ΓΓΓ
′
Ẽ of ΓΓΓẼ . (iv) showed that N is normalized

by ΓΓΓẼ . (iv) also shows that N acts freely and properly on each complete affine leaf of
Σ̃Ẽ . □

7.4.3. The proof for non-discrete NK . Now, we go the splitting argument for this
case. We can parametrize USl,0 by N (⃗v) for v⃗ ∈ Ri0 by Proposition 7.4.6. We showed
that Hypothesis 7.3.4 holds virtually. For convenience, let us assume that Hypothesis 7.3.4
here.

We outline the proof strategy:
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• NK is semisimple in Proposition 7.4.7.
• µg = 1 for every g ∈ ΓΓΓẼ .
• Hypothesis 7.3.15 holds. Now we use the results in Section 7.3.3.

Also, N ∩USl,0 is of finite index in N since both acts on l and we took many finite
index subgroups in the processes above. Again using Proposition 1.1.18, we can consider
the finite covers of p-end neighborhoods. We assume N ⊂ USl,0. Hypothesis 7.3.4 holds
now as we showed in the above subsections. As above by Lemmas 7.3.7, we have that the
matrices are of form:

(7.4.8) N (⃗v) =


In−i0−1 0 0 0

0 1 0 0

C1(⃗v) v⃗T Ii0 0

c2(⃗v) ||⃗v||2 /2 v⃗ 1

 ,

(7.4.9) g =


S(g) s1(g) 0 0

s2(g) a1(g) 0 0

C1(g) a1(g)⃗vT
g a5(g)O5(g) 0

c2(g) a7(g) a5(g)⃗vT
g O5(g) a9(g)


where g ∈ ΓΓΓẼ . (See (7.3.36).) Recall µg = a5(g)/a1(g) = a9(g)/a5(g). Since Sl is in
Z (ΓΓΓl) and the orthogonality of normalized A5(g) is an algebraic condition, the above
form also holds for g ∈ Sl .

PROPOSITION 7.4.7 (Semisimple NK). Assume hypothesis 7.3.4. Suppose that π1(Ẽ)
satisfies (NS) or dimK = 0,1. Then the following hold:

• NK or any of its finite index group acts semi-simply on Ko.
• There is a finite index subgroup N′

K of NK acting on each Ki irreducibly and has
the diagonalizable commutant H isomorphic to Rl̄−1

+ for some l̄ ≥ 1.
• K is projectively diffeomorphic to K1 ∗ · · · ∗Kl̄ , where H acts trivially on each K j

for j = 1, . . . , l̄.
• Let AK denote the identity component of the closure N̄K of NK in Aut(K). Let A′

K
denote the image in AK of ΓΓΓẼ . Then A′

K ∩N′
K is free abelian and is a diagonaliz-

able group of matrices and is in the virtual center NK ∩H.
• N′

K acts on each Ki strongly irreducibly, and N′
K |Ki is semisimple and discrete

and acts on Ko
i as a divisible action.

• NK contains a free abelian group in NK ∩H of rank l̄ −1.

PROOF. It is sufficient to prove for NK itself since N′
K for a finite-index subgroup N′

K
of NK acts cocompactly.

If NK is discrete, then the conclusion follows from Proposition 1.4.10.
Suppose NK is not discrete. For the case when dimK = 0,1, the conclusions are obvi-

ous. We will prove using induction on dimK.
We now use the notation of Section 7.4.2.2. By Theorem 1.1.19, we assume that ΓΓΓẼ

is torsion-free. By condition (NS), since ΓΓΓl is virtually normal in ΓΓΓẼ , ΓΓΓl ∩G is central in a
finite index subgroup G of ΓΓΓẼ and is free-abelian.
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Now, we prove by induction on dimK. We recall the exact sequence

1 → N → ΓΓΓl → A′
K → 1.

Here, A′
K is dense in a nilpotent Lie group AK normalized by NK . Let N′

K denote the image
of G in NK . Let N̄′

K denote the closure of N′
K in Aut(K).

We give a bit vague outline of the rest of the proof:

(i): First, we show that there is no unipotent action on Ko by length arguments.
(ii): We decompose the space into invariant subspaces where NK virtually acts on

which it virtually acts discretely.
(iii): Now, we prove that NK acts semisimply.
(iv): Finally, we show that NK contains a free abelian group of certain rank.

(i) We prove some fact: We take the unipotent subgroup ΓΓΓl,u, A′
K,u, AK,u of solvable

groups ΓΓΓl , A′
K , and AK respectively. These are normalized by NK .

Suppose that A′
K,u ∩ N′

K is nontrivial. Choose a nontrivial unipotent element gu in
A′

K,u∩N′
K . By Lemma 1.3.10, there exists a sequence of elements xi ∈Ko so that dK(xi,gu(xi))→

0. Since N′
K is still a sweeping action, let F be a compact set in Ko so that

⋃
g∈N′

K
g(F)=Ko.

Now, we can choose gi ∈ G so that gi(xi) ∈ F . Then

(7.4.10) {dΩ(gigu(xi),gi(xi)) = dΩ(gigug−1
i (gi(xi)),gi(xi))}→ 0

since gi is a dK-isometry. This implies that {gigug−1
i } converges to an element of a stabi-

lizer of a point f , f ∈ F in N̄K .
Since ΓΓΓl ∩G is central in G, gigug−1

i = gu. Since gu is unipotent, if gu stabilizes a point
of Ko, then gu is the identity element by Lemma 1.3.8. This is a contradiction. Therefore,
we conclude A′

K,u ∩N′
K is a trivial group.

(ii) Since ΓΓΓl is central in G, A′
K ∩N′

K and its closure AK ∩ N̄′
K are abelian groups. Since

AK ∩ N̄′
K is abelian, we can decompose Cn−i0 = V ′

1 ⊕ ·· · ⊕V ′
l′ so that each element g of

AK ∩ N̄′
K acts irreducibly with a single eigenvalue λi(g) on V ′

i for each i and its conjugate
λ̄i(g) by the primary decomposition theorem. (See Theorem 12 of Section 6 of [101] and
Definition 1.3.1.) The map

g ∈ AK ∩ N̄′
K 7→ (λ1(g), . . . ,λl′(g)) ∈ C∗l′

gives us an isomorphism to the image set where we choose a representative eigenvalue
λi(g) for each Vi.

We define S1, . . . ,Sl′ to be the subspace in Sn corresponding to a real primary subspace
for every g by the commutativity of elements in AK ∩ N̄′

K .
Since N′

K commutes with AK , N′
K also acts on or permutes the corresponding subspaces

S1, . . . ,Sl′ in Sn−i0−1. We take the finite-index subgroup N′′
K of N′

K acting on each Si, and
N′′

K has a sweeping action on Ko. By Proposition 1.4.13, Si∩K ̸= /0 and Si∩Ko = /0. Denote
by Ki := Si ∩K.

Suppose that λi(g) is not real for some i and g ∈ AK ∩ N̄′
K . Then there is an eigenspace

for λi(g) and one for λ̄i(g) for all g ∈ NK . Since K ∩S for a corresponding subspace S′ for
the direct sum of two eigenspaces is properly convex, there is a global fixed point of g. The
point corresponds to a positive real eigenvalue of g. This is a contradiction. The negative
case violates the proper convexity. Therefore, every λi(g)> 0 for g ∈ AK ∩ N̄′

K .
Let N̄′′

K denote the closure of N′′
K in N̄K . Suppose that AK ∩ N̄′′

K acts on Ki nontrivially.
AK ∩ N̄′′

K |Ki is a unipotent action since each element of AK ∩ N̄′
K |Ki has a single positive

eigenvalue affilated with Ki. Since Ko
i /A′

K ∩N′′
K is compact, we can apply the arguments
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in the paragraph containing (7.4.10) and the following one, and we obtain a contradiction.
Hence, AK ∩ N̄′′

K |Ki is trivial. Hence, AK ∩ N̄′
K is a positive diagonalizable group.

Since AK is the identity component of N̄K , and AK restricts to a trivial group for each
Ki, NKi := N′′

K |Ki is discrete.
(iii) If l′ = 1, then this shows AK ∩ N̄′

K is trivial. Then we are in the case of NK being
discrete and the result follows by Proposition 1.4.10.

Suppose now that l′ ≥ 2. Then since dimKi < dimK, we deduce that NKi := N′′
K |Ki

still acts cocompactly on Ko
i since otherwise this fails for NK′′ action on Ko. Hence, NKi is

semi-simple and the conclusions of this proposition hold for NKi and Ki by induction.

By induction, we decompose each K j into K(1)
j ∗ · · · ∗Kl′( j)

j with a positive diagonal-

izable commutant H j for NK j . The finite index subgroup N′
Ki

of Nki acting on each K(i)
j is

a cocompact subgroup of N
K(i)

j
×·· ·×N

Kl′( j)
j

×Λ j for a Zariski dense subgroup Λ j in H j

and N
K(i)

j
:= N′

K j
|K(i)

j for i = 1, . . . , l′( j) by Proposition 1.4.10. Also, N
K(i)

j
acts strongly

irreducibly on each K(i)
j also by Proposition 1.4.10.

There is a commutant HK of N′
K that just the positive diagonalizable group acting

trivially on each Ki. Hence, it is isomorphic to Rl′−1. Since AK ∩N′
K |Ki for each i is trivial,

HK ∩N′
K contains AK ∩N′

K by the second paragraph above. This proves the third item. We
define H to be the product of HK ×H1 ×·· ·×Hl′ .

We list out all K(i)
j as a single list K1, . . . ,Kl̄ . Define N′′′

K as a subgroup acting on each
Ki for i = 1, . . . , l̄. Now N′

K is a subgroup of NK1 ×·· ·×NKl′ ×L for a Zariski dense L in
H. Thus, N′

K is semi-simple. This means that NK is semi-simple since NK/N′′′
K acts only as

a permutation group of K1, . . . ,Kl̄ .
Since NKi is discrete, and N′

K is isomorphic to a subgroup of NK1 ×·· ·×NKl′ ×Rl′−1
+ ,

it follows that the finite extension NK is semi-simple. This proves the first to the fourth
item.

(iv) Now, we prove the last item in particular. Proposition 1.4.13 also shows the exis-
tence of a free diagonalizable subgroup Λ of N̄K ∩H of rank l̄ −1. Hence, there must be a
lattice in L ⊂ Λ that is Zariski dense in N̄K ∩H. Choose generators η1, . . . ,ηl̄ of the lattice.
For each η j, there is a sequence {κ

j
i } in NK converging to η j in Aut(K). Each κ

j
i |Ki is in

a discrete group NKi . Hence, we may assume that κ
j

i |Ki = IKi for every i since η j|Ki = IKi .
Hence, κ

j
i ∈ H ∩NK for every i. Since κ

j
i are sufficiently close to η j for each j = 1, . . . , l̄,

we can choose a set of generators κ1
i′ , . . . ,κ

l̄
i′ of H ∩NK . This completes the proof. □

However, we have not shown Hypothesis 7.3.15 yet. We continue to have Hypothesis
7.3.4 for ΓΓΓẼ .

PROPOSITION 7.4.8. Suppose that O is properly convex. We assume Hypothesis 7.3.4
and NK is non-discrete. Suppose that π1(Ẽ) satisfies (NS) or dimK = 0,1. Then we have
µg = 1 for every g ∈ ΓΓΓẼ .

PROOF. We can take finite-index subgroups for ΓΓΓẼ during the proof and prove for this
group since µ is a homomorphism to the multiplicative group R+. By Proposition 7.4.7,
NK is semi-simple and Proposition 7.3.9 and Lemma 7.3.10 hold.

Propositions 7.4.7 and 1.4.13 show that K = K1 ∗ · · · ∗Kl for properly convex sets Ki
and NK is virtually isomorphic to a cocompact subgroup of NK1 ×·· ·×NKl ×Λ where Λ

is Zariski dense in a diagonalizable group Rl−1
+ acting trivially on each Ki and NKi acts
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semisimply on each Ki for i = 1, . . . , l. We take a finite-index subgroup N′
K so that N′

K acts
on Ki for each i = 1, . . . , l. We assume that NK is this N′

K without loss of generality.
We apply Lemma 7.3.9. Then one of Ki is a vertex k. Now we can use the coordinates

of (7.3.36) repeated here.

(7.4.11)


S(g) 0 0 0

0 a1(g) 0 0

C1(g) a1(g)⃗vT
g a5(g)O5(g) 0

c2(g) a7(g) a5(g)⃗vgO5(g) a9(g)


defining v⃗g := a4(g)

a1(g)
.

Also, Lemma 7.3.9 shows that C1(⃗v) = 0 for all v⃗ ∈Ri0 for a coordinate system where
k has the form

((0, . . . ,0,1)) ∈ Sn−i0−1.

By Proposition 7.3.14, we have a coordinate system where

C1(g) = O,c2(g) = 0 for every g ∈ ΓΓΓẼ and

C1(⃗v) = O,c2(⃗v) = 0 for every N (⃗v), v⃗ ∈ Ri0 .(7.4.12)

Let λSg denote the maximal norm of the eigenvalues of the upper-left part Sg of g. We
define

ΓΓΓẼ,+ := {g|λSg(g)< a1(g)}.

There is always an element like this. In particular, we take the inverse image of suitable
diagonalizable elements of the center H ∩NK denoted in Proposition 7.4.7. We take the
diagonalizable element in NK with k having a largest norm eigenvalue. Let g be such an
element. Then by transverse weak middle eigenvalue condition shows that a1(g) is the
largest of norms of every eigenvalue by Proposition 7.2.3, and

a1(g)≥ a9(g) or µg ≤ 1 for g ∈ ΓΓΓẼ,+.

By Proposition 7.4.7, NK ∩H contains a free abelian group of rank dimH which is
positive diagonalizable. Hence, there exists gc ∈ ΓΓΓẼ,+ going to a center of N′

K with µgc ≤ 1.
(A) We will obtain a nontrivial element of N: Let us choose kg ∈ Cl(U)∩An.
Since Sl acts on U , it follows that Sl acts on Cl(U)∩Si0+1

k . By the form of the matrices
(7.4.8), N acts on Si0+1

k . Hence, N of form (7.4.8) acts on Cl(U)∩Si0+1
k ∋ kg. Hence,

we have the orbit

N (kg)⊂ Cl(U)∩Si0+1
k .

Since Cl(U) is convex, a convex domain B = Cl(U)∩Si0+1
k bounded by an ellipsoid is in

a hemisphere Hk in Si0+1
k bounded by Si0

∞ .
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There exists a hyperspace Pkgc
in Si0+1

k tangent to ∂B at kgc where gc acts on. We let
P̂kgc

= Pkgc
∩Si0

∞ . We choose a coordinate system so that

kgc =
((

0, . . . ,0,xn−i0 ,0, . . . ,0
))
, xn−i0 > 0,

Si0+1
k = {

((
0, . . . ,0,xn−i0 , . . . ,xn+1

))
|xi ∈ R},

Pkgc
= {
((

0, . . . ,0,xn−i0 ,xn−i0+1, . . . ,xn,0
))
|xi ∈ R},

B = {
((

0, . . . ,0,xn−i0 , . . . ,xn+1
))
|xi ∈ R,xn+1 ≥

1
2
(x2

n−i0+1 + · · ·+ x2
n),xn−i0 = 1}.

(7.4.13)

Here, kgc may be regarded as the origin of Ho
k .

Now, let g1 be any element of ΓΓΓẼ . We factorize the lower-right (i0 + 2)× (i0 + 2)-
submatrix of g1, g1 ∈ ΓΓΓẼ ,

(7.4.14)


a1(g1) 0 0

a1(g1)⃗vT
g1

a5(g1)O5(g1) 0

a7(g1) a5(g1)⃗vg1O5(g1) a9(g1)

=

(7.4.15)
1 0 0

0 I 0

a7(g1)
a1(g1)

− ||⃗vg1 ||
2

2 0 1




1 0 0

v⃗T
g1

I 0
||⃗vg1 ||

2

2 v⃗g1 1

a1(g1)


1 0 0

0 µg1O5(g1) 0

0 0 µ2
g1

 .

Since the right two matrices act on B, we have

ℵ7(g1) =
a7(g1)

a1(g1)
−
∣∣∣∣⃗vg1

∣∣∣∣2
2

= 0 for any g1 ∈ ΓΓΓẼ .

Suppose that v⃗g = 0 for every ΓΓΓẼ . The ΓΓΓẼ fixes kgc . By Proposition 7.4.7 and Lemma
7.3.9, K = K′′ ∗{k} for a compact convex set K′′. There is a set K′′′ in bdÕ corresponding
to K′′. Then the interior K′′′ ∗ kgc in U maps to Ko under ΠK . By (7.4.12), K′′′ ∗ kgc is
ΓΓΓẼ -invariant. Also, under the radial projection to RvẼ

(O) = Σ̃Ẽ , the interior of K′′′ ∗ kgc

goes to ΓΓΓẼ -invariant subspace in Σ̃Ẽ meeting each complete affine leaf at a point. This
contradicts the cocompactness of the action on Σ̃Ẽ .

Let us take nonidentity g∈ΓΓΓẼ going to N′
K . with nonzero v⃗g. Then conjugation gcgg−1

c
gives us an element with v⃗gcgg−1

c
= v⃗gµgcO5(gc)

−1 by Lemma 7.3.7. This is not equal to v⃗g

since µgc < 1. Hence, a block matrix computation shows that gcgg−1
c g−1 is not an identity

element in ΓΓΓẼ but maps to I in NK . We obtain a nontrivial element n0 of N. By Hypothesis
7.3.4, gcgg−1

c g−1 ∈ N . Since n0 := gcgg−1
c g−1 ̸= I has the form (7.4.8), n0 is a unipotent

element. Since N ⊂ N , we may let n0 = N (⃗v0) for some nonzero vector v0.
(B) Now we show µg = 1 for all g ∈ ΓΓΓẼ :
Suppose that we have an element g ∈ ΓΓΓẼ,+ and µg < 1. Then we have as above

v⃗gkn0g−k = v⃗n0 µ
k
gO5(g)n.

Also, gkn0g−k goes to I in NK since Π∗
K(n0) = I in NK . Hence, {gkn0g−k} → I as k → ∞

since n0 is in the forms (7.4.8) given by (7.4.12). This contradicts the discreteness of N.
Hence, µg = 1 for all g ∈ ΓΓΓẼ,+.
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Since any element of g ∈ ΓΓΓẼ , we can take g′, g′ ∈ ΓΓΓẼ,+ so that gg′ ∈ ΓΓΓẼ,+ and so
µgg′ = µgµg′ = 1. We obtain µg = 1 for all g ∈ ΓΓΓẼ . □

THE PROOF OF THEOREM 7.1.4. Suppose that Ẽ is an NPNC R-end. When NK is
discrete, Theorem 7.3.22 gives us the result.

When NK is non-discrete, Hypothesis 7.3.4 holds by Propositions 7.4.6. Also, NK is
semi-simple by Proposition 7.4.7.

By Proposition 7.4.8, µ ≡ 1 holds. Lemmas 7.3.7 and 7.3.9, (vii) of Proposition 7.4.6
show that the premise of Proposition 7.3.14 holds. Proposition 7.3.14 shows that Hypoth-
esis 7.3.15 holds. Proposition 7.3.19 shows that we have a strictly joined or quasi-joined
end. Corollary 7.3.21 implies the result.

Note here that we may prove for finite index subgroups of ΓΓΓẼ by the definition of
strictly joined or quasi-joined ends. □

We give a convenient summary.

COROLLARY 7.4.9. Let O be a properly convex strongly tame real projective orbifold.
Assume that its holonomy group is strongly irreducible. Let Ẽ be an NPNC p-end of the
universal cover Õ or O satisfying the transverse weak middle eigenvalue condition for
the R-p-end structure of Ẽ. Suppose that π1(Ẽ) satisfies (NS) or dimK = 0,1. Then the
holonomy group h(ΓΓΓẼ) is a group whose element under a coordinate system is of form :

(7.4.16) g =


S(g) 0 0 0

0 λ (g) 0 0

0 λ (g)⃗v(g)T λ (g)O5(g) 0

0 λ (g)
(

ℵ7(g)+
||⃗v(g)||2

2

)
λ (g)⃗v(g)O5(g) λ (g)


where {S(g)|g ∈ ΓΓΓẼ} acts cocompactly on a properly convex domain in bdÕ of dimen-
sion n− i0 −1, O5 : ΓΓΓẼ → O(i0 +1) is a homomorphism, and ℵ7(g) satisfies the uniform
positive translation condition given by (7.3.55).

And ΓΓΓẼ virtually normalizes the group

(7.4.17)

{
N (⃗v) =


In−i0−1 0 0 0

0 1 0 0

0 v⃗T Ii0 0

0 ||⃗v||2 /2 v⃗ 1


∣∣∣∣∣v⃗ ∈ Ri0

}
.

PROOF. The proof is contained in the proof of Theorem 7.1.4. □

7.5. Applications of the NPNC-end theory

7.5.1. The proof of Corollary 7.1.5.

PROOF OF COROLLARY 7.1.5. We may always take finite index subgroups for ΓΓΓẼ
and consider as the end holonomy group. By Corollary 7.4.9, we obtain that the dual
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holonomy group g−1T ∈ ΓΓΓ
∗
Ẽ has form under a coordinate system:

(7.5.1) g−1T =


S(g)−1T 0 0 0

0 λ (g)−1 −λ (g)−1O5(g)−1⃗vg λ (g)−1
(
−ℵ7(g)+

||v(g)||2
2

)
0 0 λ (g)−1O5(g)−1 −λ (g)−1⃗vT

g

0 0 0 λ (g)−1

 .

And ΓΓΓ
∗
Ẽ virtually normalizes the group {N (⃗v)−1T |⃗v ∈ Ri0} where

(7.5.2) N (⃗v)−1T =


In−i0−1 0 0 0

0 1 −⃗v ||⃗v||2 /2

0 0 Ii0 −⃗vT

0 0 0 1

 .

By using coordinate changes by reversing the order of the n− i0+1-th coordinate to the n+
1-th coordinate, we can make the lower right matrix of ΓΓΓẼ and N into a lower triangular
form. Hence, N ∗ is a partial i0-dimensional cusp group.

Suppose that ⟨S(g),g ∈ ΓΓΓẼ⟩ acts on properly convex set K := K′′ ∗ {k} in Sn−i0−1,
a strict join, for a properly convex set K′′ ⊂ Sn−i0−2 ⊂ Sn−i0−1 and k from the proof of
Proposition 7.3.19. N acts on Si0+1 containing Si0

∞ and corresponding to a point k under
the projection ΠK : Sn −Si0

∞ → Sn−i0−1. Let K′′′ denote the compact convex set in Sn −Si0
∞

mapping homeomorphic to K′′ under ΠK as we showed in Proposition 7.3.14. There is
also a subspace Sn−i0−2

K′′′ that is the span of K′′′. Also, K4 := K′′′ ∗vẼ is in Sn−i0−1′ the great
sphere containing vẼ and project to Sn−i0−2 under ΠK .

Recall Proposition 1.5.13 for the following: We have Rn+1 =V ⊕W for subspaces V
and W corresponding to Sn−i0−2

K′′′ and Si0+1 respectively. We may assume that N acts on
both spaces and ΓΓΓẼ acts on K′′′ and both spaces. Then Rn+1∗ = V † ⊕W † for subspaces
V † of 1-forms on V zero on W and W † of 1-forms of W zero on V . Then V † corresponds
to the subspace Sn−i0−2†

K′′′ which equals Si0+1∗, and W † corresponds to Si0+1† which equals
Sn−i0−2∗

K′′′ . We let Sn−i0−2†
K′′′ and Si0+1† denote the dual subspaces in Sn∗.

Hence, ΓΓΓ
∗
Ẽ and N ∗ act on both of these two spaces.

Since K′′ is bdΣ̃Ẽ as in Proposition 7.3.14, we obtain K4 ⊂ bdÕ .
Let us choose a properly convex p-end neighborhood U where N acts on. U ∩Q for

any i0 +1-dimensional subspace containing Si0
∞ is either empty or is an ellipsoid since N

acts on U . Any sharply supporting hyperplane P′ at vẼ to U or Õ must containing Si0
∞ since

P′∩Q for any i0 +1-dimensional subspace Q containing Si0
∞ must be disjoint from U ∩Q

and hence P′∩Q ⊂ Si0
∞ and hence P′ ⊃ Si0

∞ .
Let P ⊂ Sn be an oriented hyperspace sharply supporting Õ at vẼ and containing Si0

∞

and Sn−i0−2
K′′′ . This is unique such one since the hyperspace is the join of the two. Hence,

K′′′ ∗{vẼ} ⊂ P where

Cl(U)∩P = Cl(Õ)∩P = K4 := K′′′ ∗{vẼ}

by Proposition 7.3.19.
We have the subspaces Sn−i0−1′ and Si0+1 meeting at vẼ and Si0 containing vẼ meeting

with Sn−i0−1′ at the same point.
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Let P⋆ denote the dual space of P under its intrinsic duality. Let us denote by K⋆
4,P ⊂P⋆

the dual of K4 with respect to P.
Consider a pencil Pt,Q of hyperplanes supporting Õ starting from P sharing a codimension-

two subspace Q ⊂ P. Then Pt,Q exists for t in a convex interval IQ in a projective circle.
Q supports P∩Cl(Õ) = K′′′ ∗ {vẼ}. We assume P0,Q = P for all Q. Thus the space SP,Ω
of all hyperspaces in one of Pt,Q is projectively equal to a fibration over K⋆

4 in P⋆ with
fibers a singleton or a compact interval. Since SP,Ω is convex, the set corresponding to the
nontrivial interval fibers is the interior of K⋆

4 .
By Proposition 1.5.13(iii), K⋆

4 equals K†
4 ∗ Si0−1

P for a proper subspace dual K†
4 in

Sn−i0−1† to K4 and a great sphere Si0−1
P in P⋆.

Consider SP,Ω as a subset of Sn∗ now. Then Pt,Q under duality goes to a ray in Õ∗ from
P∗ to a boundary point of Õ∗. Hence, the space RP(SP,Ω) of such open rays are projectively
diffeomorphic to the interior of K†

4 ∗S
i0−1
P . Let K

′′′† in Sn−i0−2† denote the dual of K′′′ in
its span Sn−i0−2

K′′′ . Since K†
4 is projectively diffeomorphic to K

′′′† ∗{v} for a singleton v, we
have SP,Ω is projectively diffeomorphic to the interior of K

′′′† ∗H i0 for a hemisphere H i0 of
dimension i0.

By the duality argument, this space equals RP∗(Õ∗) since such rays correspond to
supporting pencils of O and vice versa.

Now, recall that our matrices of ΓΓΓẼ in the form of (7.4.16) and matrices in N in the
form (7.4.17). We can directly show the properness of the action on Rp(Õ∗):

• Let gi be a sequence of elements of ΓΓΓ
∗
Ẽ . Suppose that S(gi)

∗ is bounded for our
matrices in ΓΓΓẼ . Then v⃗gi blows up: Otherwise the properness of the ΓΓΓẼ does not
hold for Σ̃Ẽ and our action splits. Our action is basically that on K′′o ×Ri0 , an
affine form of the interior of K ∗ Si0−1, preserving the product structure where
K = K′′ ∗{k}.

Hence, it follows by our matrix form (7.5.1) that ΓΓΓ
∗
Ẽ acts properly on RP∗(Õ∗) projec-

tively isomorphic to the interior of K†
4 ∗Si0−1. By Lemma 3.1.5, Õ∗ can be considered a

p-end neighborhood with a radial structure. Hence, we can apply our theory of the clas-
sification of NPNC-ends. The transverse weak uniform middle eigenvalue condition is
satisfied by the form of the matrices. Also the uniform positive translation condition holds
by the matrix forms again. Proposition 7.3.19 completes the proof.

Finally, we mention the following: Since each i0-dimensional ellipsoid in the fiber in
Σ̃Ẽ∗ has a unique fixed point that should be common for all ellipsoid fibers, the choice of
the p-end vertex is uniquely determined for Ẽ∗ so that Ẽ∗ is to be quasi-joined. □

7.5.2. A counterexample in a solvable case. We will find some nonsplit NPNC-end
where the end holonomy group is solvable. Our construction is related to the construction
of Carrière [34] and Epstein [77]. A related work is given by Cooper [63]. These are not
a quasi-join nor a join and do not satisfy our conditions (NS) and neither the end orbifolds
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admit properly convex structure nor the fundamental groups are virtually abelian. Define

(7.5.3) N(w,v) =



1 w w2/2 0 0

0 1 w 0 0

0 0 1 0 0

0 0 v 1 0

0 0 v2/2 v 1


, and

(7.5.4) gλ =



λ 2 0 0 0 0

0 λ 0 0 0

0 0 1 0 0

0 0 0 1/λ 0

0 0 0 0 1/λ 2


.

We compute gλ N(w,v)g−1
λ

= N(λw,v/λ ). We define the group

S := ⟨N(w,v),gλ : v,w ∈ R,λ ∈ R+⟩.

Consider the affine space A4 given by x3 > 0 with coordinates x1,x2,x4,x5 where S acts
on. Then ⟨N(w,0),w ∈ R,gλ ⟩, λ ∈ R+, acts on an open disk B1,2 bounded by a quadric
x1 > x2

2/2 in the plane x4 = 0,x5 = 0. (See Section 7.3.1.1.) ⟨N(0,v),v ∈ R,gλ ,λ ∈ R+⟩
acts on an open disk B4,5 bounded by a quadric x5 > x2

4/2 in the plane x2 = 0,x3 = 0.
Hence, an orbit S(((1,0,1,0,1))) is given by the following set as a subset ofA4:{

(x1,x2,x4,x5)|x1 =
x2

2
2
+C2,x5 =

x2
4

2
+

1
C2 ,C > 0

}
.

This is a 3-cell. Moreover,

(7.5.5) N(w,v)gλ

(
x2

2
2
+C2,x2,x4,

x2
4

2
+

1
C2

)
=

(
λ

2
(

x2
2

2
+C2

)
+λwx2 +

w2

2
,λx2 +w,

x4

λ
+ v,

x2
4

2λ 2 +
1

C2λ 2 + v
x4

λ
+

v2

2

)
=

(
(λx2 +w)2

2
+λ

2C2,λx2 +w,
x4

λ
+ v,

( x4
λ
+ v
)2

2
+

1
C2λ 2

)

= gλ N(w/λ ,λv)
(

x2
2

2
+C2,x2,x4,

x2
4

2
+

1
C2

)
.

Hence, there is an exact sequence

1 →{N(w,v)|w,v ∈ R}→ S →{gλ |λ > 0}→ 1,

telling us that S is a solvable Lie group (Thurston’s Sol [149].).
We find a discrete solvable subgroup. We take a lattice L in R2 and obtain a free

abelian group N(L) of rank two. We can choose L so that the diagonal matrix with diagonal
(λ ,1/λ ) acts as an automorphism. Then the group SL generated by ⟨N(L),gλ ⟩ is a discrete
cocompact subgroup of S.
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We remark that such a group exists by taking a standard lattice in R2 and choosing an
integral Anosov linear map A of determinant 1 with two eigendirections. We choose a new
coordinate system so that the eigendirections are parallel to the x-axis and the y-axis. Then
now L can be read from the new coordinate system, and λ is the eigenvalue of A bigger
than 1.

The orbit S(((1,0,1,0,1))) is a subset of B1,2 ×B4,5. We may choose our end vertex v
to be ((0,0,0,0,1)) or ((1,0,0,0,0)).

The orbit S(((1,0,1,0,1))) is strictly convex: We work with the affine coordinates. We
consider this point with affine coordinates (1,0,0,1). The tangent hyperspace at this point
is given by x1 + x5 = 2. We can show that locally the orbit meets this hyperplane only at
(1,0,0,1) and is otherwise in one-side of the plane.

Since Z acts transitively, the orbit is strictly convex. Also, it is easy to show that
the orbit is properly embedded. Hence the orbit is a boundary of a properly convex open
domain. It is now elementary to show that this is an R-p-end neighborhood for a choice of
p-end vertex ((0,0,0,0,1)) or ((1,0,0,0,0)).





CHAPTER 8

Characterization of complete R-ends

In Chapter 8, we discuss complete affine ends. First, we explain the weak middle
eigenvalue condition. We state the main result of the chapter Theorem 8.1.2, which char-
acterizes the complete affine ends. We will prove it by the results in Chapter 7 and the
results of subsequent sections: In Theorem 8.1.3, we show that pre-horospherical ends are
horospherical ends. In Theorem 8.1.4, we show that a complete affine end falls into one of
the two classes, one of which is a cuspidal and the other one is more complicated with two
norms of eigenvalues. Theorem 8.1.2 will show that the second case is a quasi-join using
results in Chapter 7. In Section 3.1.5, we concentrate on the ends with the holonomy of
only unit norm eigenvalues showing that they have to be cuspidal.

The results here overlap with the results of Crampon-Marquis [68] and Cooper-Long-
Tillman [67]. However, the results are of a different direction than theirs since they are
interested in finite-volume Hilbert metrics, and were originally conceived before their pa-
pers appeared. We also make use of Crampon-Marquis [69].

Let Õ denote a convex domain in Sn and covering a strongly tame orbifold O with a
holonomy homomorphism h : π1(O)→ SL±(n+ 1,R). Let Ẽ be an R-p-end. A mec for
a p-end holonomy group h(π1(Ẽ)) with respect to vẼ or the R-p-end structure holds if for
each g ∈ h(π1(Ẽ))−{I} the largest norm λ1(g) of eigenvalues of g is strictly larger than
the eigenvalue λvẼ

(g) associated with p-end vertex vẼ .

Given an element g ∈ h(π1(Ẽ)), let
(

λ̃1(g), . . . , λ̃n+1(g)
)

be the (n+ 1)-tuple of the
eigenvalues listed with multiplicity given by the characteristic polynomial of g where we
repeat each eigenvalue with the multiplicity given by the characteristic polynomial. The
multiplicity of a norm of an eigenvalue of g is the number of times the norm occurs among
the (n+1)-tuples of norms (

|λ̃1(g)|, . . . , |λ̃n+1(g)|
)
.

DEFINITION 8.0.1. Let Ẽ be a p-end with the holonomy group h(π1(Ẽ)). A weak
middel eigenvalue condition (wmec) for an R-p-end Ẽ holds provided for each g∈ h(π1(Ẽ))
the following holds:

• whenever λvẼ
(g) has the largest norm of all norms of eigenvalues h(g), λvẼ

(g)
must have multiplicity ≥ 2.

We note that these definitions depend on the choice of the p-end vertices; however,
they are well defined once the radial structures are assigned.

Recall the parabolic subgroup of the isometry group Aut(B) of the hyperbolic space
B for an (i0 + 1)-dimensional Klein model B ⊂ Si0+1 fixing a point p in the boundary of
B. Such a discrete subgroup of a parabolic subgroup group is isomorphic to extensions of
a lattice in Ri0 and is Zariski closed by the Bieberbach theorem.

Let E be an i0-dimensional ellipsoid containing the point v in a subspace P of dimen-
sion i0 + 1 in Sn. Let Aut(P) denote the group of projective automorphisms of P, and let
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SL±(n+ 1,R)P the subgroup of SL±(n+ 1,R) acting on P. Let rP : SL±(n+ 1,R)P →
Aut(P) denote the restriction homomorphism g → g|P. An i0-dimensional partial cusp
subgroup is one mapping under RP isomorphically to a cusp subgroup of Aut(P) acting on
E −{v}, fixing v.

Suppose now that Õ ⊂ RPn. Let P′ denote a subspace of dimension i0 +1 containing
an i0-dimensional ellipsoid E ′ containing v. Let PGL(n+ 1,R)P′ denote the subgroup of
PGL(n+1,R) acting on P′. Let RP′ :PGL(n+1,R)P′ →Aut(P′) denote the restriction g 7→
g|P′. An i0-dimensional partial cusp subgroup is one mapping under RP′ isomorphically
to a cusp subgroup of Aut(P′) acting on E ′−{v}, fixing v. When i0 = n−1, we will drop
the “partial” from the term “partial cusp group”.

An i0-dimensional cusp group is a finite extension of a projective conjugate of a dis-
crete cocompact subgroup of a group of an i0-dimensional partial cusp subgroup. If the
horospherical neighborhood with the p-end vertex v has the p-end holonomy group that
is a discrete (n−1)-dimensional cusp group, then we call the p-end to be cusp-shaped or
horospherical. (See Theorem 8.1.3.)

8.1. Main results

Our main result classifies CA R-p-ends. We need some facts of NPNC-ends that will
be explained in Section 7.2.

Given a hospherical R-p-end, the p-end holonomy group ΓΓΓv acts on a p-end neighbor-
hood U and ΓΓΓv is a subgroup of an (n−1)-dimensional cusp group Hv. By Lemma 3.1.8,

V :=
⋂

g∈Hv

g(U)

contains a Hv-invariant p-end neighborhood. Hence, V is a horospherical p-end neighbor-
hood of Ẽ. Thus, a horospherical R-end is pre-horospherical. Conversely, a pre-horospherical
R-end is a horospherical R-end by Theorem 8.1.3 under some assumption on O itself. (See
Definition 3.1.6.)

First, we clarify by Theorem 8.1.3:

COROLLARY 8.1.1. Let O be a strongly tame properly convex real projective n-
orbifold. Let E be an R-end of its universal cover Õ . Then E is a pre-horospherical
R-end if and only if Ẽ is a horospherical R-end. □

The following classifies the complete affine ends where we need some results from
Chapter 7. Since these have virtually abelian holonomy groups by Theorem 8.1.3, they are
classified in [8].

THEOREM 8.1.2. Let O be a strongly tame properly convex real projective n-orbifold.
Let Ẽ be an R-p-end of its universal cover Õ ⊂ Sn (resp. ⊂ RPn). Let ΓΓΓẼ denote the end
holonomy group. Then Ẽ is a complete affine R-p-end if and only if Ẽ is a horospherical
R-p-end or an NPNC-end with fibers of dimension n− 2 with the virtually abelian end-
fundamental group by altering the p-end vertex. Furthermore, if Ẽ is a complete affine
R-p-end and ΓΓΓẼ satisfies the weak middle eigenvalue condition, then Ẽ is a horospherical
R-p-end.

PROOF. Again, we assume that Ω is a domain of Sn. Theorem 8.1.4 is the forward
direction. Corollary 8.1.5 implies the second case above.

Now, we prove the converse using the notation and results of Chapter 7. Since a
horospherical R-p-end is pre-horospherical, Theorem 8.1.3 implies the half of the converse.
Given a p-NPNC-end Ẽ with fibers of dimension n− 2, Σ̃Ẽ is projectively isomorphic to
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an affine half-space. Using the notation of Proposition 7.3.19, K′′ is zero-dimensional and
the end holonomy group ΓΓΓẼ acts on K′′ ∗{v} for an end vertex v. There is a foliation in Σ̃Ẽ
by complete affine spaces of dimension n− 2 parallel to each other. The space of leaves
is projectively diffeomorphic to the interior of K′′ ∗ v′ for a point v′. Let U be the p-end
neighborhood for Ẽ. Then bdU is in one-to-one correspondence with Σ̃Ẽ by radial rays
from v. Hence, bdU has an induced foliation. Each leaf in bdU lies in an open hemisphere
of dimension n− 1. (See (7.1.2) in Section 7.2.) Also, ΓΓΓẼ acts on an open hemisphere
Hn−1

v′ of dimension (n−1) with boundary a great sphere Sn−2 containing v in the direction
of v′.

Now we switch the p-end vertex to a singleton {k′′} = K′′ from v. Then Hn−1
v′ corre-

sponds to a complete affine space An−1
k′′ . Each leaf projects to an ellipsoid in An−1

k′′ with a
common ideal point v corresponding to the direction of k′′v oriented away from k′′. The el-
lipsoids are tangent to a common hyperspace in Sn−1

k′′ . Hence, they are parallel paraboloids
in an affine subspace An−1

k′′ . The uniform positive translation condition gives us that the
union of the parallel paraboloids is An−1

k′′ . Hence, Ẽ is a complete R-end with k′′ as the
vertex. The last statement follows by Corollary 8.1.8. [SnS] □

8.1.1. The Horosphere theorem.

THEOREM 8.1.3 (Horosphere). Let O be a strongly tame convex real projective n-
orbifold, n ≥ 2. Let Ẽ be a pre-horospherical R-end of its universal cover Õ , Õ ⊂ Sn (resp.
⊂ RPn), and ΓΓΓẼ denote the p-end holonomy group. Then the following hold:

(i) The subspace Σ̃Ẽ = RvẼ
(Õ)⊂ Sn−1

vẼ
of directions of lines segments from the end-

point vẼ in bdÕ into a p-end neighborhood of Ẽ forms a complete affine subspace
of dimension n−1.

(ii) The norms of eigenvalues of g ∈ ΓΓΓẼ are all 1.
(iii) ΓΓΓẼ virtually is in a conjugate of an abelian parabolic or cusp subgroup of

SO(n,1) (resp. PO(n,1)) of rank n−1 in SL±(n+1,R) (resp. PGL(n+1,R)).
And hence Ẽ is cusp-shaped.

(iv) For any compact set K′ ⊂ O , O contains a horospherical end neighborhood
disjoint from K′.

PROOF. We will prove for the case Õ ⊂ Sn. Let U be a pre-horoball p-end neighbor-
hood with the p-end vertex vẼ , closed in Õ . The space of great segments from the p-end
vertex passing U forms a convex subset Σ̃Ẽ of a complete affine subspace Rn−1 ⊂ Sn−1

vẼ

by Proposition 1.4.1. The space covers an end orbifold ΣẼ with the discrete group π1(Ẽ)
acting as a discrete subgroup Γ′

Ẽ of the projective automorphisms so that Σ̃Ẽ/Γ′
Ẽ is projec-

tively isomorphic to ΣẼ .
(i) By Proposition 1.4.1, one of the following three happens:

• Σ̃Ẽ is properly convex.
• Σ̃Ẽ is foliated by complete affine subspaces of dimension i0, 1 ≤ i0 < n−1, with

the common boundary sphere of dimension i0 −1, the space of the leaves forms
a properly open convex subset Ko of Sn−i0−1, and ΓΓΓẼ acts on Ko cocompactly
but not necessarily discretely.

• Σ̃Ẽ is a complete affine subspace.
We aim to show that the first two cases do not occur.

Suppose that we are in the second case and 1 ≤ i0 ≤ n− 2. This implies that Σ̃Ẽ is
foliated by complete affine subspaces of dimension i0 ≤ n−2.
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Since ΓΓΓẼ acts on a properly convex subset K of dimension ≥ 1, an element g has a
norm of an eigenvalue > 1 and a norm of eigenvalue < 1 as a projective automorphism
on Sn−i0−1 by Proposition 1.1 of [18]. Hence, we obtain the largest norm of eigenvalues
and the smallest one of g in Aut(Sn) both different from 1. By Lemma 1.3.9, g is positive
bi-semi-proximal. Therefore, let λ1(g) > 1 be the greatest norm of the eigenvalues of g
and λ2(g)< 1 be the smallest norm of the eigenvalues of g as an element of SL±(n+1,R).
Let λvẼ

(g) > 0 be the eigenvalue of g associated with vẼ . The possibilities for g are as
follows

λ1(g)= λvẼ
(g) > λ2(g),

λ1(g)> λvẼ
(g) > λ2(g),

λ1(g) > λ2(g)= λvẼ
(g).

In all cases, at least one of the largest norm or the smallest norm is different from λvẼ
(g).

By Lemma 1.3.9, this norm is realized by a positive eigenvalue. We take gn(x) for a generic
point x ∈ U . As n → ∞ or n → −∞, the sequence {gn(x)} limits to a point x∞ in Cl(U)
distinct from vẼ . Also, g fixes a point x∞, and x∞ has a different positive eigenvalue from
λvẼ

(g). As x∞ ̸∈U , it should be x∞ = vẼ by the definition of the pre-horospheres. This is
a contradiction.

The first possibility is also shown not to occur similarly. Thus, Σ̃Ẽ is a complete affine
subspace.

(ii) If g ∈ ΓΓΓẼ has a norm of eigenvalue different from 1, then we can apply the second
and the third paragraphs above to obtain a contradiction. We obtain λ j(g) = 1 for each
norm λ j(g) of eigenvalues of g for every g ∈ ΓΓΓẼ .

(iii) Since Σ̃Ẽ is a complete affine subspace, Σ̃Ẽ/ΓΓΓẼ is a complete affine orbifold with
the norms of eigenvalues of holonomy matrices all equal to 1 where ΓΓΓ

′
Ẽ denotes the affine

transformation group corresponding to ΓΓΓẼ . (By D. Fried [80], this implies that π1(Ẽ) is
virtually nilpotent.) Again by Selberg Theorem 1.1.19, we can find a torsion-free subgroup
ΓΓΓ
′
Ẽ of finite-index. Then ΓΓΓ

′
Ẽ is in a cusp group by Proposition 7.21 of [68] (related to

Theorem 1.6 of [68]). By the proposition, we see that ΓΓΓ
′
Ẽ is in a conjugate of a parabolic

subgroup of SO(n,1) and hence acts on an (n− 1)-dimensional ellipsoid fixing a unique
point. Since a horosphere has a Euclidean metric invariant under the group action, the
image group is in a Euclidean isometry group. Hence, the group is virtually abelian by the
Bieberbach theorem.

Actually, there is a one-dimensional family of such ellipsoids containing the fixed
point where ΓΓΓ

′
Ẽ acts on.

Let U denote the domain bounded by the closure of the ellipsoid. There exist finite
elements g1, . . . ,gn representing cosets of ΓΓΓẼ/ΓΓΓ

′
Ẽ . If gi(U) is a proper subset of U , the

gn
i (U) is so and hence gn

i is not in ΓΓΓ
′
Ẽ for any n. This is a contradiction. Hence ΓΓΓẼ acts on

U also. By same reasoning, ΓΓΓẼ on every ellipsoid in a one-dimensional parameter space
containing a unique fixed point, and an ellipsoid gives us a horosphere in the interior of a
horoball. Hence, ΓΓΓẼ is a cusp group.

(iv) We can choose an exiting sequence of p-end horoball neighborhoods Ui where a
cusp group acts. We can consider the hyperbolic spaces to understand this.

[SnT] □

8.1.2. The forward direction of Theorem 8.1.2. The second case will be studied
later in Corollary 8.1.5. We will show the end Ẽ to be an NPNC-end with fiber dimension
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n−2 when we choose another point as the new p-end vertex for Ẽ. Clearly, this case is not
horospherical. (See Crampon-Marquis [68] for a similar proof.)

For the following note that Marquis classified ends for 2-manifolds [126] into cuspidal,
hyperbolic, or quasi-hyperbolic ends. Since convex 2-orbifolds are convex 2-manifolds
virtually, we are done for n = 2.

THEOREM 8.1.4 (Complete affine). Let O be a strongly tame properly convex n-
orbifold for n ≥ 3. Suppose that Ẽ is a complete-affine R-p-end of its universal cover
Õ in Sn ( resp. in RPn). Let vẼ ∈ Sn ( resp. ∈ RPn) be the p-end vertex with the p-end
holonomy group ΓΓΓẼ . Then

(i) we have following two exclusive alternatives:
• ΓΓΓẼ is virtually unipotent where all norms of eigenvalues of elements equal

1, or
• ΓΓΓẼ is virtually abelian where

– each g ∈ ΓΓΓẼ has at most two norms of the eigenvalues,
– at least one g ∈ ΓΓΓẼ has two norms, and
– if g∈ΓΓΓẼ has two distinct norms of the eigenvalues, the norm of λvẼ

(g)
has a multiplicity one.

– ΓΓΓẼ acts as a virtually unipotent group on the complete affine space
Σ̃Ẽ .

(ii) In the first case, ΓΓΓẼ is horospherical, i.e., cuspidal.

PROOF. We first prove for the Sn-version. Using Theorem 1.1.19, we may choose
a torsion-free finite-index subgroup. We may assume without loss of generality that Γ is
torsion-free since torsion elements have only 1 as the eigenvalues of norms and we only
need to prove the theorem for a finite-index subgroup. Hence, Γ does not fix a point in Σ̃Ẽ .

(i) Since Ẽ is complete affine, Σ̃Ẽ ⊂ Sn−1
vẼ

is identifiable with an affine subspaceAn−1.

ΓΓΓẼ induces Γ′
Ẽ in Aff(An−1) that are of form x 7→ Mx+ b⃗ where M is a linear map Rn−1 →

Rn−1 and b⃗ is a vector in Rn−1. For each γ ∈ ΓΓΓẼ ,

• let γRn−1 denote this affine transformation,
• we denote by L̂(γRn−1) the linear part of the affine transformation γRn−1 , and
• let v⃗(γRn−1) denote the translation vector.

A relative eigenvalue is an eigenvalue of L̂(γRn−1).
At least one eigenvalue of L̂(γRn−1) is 1 since γ acts without fixed point on Rn−1. (See

[113].) Now, L̂(γRn−1) has a maximal invariant vector subspace A of Rn−1 where all norms
of the eigenvalues are 1.

Suppose that A is a proper γ-invariant vector subspace of Rn−1. Then γRn−1 acts on
the affine space Rn−1/A as an affine transformation with the linear parts without a norm
of eigenvalue equal to 1. Hence, γRn−1 has a fixed point in Rn−1/A, and γRn−1 acts on an
affine subspace A′ parallel to A.

A subspace H containing vẼ corresponds to the direction of A′ from vẼ . The union of
segments with endpoints vẼ ,vẼ− in the directions in A′ ⊂ Sn−1

vẼ
is in an open hemisphere

of dimension < n. Let H+ denote this space where bdH+ ∋ vẼ holds. Since ΓΓΓẼ acts on
A′, it follows that ΓΓΓẼ acts on H+. Then γ has at most two eigenvalues associated with H+

one of which is λv(γ) and the other is to be denoted λ+(γ). Since γ fixes vẼ and there is



220 8. CHARACTERIZATION OF COMPLETE R-ENDS

an eigenvector in the span of H+ associated with λ+(γ), γ has the matrix form

γ =


λ+(γ)L̂(γRn−1) λ+(γ )⃗v(γRn−1) 0

0 λ+(γ) 0

∗ ∗ λvẼ
(γ)


where we have

λ+(γ)
n det(L̂(γRn−1))λvẼ

(γ) =±1.

(Note λvẼ
(γ−1) = λvẼ

(γ)−1 and λ+(γ
−1) = λ+(γ)

−1.)
We will show that L̂(γRn−1) for every γ ∈ ΓΓΓẼ is unit-norm-eigenvalued below. As

before, λ1(γ) denote the largest norm of the eigevalues of γ . Note that λ1(γ) ≥ λ+(γ)
since L̂)(γRn−1) has an eigenvalue equal to 1. There are following possibilities for each
γ ∈ ΓΓΓẼ :

(a) λ1(γ)> λ+(γ) and λ1(γ)> λvẼ
(γ).

(b) λ1(γ) = λ+(γ) = λvẼ
(γ).

(c) λ1(γ) = λ+(γ),λ1(γ)> λvẼ
(γ).

(d) λ1(γ)> λ+(γ),λ1(γ) = λvẼ
(γ).

Suppose that γ satisfies (b). The relative eigenvalues of γ on Rn−1 are all ≤ 1. Either
γ is unit-norm-eigenvalued or we can take γ−1 and we are in case (a).

Suppose that γ satisfies (a). There exists a projective subspace S of dimension ≥
0 where the points are associated with eigenvalues with the norm λ1(γ) where λ1(γ) >
λ+(γ),λvẼ

(γ).
Let S′ be the subspace spanned by H+ and S. Let U be a p-end neighborhood of Ẽ.

Since the space of directions of U is Rn−1, we have U ∩S′ ̸= /0. We can choose two generic
points y1 and y2 of U ∩S′−H so that y1y2 meets H in its interior.

Then we can choose a subsequence {mi}, {mi} → ∞, so that {γmi(y1)} → f and
{γmi(y2)}→ f− as i→+∞ unto relabeling y1 and y2 for a pair of antipodal points f , f− ∈ S.
This implies f , f− ∈Cl(Õ), and Õ is not properly convex, which is a contradiction. Hence,
(a) cannot be true.

We showed that if any γ ∈ ΓΓΓẼ satisfies (a) or (b), then γ is unit-norm-eigenvalued.
If γ satisfies (c), then

(8.1.1) λ1(γ) = λ+(γ)≥ λi(γ)≥ λvẼ
(γ)

for all other norms of eigenvalues λi(γ): Otherwise, γ−1 satisfies (a), which cannot happen.
Similarly if γ satisfies (d), then we have

(8.1.2) λ1(γ) = λvẼ
(γ)≥ λi(γ)≥ λ+(γ)

for all other norms of eigenvalues λi(γ). We conclude that either γ is unit-norm-eigenvalued
or satisfies (8.1.1) or (8.1.2).

There is a homomorphism

λvẼ
: ΓΓΓẼ → R+ given by g 7→ λvẼ

(g).

This gives us an exact sequence

(8.1.3) 1 → N → ΓΓΓẼ → R → 1

where R is a finitely generated subgroup of R+, an abelian group. For an element g ∈
N, λvẼ

(g) = 1. Since the relative eigenvalue corresponding to L̂(gRn−1)|A is 1, a matrix
form shows that λ+(g) = 1 for g ∈ N. (8.1.1) and (8.1.2) and the conclusion of the above
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paragraph show that g is unit-norm-eigenvalued. Thus, N is therefore virtually nilpotent
by Theorem 1.3.7. (See Fried [80]). Taking a finite cover again, we may assume that N is
nilpotent.

Since R is a finitely generated abelian group, ΓΓΓẼ is solvable by (8.1.3). Since Σ̃Ẽ =
Rn−1 is complete affine, Proposition S of Goldman and Hirsch [90] implies

det(gRn−1) = 1 for all g ∈ ΓΓΓẼ .

If γ satisfies (c), then all norms of eigenvalues of γ except for λvẼ
(γ) equal λ+(γ)

since otherwise by (8.1.1), norms of relative eigenvalues λi(γ)/λ+(γ) are ≤ 1, and the
above determinant is less than 1. Similarly, if γ satisfies (d), then similarly all norms of
eigenvalues of γ except for λvẼ

(γ) equals λ+(γ).
Therefore, only (b), (c), and (d) hold and gRn−1 is unit-norm-eigenvalued for all g ∈

ΓΓΓẼ .
By Theorem 1.3.7, ΓΓΓẼ |Rn−1 is an orthopotent group and hence is virtually unipotent

by Theorem 3 of Fried [80].
Now we go back to ΓΓΓẼ . Suppose that every γ is orthopotent. Then we have the first

case of (i). If not, then the second case of (i) holds. Immediately following Collorary 8.1.5
proves the result.

(ii) This follows by Lemma 3.1.15. [SnT] □

8.1.3. Complete affine ends again. We now study the second case from the conclu-
sion of Theorem 8.1.4.

COROLLARY 8.1.5 (non-cusp complete-affine p-ends). Let O be a strongly tame prop-
erly convex n-orbifold for n ≥ 3. Let Ẽ be a complete affine R-p-end of its universal cover
Õ in Sn. Let vẼ ∈ Sn be the p-end vertex with the p-end holonomy group ΓΓΓẼ . Suppose
that Ẽ is not a cusp p-end. Then we can choose a different point as the p-end vertex for Ẽ
so that Ẽ is a quasi-joined R-p-end with fiber homeomorphic to cells of dimension n− 2.
Also, the end fundamental group is virtually abelian.

PROOF. We will use the terminology of the proof of Theorem 8.1.4. Theorem 8.1.4
shows that ΓΓΓẼ is virtually nilpotent and with at most two norms of eigenvalues for each
element. By taking a finite-index subgroup, we assume that ΓΓΓẼ is nilpotent. Let Z be the
Zariski closure, a nilpotent Lie group. We may assume that Z is connected by taking a finite
index subgroup of ΓΓΓẼ . Theorem 8.1.4, says ΓΓΓẼ is isomorphic to a virtually unipotent group
by resticting to the affine space Σ̃Ẽ . Hence, Z is simply connected and hence contractible.
Since ΓΓΓẼ ∩Z is a cocompact lattice in Z, and ΓΓΓẼ has the virtual cohomological dimension
n−1, it follows that Z is (n−1)-dimensional.

By Lemma 3.1.10, Z acts transitively on the complete affine subspace Σ̃Ẽ since ΓΓΓẼ
acts cocompactly on it.

The orbit map Z → Z(x) for x ∈ Σ̃Ẽ is a fiber bundle over the contractible space with
fiber the stabilizer group. Since dimZ = n−1, it follows that it must be discrete. Since Σ̃Ẽ
is contractible, the stabilizer is trivial.

Since Z fixes vẼ , we have a homomorphism

(8.1.4) λvẼ
: Z ∋ g → λvẼ

(g) ∈ R.

Let N denote the kernel of the homomorphism. By Theorem 1.3.7, N is an orthopotent Lie
group since it has only one norm of the eigenvalues equal to 1.

Since Ẽ is a complete affine R-p-end, RvẼ
(U) is a complete affine space equal to Σ̃Ẽ .

By taking a convex hull of finite number of radial rays from vẼ , we may choose a properly



222 8. CHARACTERIZATION OF COMPLETE R-ENDS

convex p-end neighborhood U of Ẽ. Also, we may choose so that the closure of U is in
another such p-end neighborhood. Thus, bdU ∩ Õ is in one-to-one correspondence with
Σ̃Ẽ . We modify U to ⋂

g∈Z

g(U) =
⋂

g∈F

g(U).

This contains a nonempty properly convex open set by Lemma 3.1.8. We may assume that
Z acts on a properly convex p-end neighborhood U of Ẽ. Since Z acts transitively on Σ̃Ẽ , it
acts so on an embedded convex hypersurface δU := bdU ∩ Õ . This is the set of endpoints
of maximal segments from vẼ in the directions of the complete affine space Σ̃Ẽ . Since this
characterization is independent of Õ , δU is an orbit of Z. Since Z is a Lie group, δU is
smooth.

The smooth convex hypersurface δU is either strictly convex or has a foliation fibered
by totally geodesic submanifolds. Since Σ̃Ẽ is complete affine, these submanifolds must be
complete affine subspaces. Since Cl(U) contains these and Cl(U) is properly convex, this
is a contradiction. Hence, δU is strictly convex.

Finally, since δU is in one-to-one correspondence with Σ̃Ẽ , δU/ΓΓΓẼ is a compact orb-
ifold of codimension 1.

Let A be a hyperspace containing vẼ in the direction of bdΣ̃Ẽ = Sn−2 ⊂ Sn−1
vẼ

. Then
UA := A∩Cl(U) is a properly convex compact set on which Z acts. By Lemma 8.1.7, Uo

A/Z
is compact. By Lemma 8.1.6, UA is a properly convex segment.

We will complete the proofs after Lemmas 8.1.6 and 8.1.7.
□

LEMMA 8.1.6. Let a simply connected nilpotent Lie group S act cocompactly and
effectively on a properly convex open domain J. Suppose that each element of S has at most
two norms of eigenvalues and it fixes a point p in the boundary of J. Then the dimension
of the domain is 0 or 1.

PROOF. Suppose that dimJ > 1. By Lemma 3.1.10, S acts transitively on J. The
action is proper since there is a Hilbert metric on J. Since S is nilpotent and is simply
connected, S is contractible. Since the stabilizer of S at a point x ∈ J is compact, it is trivial
in S. Hence S is diffeomorphic to a dimJ-dimensional cell.

Let λp(g) for g ∈ S denote the associated eigenvalue of g at p for unit determinant
matrix representatives. Let NS denote the kernel of the homomorphism S → R+ given by
g 7→ λp(g). Then NS is an orthopotent group of dimension dimJ−1.

Then NS acts on Rp(J) as an orthopotent Lie group. Rp(J)/NS is compact since J/S
maps onto Rp(J)/NS induced from the onto map J → Rp(J).

The stabilizer of a point of Rp(J) acts on a segment s from p in J. The existence of
two fixed directions of eigenvalue 1 implies that each point of s is a fixed point, and hence
the stabilizer is trivial by the above. Therefore, the properness and freeness of the action
of NS on Rp(J) follow.

By Proposition 3.1.14, the orbit NS(x) for x ∈ J is an ellipsoid of dimension dimJ−1.
Hence, S/NS is a 1-dimensional group. The elements of NS are of form

(8.1.5) k =


1 0 0

v⃗T
k IdimJ−1 0

||⃗vk||2
2 v⃗k 1

 for v⃗k ∈ RdimJ−1.
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We may write for g ∈ N,

(8.1.6) g =


a1(g) 0 0

a⃗T
4 (g) A5(g) 0

a7(g) a⃗5(g) a9(g)

 .

By Proposition 7.3.7 and Lemma 7.3.9, any element g ∈ S induces an (dimJ − 1)×
(dimJ−1)-matrix Mg given by gN (⃗v)g−1 = N (⃗vMg) where

Mg =
1

a1(g)
(A5(g))−1 = µgO5(g)−1

for O5(g) in a compact Lie group GẼ where µg =
a5(g)
a1(g)

= a9(g)
a5(g)

.
Reasoning as in the proof of Lemma 7.3.10, we can find coordinates so that for every

g ∈ N,

(8.1.7) g =


a1(g) 0 0

a1(g)⃗vT
g a5(g)O5(g) 0

a7(g) a5(g)⃗vgO5(g) a9(g)

 ,O5(g)−1 = O5(g)T ,

and the form of NS is not changed. Also, a7(g) = a1(g)(α7(g)+ ||v||2 /2). as we can show
following the beginning of Section 7.3.3. Recall α7 from Section 7.3.2.2. Here, α7(g) = 0
since otherwise J cannot be properly convex since g will translate the orbits in the affine
space where p is the infinity as in Remark 7.3.13.

If there is an element g with µg ̸= 1, then the group N is solvable and not nilpotent.
If µg = 1 for all g ∈ N, then from the matrix form we see that N has only 1 as norms of
eigenvalues with a1(g) = a5(g) = a9(g) for g ∈ N, and N acts on each ellipsoid orbit of NS.
Hence, J/N = J/NS is not compact. This is a contradiction. Therefore dimJ = 0,1. □

LEMMA 8.1.7. Uo
A/Z is compact.

PROOF. Suppose that dimUo
A = n−1. The orbit map Z → Z(x) for x∈Uo

A is a fibration
over a simply connected domain. The stabilizer must be compact since Uo

A has a Hilbert
metric. Since Z being a simply connected nilpotent Lie group is contractible, the stabilizer
has to be trivial. Since dimZ = n− 1, Z acts transitively on Uo

A and Uo
A/Z is compact by

Lemma 3.1.11.
Suppose now that dimUo

A = j0 < n− 1. Let L be an ( j0 + 1)-dimensional subspace
containing UA meeting A transversely. Let l be the j0-dimensional affine subspace of the
complete affine space Σ̃Ẽ corresponding to L. Since

g(UA) =UA,UA ⊂ L,g(L) and dimL = j0 +1,g ∈ Z

it follows that

g(L)∩L = ⟨UA⟩ or g(L) = L, which implies g(l) = l or g(l)∩ l = /0.

Recall that Z acts transitively and freely on the complete affine space Σ̃Ẽ from the beginning
of the Section 8.1.3. Since dim l = j0, it follows that the subgroup Ẑl := {g ∈ Z|g(l) = l}
has the dimension j0.

Now Ẑl acts on on Uo
A . As proved above, the stabilizer of Ẑl of a point of Uo

A is
trivial since UA ∩L is properly convex and Ẑl is nilpotent without a compact subgroup of
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dimension > 0. Hence, Ẑl acts transitively on Uo
A as in the first paragraph by Lemma 3.1.11

since dim Ẑl = dimUo
A , and Uo

A/Ẑl =Uo
A/Z is compact. □

PROOF OF PROPOSITION 8.1.5 CONTINUED. If dimUA = 0, then U is a horospheri-
cal p-end neighborhood where ΓΓΓẼ is unimodular and cuspidal by Theorem 8.1.3. Hence,
dimUA = 1 by Lemma 8.1.6.

Let q denote the other endpoint of the segment UA than vẼ . Since U is convex, Rq(U)
is a convex open domain. Since an element of ΓΓΓẼ has two eigenvalues, Each radial segment
from q maximal in Õ meets the smooth strictly convex hypersurface δU and transversely
since a radial segment cannot be in δU . (Recall that δU is smooth and strictly convex from
the first part of the proof.)

We have Rq(U) = Rq(δU): Since Σ̃vẼ
is complete affine, and U is properly convex,

each segment from vẼ passes δU as we lengthen it. Hence, bdU = δU ∪UA since UA is
precisely bdU ∩A for the hyperspace A of Sn as defined earlier. (Recall that A is the hyper-
space containing vẼ in the direction of bdΣ̃Ẽ = Sn−2 ⊂ Sn−1

vẼ
. ) Hence, for each segment

in U from q must end at a point of bdU ∩ Õ = δU since δU is strictly convex. By the
transversality, a segment from q ending at δU must have one-side in U . By strict convexity
of δU , it is clear that each ray in the direction of Σ̃Ẽ from q meets δU transversely.

Since the ΓΓΓẼ -action on δU is proper, so is its action on Rq(U). Hence, U can be
considered a p-end neighborhood with radial lines from Rq foliating U by Lemma 3.1.5.

There is an embedding from δU to Rq(δU) = Rq(U) ⊂ Rq(Õ). Since δU/ΓΓΓẼ is a
compact orbifold, so is Rq(U)/ΓΓΓẼ .

By the third item in the second item of Theorem 8.1.4, Rq(U) is not complete-affine
since the norm λq(g) for some g ∈ ΓΓΓẼ has a multiplicity n, n < n+ 1, and n > 2 by as-
sumption.

Suppose that Rq(U) is properly convex. Elements of ΓΓΓẼ have at most two distinct
norms of eigenvalues. Since Rq(U) is homeomorphic to bdU ∩ Õ with a compact quotient
by ΓΓΓẼ , Rq(U) has a compact quotient by ΓΓΓẼ , and dimRq(U) = n−1 ≥ 2. By Lemma 8.1.6,
this is a contradiction. Hence, Uq is not properly convex.

Thus, q is the p-end vertex of an NPNC-end for U foliated by radial segments from q.
Since the associated upper-left part has only two norms of eigenvalues by Lemma 8.1.6,
and the properly convex leaf space Ko is 1-dimensional and has a compact quotient, the
fibers have the dimension n−2 = n−1−1. (Also, Ko is a properly convex segment by our
definition.) Therefore, Rq(U) is foliated by n−2-dimensional complete affine subspaces.

Suppose that Rq(Õ) is different from Rq(U). Then Rq(Õ) = KR ∗Si0−1 and Rq(U) =

Kq ∗Si0−1 for a properly convex domain Kq and a convex domain KR containing Kq. Then
there is some point x ∈ Õ with qx not in Rq(U). Then by taking elements g with maximal
norm in K̂ := {vẼ} from the forth item of Proposition 1.4.13 and using Proposition 7.3.19
and λvẼ

(g) = 1, we obtain that gn(x) converges to the point antipodal to a point of K̂. This
contradicts the proper convexity of Õ . Hence, Rq(U) = Rq(Õ) and by Lemma 3.1.5 we
obtain that U is a R-p-end neighborhood of a p-end vertex q.

Recall the Lie group N from (8.1.4). Since Z acts on Uq transitively and λvẼ
(g) =

λq(g),g ∈ N, the Lie group N acts on each complete affine leaf transitively. N is a nilpotent
Lie group since it is a subgroup of Z. Also, N is orthopotent since elements of N have only
one norm of the eigenvalues by Theorem 1.3.7. We can apply Proposition 3.1.14 to the
hyperspace P containing the leaves with a cocompact subgroup of N acting on it. As U ∩P
is properly convex, rP(N) is a cusp group.
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Let x1, . . . ,xn+1 be the coordinates of Rn+1. Now give coordinates so that q=((0,0, . . . ,1))
and vẼ = ((1,0, . . . ,0)). Since these are fixed points, we obtain that elements of N can be
put into forms:

(8.1.8) N (⃗v) :=


1 0 0 0

0 1 0 0

0 v⃗T I 0

0 1
2 ||⃗v||

2 v⃗ 1

 for v⃗ ∈ Rn−2.

Now, ΓΓΓẼ satisfies the transverse weak middle eigenvalue condition with respect to
q since ΓΓΓẼ has just two eigenvalues and Z is generated by N and gt for a nonunipotent
element g of ΓΓΓẼ . N admits an invariant Euclidean structure being a cusp group. Since
dimK = 1, Theorem 7.1.4 shows that q is an NPNC R-p-end vertex for U covering the
strongly tame convex real projective orbifold U/ΓΓΓẼ .

Finally, ΓẼ is virtually abelian: From (7.4.16), S(g) is a 1× 1-matrix or 0× 0-one.
From the matrix form, the Zariski closure Z is an extension of an orthopotent Lie group.
Since Σ̃Ẽ equals Ai0 × I for an interval or a singleton I, i0 = n−2,n−1, Z acts on it. O5
extends to a homomorphism O5 : Z → O(i0). Let ZK denote the kernel. Then ZK also acts
properly and cocompactly on Σ̃Ẽ since Z/ZK is compact. It is easy to see ZK is abelian from
the matrix form. Also, we can put a Z-invariant Euclidean metric on the complete affine
space Σ̃Ẽ by the product metric form. Then the Bieberbach theorem implies the result. □

If we require the weak middle eigenvalue conditions for a given vertex, the complete-
ness of the end implies that the end is cusp.

COROLLARY 8.1.8 (cusp and complete affine). Let O be a strongly tame properly
convex n-orbifold. Suppose that Ẽ is a complete affine R-p-end of its universal cover Õ in
Sn (resp. in RPn). Let vẼ ∈ Sn (resp. ∈ RPn) be the p-end vertex with the p-end holonomy
group ΓΓΓẼ . Suppose that ΓΓΓẼ satisfies the weak middle eigenvalue condition with respect to
vẼ . Then Ẽ is a complete affine R-end if and only if Ẽ is a cusp R-end.

PROOF. It is sufficient to prove for the case Õ ⊂ Sn. Since a horospherical end is a
complete affine end by Theorem 8.1.3, we need to show the forward direction only. In
the second possibility of Theorem 8.1.4, the norm of λvẼ

(γ) has a multiplicity one for a
nonunipotent element γ with λvẼ

(γ) or λvẼ
(γ−1) equal to the maximal norm. This violates

the weak middle eigenvalue condition, and only the first possibility of Theorem 8.1.4 holds.
[SnT] □

8.2. Some miscellaneous results from the above.

8.2.1. J. Porti’s question. The following answers a question that we discussed with
J. Porti at the UAB, Barcelona in 2013 whether there is a noncuspidal unipotent group
acting as an end holonomy group of an R-end. Note that this was also proved by Theorem
5.7 in Cooper-Long-Tillman [67] using the duality theory of ends. Here we do not need to
use duality.

The following generalizes the result of D.Fried [80].

COROLLARY 8.2.1. Assume that O is a convex real projective strongly tame orbifold
with an end E. Suppose that eigenvalues of elements of ΓΓΓẼ have unit norms only. Then Ẽ
is horospherical, i.e., cuspidal.
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PROOF. First, we assume that Õ ⊂ Sn. By Lemma 3.1.15, we only need to show that
Ẽ is a complete affine end.

By Theorem 1.3.7, ΓΓΓẼ is orthopotent. Theorem 1.4.5 shows that Σ̃Ẽ is complete affine.
[SnS] □

8.2.2. Why λvẼ
(g) ̸= 1? We will need the following in proving Lemma 12.1.2.

COROLLARY 8.2.2. Let O be a strongly tame properly convex n-orbifold. Suppose
that Ẽ is an NPNC R-p-end of its universal cover Õ in Sn or (resp. in RPn). Let vẼ be
the p-end vertex with the p-end holonomy group ΓΓΓẼ . Suppose that π1(Ẽ) satisfies (NS) and
dimKo = 0,1 for the leaf space Ko. Then for some

g ∈ ΓΓΓẼ ,λvẼ
(g) ̸= 1.

PROOF. It is sufficient to prove for the case Õ ⊂ Sn. Suppose that λ⃗vẼ
(g) = 1 for all

g ∈ ΓΓΓẼ .
A ΓẼ -invariant i0-dimensional subspace Si0

∞ contains vẼ as we discussed in by Section
7.1.1.

Suppose that every element of ΓΓΓẼ is unit-norm-eigenvalued. By Theorem 1.3.7, ΓΓΓẼ
is orthopotent. By Fried [80], there exists a nonorthopotent element in ΓΓΓẼ since Σ̃Ẽ is not
complete affine. Hence, there exists an element g ∈ ΓΓΓẼ that is not unit-norm-eigenvalued.

We show that the transverse weak middle eigenvalue condition for Ẽ holds: Sup-
pose not. We find an element g of ΓΓΓẼ not satisfying the condition of the transverse weak
middle eigenvalue condition with λ1(g) > 1. For a real number µ equal to λ1(g), the
subspace Rµ(g) projects to Si0

∞ since otherwise the transverse weak middle eigenvalue
condition holds. There exists a g-invariant subspace P̂g ⊂ Si0

∞ that is the projection of⊕
µ=λ1(g)Rµ(g). (See Definition 1.3.1.) This is a proper subspace since vẼ has associated

eigenvalue 1 strictly less than λg. Hence, dim P̂g ≤ i0 −1.
We define Pg the projection of ⊕

µ<λ1(g)

Rµ(g)⊂ Rn+1.

Then Pg is complementary to P̂g. Thus, dimPg ≥ n− i0, and Pg ∋ vẼ .
Under the projection to Sn−1(vẼ), Pg goes to a subspace P′

g of dimPg −1 ≥ n− i0 −1.
As described in Section 7.2, S̃Ẽ is foliated by i0-dimensional complete affine subspaces.
Since dim S̃Ẽ = n−1, these i0-dimensional leaves must meet P′

g of dimension ≥ n−1− i0.
Thus, any p-end neighborhood U of Ẽ meets Pg. There must be an antipodal pair P̃g in

P̂g that is the projection of the eigenspace of g with the associated eigenvalue whose norm
is λ1(g)> 1.

L :=U ∩ (Pg ∗ P̃g)⊂ Pg ∗ P̃g

is a nonempty open domain meeting Pg, and L−Pg has two components. Let x,y be generic
points in distinct components in L−Pg. Then {gn({x,y})} geometrically converge to an
antipodal pair of points in P̂g. Since this set is in Cl(O), this contradicts the proper con-
vexity of O . Thus, the transverse weak middle eigenvalue condition of Ẽ holds.

The premises of Theorem 7.1.4 except for the strong irreducibility of the holonomy
group of π1(O) are satisfied, and Theorem 7.1.4 classifies the ends. Suppose that h(π1(O))
is strongly irreducible. We apply Theorem 7.1.4. Let Ẽ be a p-end corresponding to one
of these, and π1(Ẽ) acts on a properly convex domain K′′oi disjoint from v⃗Ẽ . We showed
in the proof of Proposition 7.3.14 the existence of elements where all the associated norms
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of eigenvalues of the subspace containing K′′ are > 1 and the rest of the norms of the
eigenvalues are < 1 by (7.3.43).) This is a contradiction to the assumption λvẼ

(g) = 1.
Thus, these types of ends do not occur.

Suppose that h(π1(O)) is virtually reducible. By the contrapositive of Theorem 7.3.22,
(ii) of the conclusion of Proposition 7.3.19 could hold. Again µg = 1 for all g ∈ ΓΓΓẼ by
Proposition 7.4.8 and the corresponding part showing µg = 1 of the proof of Theorem
7.3.22 where we do not need strong irreducibility of h(π1(O)). Now, matrices of form
(7.3.43) give us the same contradiction as in the above paragraph. [SnT] □





Part 3

The deformation space of convex real
projective structures



The third part is devoted to understanding the deformation spaces of convex real pro-
jective structures on orbifolds with radial or totally geodesic ends. The end goal is to prove
some versions of the Ehresmann-Thurston-Weil principle.

In Chapter 9, we give the precise definition of the deformation spaces. We show
that the deformation space of real projective structures on a strongly tame orbifold with
some conditions on the ends is mapped locally homeomorphically under the holonomy
map to the character space of the fundamental group of the orbifold with corresponding
conditions. Here, we are not concerned with convexity. Thurston’s idea of deformation via
John Morgan as described in Lok [121] by charts, works well here as well.

In Chapter 10, we will show that a convex real projective orbifold is strictly convex
with respect to the ends if and only if the fundamental group is hyperbolic with respect
to the end fundamental groups. Basic tools are from Yaman’s work [157] generalizing
the Bowditch’s description of hyperbolic groups. That is, we look at triples of points in
the boundary of the universal cover and show that the action is properly discontinuous.
In addition, we show that the action of the group on the fixed points of end fundamental
groups is parabolic in their sense. This generalizes the prior work of Cooper-Long-Tillman
[67] and Crampon-Marquis [68] for convex real projective manifolds with cusp ends. The
concept of relative hyperbolic ends depends on the types of ends here unfortunately. Our
aim was to generalize to orbifolds with our class of ends.

In Chapter 11, we will show that the deformation space of convex real projective
structures on a strongly tame orbifold with some conditions on the ends is identifiable with
the union of components of the character space of the fundamental group of the orbifold
with corresponding end conditions.

The openness part here continues that of Chapter 9. Here, the point is to prove the
preservation of convexity under small perturbations. The proof consists of showing that we
can patch the Hessian functions on the perturbed compact part with the Hessian functions
on the end neighborhoods approximating the original Hessian metrics by finding approx-
imating convex domains to the original covering convex domains. Cooper-Long-Tillman
[67] uses the intrinsic Hessian metric instead.

The closedness part generalizes the previous work Choi-Goldman [54]. We use the end
condition showing us that the sequence of covering convex domains can only degenerate
to a point or a hemisphere. Then using Benzecri’s work [25] putting the domains in a
fixed ball and containing a fixed smaller ball, we show that the domain has to be actually
properly convex.

Finally, we go to Chapter 12. We discuss our nicest cases Corollary 12.1.4 and 12.1.5
where the Ehresmann-Thurston-Weil principle holds in a simple way: the deformation
space of the orbifold identifies with a union of components of character space of the orb-
ifold fundamental group. These include the Coxeter orbifolds admitting complete hyper-
bolic structures.



CHAPTER 9

The openness of deformations

A real projective structure sometimes admits deformations to parameters of real pro-
jective structures. We will prove the local homeomorphism between the deformation space
of real projective structures on such an orbifold with radial or totally geodesic ends with
various conditions with the SL±(n+1,R)-character space (resp. PGL(n+1,R)-character
space) of the fundamental group with corresponding conditions. However, the convex-
ity issue will not be studied in this chapter. Our approach will be to work with radiant
affine structures of one dimension higher by affine suspension construction and prove the
results. Then the real projective versions will follow easily. In Section 9.1, we will state
the main results recall some definitions such as geometric structures, boundary restrictions,
and the deformation spaces. In Sedtion 9.2, we will prove the semialgebraic properties of
approapriate parts of character varieties. In Section 9.3, we will introduce a way to com-
pactify our orbifolds and related these to the local homeomorphism properties. We will
also define the deformation spaces. In Section 9.4, we prove the main result of the chapter
Theorem 9.4.5, showing the openness of the deformation space in the character space. We
first define the end conditions for real projective structures as determined by sections. We
describe how to perturb the horospherical ends to lens-shaped ones in the affine setting.
Then we state the main results. In Section 9.5, we will identify the deformation spaces as
defined in our earlier papers [50] and [58] as stated in Chapter 2 to the deformation spaces
here.

9.1. Deformation spaces and the spaces of holonomy homomorphisms

Given a real projective orbifold O , we add the restriction of the end to be a radial or a
totally geodesic type. The end will be either assigned R-type or T -type.

• An R-type end is required to be radial.
• A T -type end is required to have totally geodesic properly convex ideal bound-

ary components or be horospherical.
Recall that a strongly tame orbifold will always have such an assignment in this mono-
graph, and finite-covering maps will always respect the types. Let E1, . . . ,Ee1 be the R-
ends, and Ee1+1, . . . ,Ee1+e2 be the T -ends.

Recall that our strongly tame orbifold O comes with a compact orbifold Ō with
smooth boundary whose interior equals O . Each boundary component of Ō is said to
be the ideal boundary component of O .

DEFINITION 9.1.1. The radial foliation gives us a smooth parameterization of an end
neighborhood U of a radial end or horospherical end E of O by ΣE ×(0,1) where x×(0,1)
is the radial line for each x ∈ ΣE since we can choose an embedded hypersurface transverse
to the radial rays. We assume that as t → 1, the ray escapes to the end.

Let E be a T -end. We are given an end neighborhood U diffeomorphic to SE × (0,1)
where SE is the ideal boundary component. We identify U with SE ×(0,1) in SE ×(0,1] by

231
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identity. Up to isotopies, SE ×{1} identifies with the ideal boundary of Ō corresponding
to E. This is the compatibility condition of Ō with totally geodesic end structure.

For each R-end, we require that a vector field tangent to the leaves extends to a smooth
vector field transverse to the corresponding ideal boundary component of Ō . For each T-
end, the identification of U to SE × (0,1) extends to the closure of U in Ō and SE × [0,1].
Recall that these are the compatibility condition of R-end structures and T-end structures
with the compactifiction Ō of O from Section 3.1.

Also, Ō is a very good orbifold since we can identify Ō with O −U for a union U
of open end neighborhoods of product forms as above. This is obtained by identifying
O by O −Cl(U) by an isotopy preserving radial foliations and taking the closures. (See
Theorem 1.1.19.)

There is an obvious isomorphism π1(O) → π1(Ō) since we can perturb any G -path
in Ō to one in O . For the universal cover Ô of Ō , there is an embedding Õ → Ô as an
inclusion map to a dense open subset. We will always identify Õ with the dense subset.
(See [32].)

An isotopy i : O → O is a self-diffeomorphism so that there exists a smooth orbifold
map J : O × [0,1]→ O , so that

it : O → O given by it(x) = J(x, t)

are self-diffeomorphisms for t ∈ [0,1] and i = i1, i0 = IO . We require it to be restrictions of
isotopies

īt : Ō → Ō given by īt(x) = J̄(x, t)

are self-diffeomorphism for t ∈ [0,1] and J̄ : Ō → Ō is a smooth orbifold map.
Note that the radial structures for each R-end and the totally geodesic structure for

each T-end is preserved since we required the radial foliations to extend to Ō smoothly and
the ideal boundary component to be the boundary component of Ō by the compatibility
condition above in Sections 3.1.2 and 3.1.3.

We define DefE (O) as the deformation space of real projective structures on O with
end structures; more precisely, this is the quotient space of the real projective structures on
O satisfying the above conditions for ends of type R and T under the isotopy equivalence
relations. We define the topology more precisely in Section 9.3.1. (See [49], [33] and [87]
for more details. )

Recall that an isotopy of an orbifold O is a map f : O →O with a map F : O× I →O
so that

• Ft : O → O for Ft(x) := F(x, t) every fixed t is an orbifold diffeomorphism,
• F0 is the identity, and
• f = F1.

Given an (X ,G)-structure on another orbifold O ′, any orbifold diffeomorphism f : O →O ′

induces an (X ,G)-structure pulled back from O ′ which is given by using the preimages in
O of the local models of O ′.

DEFINITION 9.1.2. Let ι : O → O is an isotopy. We may choose a lift ι̃ : Õ → Õ of ι

so that for the isotopy F : O × I → O with F0 = IO and Ft = ι has a lift F̃ so that F̃0 = IÕ
and F̃1 = ι̃ . We call such a map ι̃ an isotopy-lift.

For now, we restrict to compact orbifolds. Suppose that O is compact. We define the
isotopy-equivalence space D̃efX ,G(O) as the space of development pairs (dev,h) quotient
by the isotopy-lifts of the universal cover Õ of O . The deformation space DefX ,G(O) is
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given by the quotient of D̃efX ,G(O
′) by the action of G: g(dev,h(·)) = (g◦dev,gh(·)g−1).

(See [49] for details.) We can also interpret as follows: The deformation space DefX ,G(O)
of the (X ,G)-structures is the space of all (X ,G)-structures on O quotient by the isotopy
pullback actions.

This space can be thought of as the space of pairs (dev,h) with the compact open
Cr-topology for r ≥ 1 and the equivalence relation generated by the isotopy relation

• (dev,h)∼ (dev′,h′) if dev′ = dev◦ ι and h′ = h for an isotopy-lift ι of an isotopy
and

• (dev,h)∼ (dev′,h′) if dev′ = k ◦dev and h(·) = kh(·)k−1 for k ∈ G.
(See [49] or Chapter 6 of [51].)

9.2. The semi-algebraic properties of reps(π1(O),PGL(n+1,R)) and related spaces

Since O is strongly tame, the fundamental group π1(O) is finitely generated. Let
{g1, . . . ,gm} be a set of generators of π1(O). As usual Hom(π1(O),G) for a Lie group G
has an algebraic topology as a subspace of Gm. This topology is given by the notion of
algebraic convergence

{hi}→ h if {hi(g j)}→ h(g j) ∈ G for each j, j = 1, . . . ,m.

A conjugacy class of a representation is called a character in this monograph.
The PGL(n+ 1,R)-character space (variety) rep(π1(O),PGL(n+ 1,R)) is the quo-

tient space of the homomorphism space

Hom(π1(O),PGL(n+1,R))

where PGL(n+1,R) acts by conjugation

h(·) 7→ gh(·)g−1 for g ∈ PGL(n+1,R).

Similarly, we define

rep(π1(O),SL±(n+1,R)) := Hom(π1(O),SL±(n+1,R))/SL±(n+1,R)

as the SL±(n+1,R)-character space. This is not really a variety in the sense of algebraic
geometry. We merely define this space as the quotient space for now, possibly nonHaus-
dorff one.

A representation or a character is stable if the orbit of it or its representative is closed
and the stabilizer is finite under the conjugation action in

Hom(π1(O),PGL(n+1,R)) (resp. Hom(π1(O),SL±(n+1,R))).

By Theorem 1.1 of [106], a representation ρ is stable if and only if it is irreducible and
no proper parabolic subgroup contains the image of ρ . The stability and the irreducibility
are open conditions in the Zariski topology. Also, if the image of ρ is Zariski dense,
then ρ is stable. PGL(n+ 1,R) acts properly on the open set of stable representations in
Hom(π1(O),PGL(n+ 1,R)). Similarly, SL±(n+ 1,R) acts so on Hom(π1(O),SL±(n+
1,R)). (See [106] for more details.)

A representation of a group G into PGL(n+ 1,R) or SL±(n+ 1,R) is strongly irre-
ducible if the image of every finite index subgroup of G is irreducible. Actually, many of
the orbifolds have strongly irreducible and stable holonomy homomorphisms by Theorem
6.0.4.

An eigen-1-form of a linear transformation γ is a linear functional α in Rn+1 so that
α ◦ γ = λα for some λ ∈ R. We recall the lifting of Remark 1.1.5.
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•
HomE (π1(O),PGL(n+1,R))

to be the subspace of representations h satisfying
The vertex condition for R:: h|π1(Ẽ) has a nonzero common eigenvector of

positive eigenvalues for a lift of h(π1(Ẽ)) in SL±(n+1,R) for each R-type
p-end fundamental group π1(Ẽ), and

The lens-condition for T :: h|π1(Ẽ) acts on a hyperspace P for each T -type
p-end fundamental group π1(Ẽ) and acts discontinuously and cocompactly
on a lens L, a properly convex domain with Lo∩P = L∩P ̸= /0 or a horoball
tangent to P.

• We denote by
Homs(π1(O),PGL(n+1,R))

the subspace of stable and irreducible representations, and define

Homs
E (π1(O),PGL(n+1,R))

to be

HomE (π1(O),PGL(n+1,R))∩Homs(π1(O),PGL(n+1,R)).

• We define
HomE ,u(π1(O),PGL(n+1,R))

to be the subspace of representations h where
– h|π1(Ẽ) has a unique common eigenspace of dimension 1 in Rn+1 with

positive eigenvalues for its lift in SL±(n+ 1,R) for each p-end holonomy
group h(π1(Ẽ)) of R-type

(*) There exists a finitely many elements g1, . . . ,gn so that the intersec-
tion

⋂n
i=1 Cλi(h(gi)) is 1-dimensional where Cλi(gi) is the cyclic space

of eigenvalue λi associated with the above common eigenspace. (See
Definition 1.3.1.)

and
– h|π1(Ẽ) has a common null-space P of eigen-1-forms satisfying the follow-

ing:
∗ π1(Ẽ) acts properly and cocompactly on a lens L and L∩P = Lo ∩P

with nonempty interior in P with Hausdorff quotients, or
∗ H −{p} for a horosphere H tangent to P at p

and is unique such one for each p-end holonomy group h(π1(Ẽ)) of the p-
end of T -type and dual group satisfies above (*) for the dual point of P.

For T -ends, the lens condition is satisfied for a hyperplane P and P is unique
one satisfying the condition in other words. We define

Homs
E ,u(π1(O),PGL(n+1,R))

to be

Homs(π1(O),PGL(n+1,R)∩HomE ,u(π1(O),PGL(n+1,R)).

REMARK 9.2.1. The above condition for type T generalizes the principal boundary
condition for real projective surfaces of Goldman [88].
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Since each π1(Ẽ) is finitely generated and there is only finitely many conjugacy classes
of π1(Ẽ),

HomE (π1(O),PGL(n+1,R))
is a closed semi-algebraic subset.

Define
HomE , f (π1(O),PGL(n+1,R))

to be a subset of
HomE (π1(O),PGL(n+1,R))

so that the p-end holonomy group of each R-p-end fixes finitely many points and the p-end
holonomy group of each T-p-ends acts on finitely many hyperspaces. By Lemma 9.2.2,
the condition that each p-end holonomy group has the isolated fixed points or isolated
hyperspaces only is an open condition.

LEMMA 9.2.2. Let V be a semi-algebraic subset of PGL(n+ 1,R)m (resp. SL±(n+
1,R)m.) For each (g1, . . . ,gm) ∈V , suppose that there is a function

E : V 7→ Z

where E(g1, . . . ,gm) is the maximum of

{dimW |W is a subspace of fixed points of each gi, i = 1, . . . ,m}
where we define dim /0 =−1. Then

V ∋ (g1, . . . ,gm) 7→ dimE(g1, . . . ,gm)

is an upper semi-continuous function on V .

PROOF. Suppose that we have a sequences {g( j)
i } for each i = 1, . . . ,m and sup-

pose that g( j)
i → gi as j → ∞ for each i. For any sequence of subspace of fixed points

of g( j)
1 , . . . ,g( j)

m , a limit subspace is contained in a subspace of fixed points of g1, ...,gm.
[SnS] □

PROPOSITION 9.2.3.

HomE ,u(π1(O),PGL(n+1,R))

is an open subset of a semi-algebraic subset

HomE (π1(O),PGL(n+1,R))

So is
Homs

E ,u(π1(O),PGL(n+1,R)).

PROOF. We have h in this open subset

HomE , f (π1(O),PGL(n+1,R)).

For the condition on the uniqueness, we may assume that involved g1, . . . ,gn are so
that Cλi(h(gi)) are transversal and their interseciton is 1-dimensional. Suppose that there
is a sequence of holonomies h j : π1(Ẽ) converging to h|π1(Ẽ) so that h j|π1(Ẽ) has more
than one fixed points. Then the span of the two directions are in the sum of Cλi, j(h j(gi))

and Cλ ′
i, j
(h j(gi)) for two eigenvalues of λi, j,λ

′
i, j of h j(gi). Clearly, λi, j,λ

′
i, j → λi. Hence,

the limit of the sequence of the sum spaces must converge to the subspace of Cλi(h(gi)) by
elementary linear algebra. However, by the transversality of Cλi(h(gi) for i = 1, . . . ,n, we
see that the sum spaces must intersect at a 1-dimensional subspace for hi sufficiently close
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to h. This means hi has only one fixed point, a contradiction. Therefore, the uniqueness
condition is an open condition.

Let Ẽ be a T-p-end. Let

h ∈ HomE , f (π1(O),PGL(n+1,R)),

and let G := h(π1(Ẽ)). Assume that G is not a cusp group. Let P be a hyperspace where G
acts on.

Proposition 5.3.11 implies that the condition of the existence of the hyperspace P
satisfying the lens-property is an open condition in HomE , f (π1(O),PGL(n+1,R)).

Suppose that there is another hyperspace P′ with a lens L′ satisfying the above prop-
erties. Then P∩P′ is also G-invariant. Note that Lo ∩P covers a compact end-orbifold. By
Proposition 1.4.10, we obtain that Cl(P∩L) is a join K ∗{k} for a properly convex domain
K in P∩P′ and a point k in P−P′ since there exists a codimension-one invariant subspace
in P. Similarly, exchanging the role of P and P′, we obtain that there is a point k′ ∈ P′−P
fixed by G. G acts on the one-dimensional subspace SG containing k and k′. There are
no other fixed point on SG since otherwise SG is the set of fixed points and G acts on any
hyperspace containing P∩P′ and a point on SG. This contradicts our assumption on the
first paragraph of the proof. Hence, only k and k′ are fixed points in SG and P∩P′ and
{k,k′} contain all the fixed points of G.

Now, k′ is the unique fixed point outside P. The existence of lens for P tells us that k′

must be a fixed point outside the closure of the lens. By Theorem 5.5.4, the existence of a
lens for P tells us that every g ∈ G, the maximum norm of eigenvalues of g associated with
k and P∩P′ is greater than that of k′.

Now, we switch the role of P and P′. We can take a central element g′ with the largest
norm of eigenvalue at k′ by the last item of Proposition 1.4.10 and the uniform middle
eigenvalue condition from Theorem 5.5.4. This cannot happen by the above paragraph.
Hence, P satisfying the lens-condition is unique.

Suppose that G is a cusp group. Then there exists a unique hyperspace P containing
the fixed point of G tangent to horospheres where G acts on. Therefore,

HomE ,u(π1(O),PGL(n+1,R))

is in an open subset of a union of semi-algebraic subsets of

□ HomE , f (π1(O),PGL(n+1,R)).

□

We define

•
repE (π1(O),PGL(n+1,R))

to be the set

HomE (π1(O),PGL(n+1,R))/PGL(n+1,R).

• We denote by
reps

E (π1(O),PGL(n+1,R))
the subspace of

repE (π1(O),PGL(n+1,R))
of stable and irreducible characters.
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• We define
repE ,u(π1(O),PGL(n+1,R))

to be
HomE ,u(π1(O),PGL(n+1,R))/PGL(n+1,R).

• We define

reps
E ,u(π1(O),PGL(n+1,R))

:= reps(π1(O),PGL(n+1,R))∩ repE ,u(π1(O),PGL(n+1,R)).(9.2.1)

Let ρ ∈ HomE (π1(E),PGL(n+1,R)) where E is an end. Define

HomE ,par(π1(E),PGL(n+1,R))
to be the subspace of representations where π1(E) goes into a cusp group, i.e., a parabolic
subgroup in a conjugated copy of PO(n,1). By Lemma 9.2.4,

HomE ,par(π1(E),PGL(n+1,R))
is a closed semi-algebraic set.

LEMMA 9.2.4. Let G be a finitely presented group. HomE ,par(G,PGL(n+1,R)) is a
closed algebraic set.

PROOF. Let P be a maximal parabolic subgroup of a conjugated copy of PO(n+1,R)
that fixes a point x. Then Hom(G,P) is a closed semi-algebraic set.

HomE ,par(G,PGL(n+1,R))
equals a union ⋃

g∈PGL(n+1,R)
Hom(G,gPg−1),

which is another closed semi-algebraic set. □

Let E be an end orbifold of O . Given

ρ ∈ HomE (π1(E),PGL(n+1,R)),
we define the following sets:

• Let E be an end of type R. Let

HomE ,RL(π1(E),PGL(n+1,R))
denote the space of representations h of π1(E) where h(π1(E)) acts on a lens-
cone {p}∗L for a lens L and p for p ̸∈Cl(L) of a p-end Ẽ corresponding to E and
acts properly and cocompactly on the lens L itself. Again, {p}∗L is assumed to
be a bounded subset of an affine patchAn. Thus, it is a union of open subsets of
semi-algebraic sets in HomE (π1(E),PGL(n+1,R)) by Proposition 5.3.11.

• Let E denote an end of type T . Let

HomE ,TL(π1(E),PGL(n+1,R))
denote the space of totally geodesic representations h of π1(E) satisfying the
following condition:

– h(π1(E)) acts on an lens L and a hyperspace P where
– L∩P = Lo ∩P ̸= /0 and
– L/h(π1(E)) is a compact orbifold with two strictly convex boundary com-

ponents.
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HomE ,TL(π1(E),PGL(n+1,R))
is again a union of open subsets of the semi-algebraic sets

HomE (π1(E),PGL(n+1,R))
by Proposition 5.3.11.

Let

RE : Hom(π1(O),PGL(n+1,R)) ∋ h → h|π1(E) ∈ Hom(π1(E),PGL(n+1,R))
be the restriction map to the p-end holonomy group h(π1(E)) corresponding to the end E
of O .

A representative set of p-ends of Õ is the subset of p-ends where each end of O
has a corresponding p-end and a unique chosen corresponding p-end. Let RO denote the
representative set of p-ends of Õ of type R, and let TO denote the representative set of
p-ends of Õ of type T . We define a more symmetric space:

HomE ,lh(π1(O),PGL(n+1,R))
to be ( ⋂

E∈RO

R−1
E

(
HomE ,par(π1(E),PGL(n+1,R))∪HomE ,RL(π1(E),PGL(n+1,R))

))
∩( ⋂

E∈TO

R−1
E

(
HomE ,par(π1(E),PGL(n+1,R))∪HomE ,TL(π1(E),PGL(n+1,R))

))
.

The quotient space of the space under the conjugation under PGL(n+1,R) is denoted by

repE ,lh(π1(O),PGL(n+1,R)).
We define

Homs
E ,lh(π1(O),PGL(n+1,R))

to be
Homs(π1(O),PGL(n+1,R)) ∩HomE ,lh(π1(O),PGL(n+1,R)).

Hence, this is a union of open subsets of semialgebraic subsets in

X := Homs
E (π1(O),PGL(n+1,R)).

We don’t claim that the union is open in X . These definitions allow for changes between
horospherical ens to lens-shaped radial ones and totally geodesic ones.

The quotient space of this space under the conjugation under PGL(n+1,R) is denoted
by

reps
E ,lh(π1(O),PGL(n+1,R)).

Since
reps

E ,u(π1(O),PGL(n+1,R))
is the Hausdorff quotient of the above set with the conjugation PGL(n+1,R)-action, this
is an open subset of a semi-algebraic subset by Proposition 9.2.3 and Proposition 1.1 of
[106].

We define
Homs

E ,u,lh(π1(O),PGL(n+1,R))
to be the subset

Homs
E ,u(π1(O),PGL(n+1,R))∩HomE ,lh(π1(O),PGL(n+1,R)).
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The above shows

PROPOSITION 9.2.5.

reps
E ,u,lh(π1(O),PGL(n+1,R))

is an open subset of a semi-algebraic set in

reps
E ,f(π1(O),PGL(n+1,R)).

9.3. End structures and end compactifications for topological orbifolds

Let O be a strongly tame smooth orbifold with ends E1, . . . ,Em,Em+1, . . . ,Em+l . For
this subsection, we do not consider that O is the interior of a compact orbifold Ō , the
associated compactification of O , as we remind from Section 3.1.1.

An ideal boundary structure of an end neighborhood U of Ei is a pair (U, f ) for a
smooth embedding f of U into a product space Σ× (0,1] for a closed n− 1-orbifold Σ

where the image is Σ× (0,1). An ideal boundary structure (U0, f0) with a diffeomorphism
f0 : U0 → Σ0 × (0,1) for a closed n− 1-orbifold Σ0 and another one (U1, f1) with a dif-
feomorphism f1 : U1 → Σ1 × (0,1) for a closed n− 1-orbifold Σ1 are compatible if there
exists another ideal boundary structure (U2, f2) so that U2 ⊂U0∩U1 with a diffeomorphism
f2 : U2 → Σ′′× (0,1) so that fi ◦ f−1

2 : Σ′′× (0,1)→ Σi × (0,1) extends to Σ′′× (0,1] as an
embedding restricting to a diffeomorphism Σ′′×{1} to Σi ×{0} for i = 0,1.

Given an ideal boundary structure on O for an end Ei, we obtain the completion of
O along Ei. We take U an end neighborhood of Ei with an embedding f : U → Σ× (0,1]
where the image equals Σ× (0,1). We paste O with Σ× (0,1] by f . The resulting orbifold
O ′
(U, f ) is said to be the end compactification of O along Ei using (U, f ).

Let U ′ and f ′ : U ′ → Σ′× (0,1] be as above with (U ′, f ′) compatible to (U, f ), and we
obtain an end compactification O ′

(U ′, f ′) of O along Ei using (U ′, f ′). An isotopy ι of O with
an ideal boundary structure for an end Ei is an isotopy of O extending to a diffeomorphism
ῑ : O ′

(U, f ) → O ′
(U ′, f ′) for at least one compatible pair (U, f ),(U ′, f ′).

By the following lemma, the definition of an (end-structure extendable) isotopy is
independent of the choice of (U, f ) and (U ′, f ′).

LEMMA 9.3.1. Let U1 and U2 be end neighborhoods of an end E. Let g be an isotopy
of O extending to an isotopy ḡ : O ′

(U1, f1)
→ O ′

( f2,U2)
with diffeomorphisms f1 : U1 → Σ1 ×

(0,1) and f2 : U2 → Σ2 × (0,1) for closed n− 1-orbifolds Σ1 and Σ2. Then for any pair
(U ′

1, f ′1),(U
′
2, f ′2) for end neighborhoods of end end E compatible to (Ui, fi), i = 1,2, with

diffeomorphisms f ′1 : U ′
1 → Σ′

1 × (0,1) and f ′2 : U ′
2 → Σ′

2 × (0,1) for closed n−1-orbifolds
Σ′

1 and Σ′
2, g extends to an isotopy ḡ1 : O(U ′

1, f
′
1)
→ O(U ′

2, f
′
2)

.

PROOF. This is straightforward to obtain a diffeomorphism ḡ1 since we can take a
sufficiently small product neighborhood in each of these end compactifications. To show
the isotopy property of ḡ1, we simply take O × I and do the same arguments. □

A radial structure for Ei also gives us an end-compactification of O along Ei: Let
U be an end neighborhood of Ei with a foliation by properly embedded arcs. We take a
transverse hypersurface ΣEi transverse to every leaf, which is a closed orbifold. Let U ′

denote a component of U −ΣEi that is an end neighborhood of Ei. We identify each leaf in
U ′ with a leaf of ΣEi × (0,1) by a function f : U ′ → ΣEi × (0,1). We call the identification
orbifold O ′ of O with ΣEi × (0,1] the end compactification of O along Ei. The suborbifold
of O ′ corresponding to ΣEi ×{1} is call the ideal boundary component corresponding to
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Ei. This orbifold is independent of the choices up to isotopoes of the end compactifications
extending isotopies of O by Lemma 9.3.2.

LEMMA 9.3.2.

• Let O be a strongly tame orbifold with a radial structure at an end Ei.
• Let O ′ be the end compactification of O using U and ΣEi a diffeomorphism f :

U ′ → ΣEi × (0,1).
• Let O1 be the same orbifold with an isotopic radial structure at Ei.
• Let O ′

1 be the end compactification of O1 for the second radial structure using an
end neighborhood U1 and a hypersurface Σ′

Ei
and a diffeomorphism f ′ : U ′

1 →
Σ′

Ei
× (0,1) for an end-neighborhood component U ′

1 of U1 −Σ′
Ei

.

Suppose that an isotopy ι of O sends a radial structure of U for end Ei to that of U1 for O1
for Ei.

Then a diffeomorphism ι ′ : O → O extends to a diffeomorphism ι̂ ′ : O ′ → O ′
1 sending

the ideal boundary component corresponding to Ei in O ′ to one in O ′
1.

PROOF. First, we obtain a diffeomorphism i′. We may change ι so that ι(U ′)⊂U ′
1 by

composing with an isotopy supported in U preserving leaves of the radial foliation.
We consider a diffeomorphism

f ′ ◦ ι ◦ f−1|ΣEi × (0,1)→ Σ
′
Ei
× (0,1).

We can find an isotopy ι1 : Σ′
Ei
× (0,1) → Σ′

Ei
× (0,1) preserving {x}× (0,1) for each

x ∈ Σ′
Ei

equal to the identity map on Σ′
Ei
× (0,ε) for small ε > 0 so that ι1 ◦ f ′ ◦ ι ◦ f−1

extends to a smooth map at ΣEi ×{1}. This is fairly simple since every self-embedding of
ΣEi × (0,1) preserving every fiber of form {x}× (0,1) for x ∈ Σ′

Ei
are isotopic. Now, we

can use ι : O−U ′ →O−U ′
1 and f ′−1 ◦ ι1 ◦ f ′ ◦ ι ◦ f−1 on U ′. Obviously, they extend each

other.
□

The following shows the well-definedness of an orbifold.

COROLLARY 9.3.3.

• Let O be a strongly tame orbifold with a T-end structure at Ei. Then the identity
map I of O is isotopic to a restriction of a diffeomorphism O ′

(U, f ) → O ′
(U ′, f ′).

• Let O be a strongly tame orbifold with an R-end structure at Ei. Then the identity
map I of O is isotopic to a restriction of a diffeomorphism O ′

1 → O ′
2 for any two

end compactifications O ′
1 and O ′

2 of O .

PROOF. The first is a corollary of Lemma 9.3.1. The second one is a corollary of
Lemma 9.3.2. □

Finally, we will say about the compactification Ō associated with O .
If Ō is the compactification associated with O , the ideal boundary structure is given

by ( f ,N(ΣEi)∩O) where f : N(ΣEi)∩O → ΣEi × (0,1] is an embedding for a tubular
neighborhood N(ΣEi) of ΣEi in Ō .

Again, if Ō is the associated compactification of O , and the radial structure at Ei is
compatible with Ō as in Section 3.1.3, the radial end compactification from ( f ,U) can
be modified to a compatible ( f ′,N(ΣEi)∩O) for a tubular neighborhood N(ΣEi) of ΣEi to
ΣEi × (0,1] where f ′ extends to a smooth diffeomorphism N(ΣEi)→ ΣEi × (0,1].
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PROPOSITION 9.3.4. We can contruct by the above end compactification process a
compact orbifold Ō of which O is the interior. The end compactification compatible with
the given R-end and T-end structures is always diffeomorphic to Ō by a diffeomorphism
isotopic to the identity in O .

PROOF. Recall from Sections 3.1.2 and 3.1.3 the definitions of compatibility. Also, it
is straightforward to see that the radial foliation is transverse to the added ideal boundary
component corresponding to ΣE ×{1}. Corollary 9.3.3 completes the proof. □

9.3.1. Definition of the deformation spaces with end structures. We will extend
this notion strongly. Two real projective structures µ0 and µ1 on O with R-ends or T-ends
with end structures are isotopic if there is an isotopy i on O so that i∗(µ0) = µ1 where
i∗(µ0) is the induced structure from µ0 by i

• i∗(µ0) has a radial end structure for each R-end or horospherical T-end,
• i sends the radial end foliation for µ0 from an R-end neighborhood or horospher-

ical T-end to the radial end foliation for real projective structure µ1 = i∗(µ0) with
corresponding R-end neighborhoods or a horospherical T-end, and

• i extends to a diffeomorphism of Ō using the radial foliations and the totally
geodesic ideal boundary components for µ0 and µ1 where we use the radial end-
compactification for a horospherical T-end. (See Definition 9.1.1.)

For noncompact orbifolds with end structures, similar definitions hold except that we
have to modify the notion of isotopies to preserve the end structures.

DEFINITION 9.3.5. We consider the real projective structures on orbifolds with end
structures. Let O be one of this and Ō be the compactification. Let Ô denote the universal
cover of Ō containing Õ as a dense open set.

Let devµ denote the developing map associated with a convex projective structure µ

with R-end or T-ends. The developing map devµ : Õ →RPn extends to a map devµ : Ô →
RPn. We will only need developing maps determined up to isotopies. For R-ends, may
assume that devµ is smooth by Lemma 9.3.7. For T-ends, we can always isotopy devµ |U
for a p-end neighborhood U of a p-end Ẽ so that it can extend to a smooth map by Lemma

9.3.8.

LEMMA 9.3.6. . Let f0 and f1 be two immersions Σ̃Ẽ × (0,1] → RPn equivariant
with respect to a holonomy representation ρ : π1(ΣE)→ PGL(n+ 1,R) fixing a point p0.
Assume the following:

• for each i = 0,1, fi|x× (0,1] → lx is an embedding to a radial segment lx with
endpoint p0 in Sn and fi(x× t) converges to p0 as t → 0. Here, lx is indepenent
of i = 0,1.

• f0|Σ̃× [δ ,1] = f1|Σ̃× [δ ,1] for δ > 0.
Then f0 and f1 are smoothly isotopic by an isotopy preserving each x× [0,1) and equals
the identity on Σ̃× (δ ,1].

PROOF. Let Cx,δ , f0([0,1), lx) denote the space of embeddings g|(0,1] where g|(δ ,1]
is fixed to be f0|x× [δ ,1]→ lx, and g(t)→ p0 as t → 0. This is a contractible space since
this is a convex space if we identify lx with a real interval. Clearly, ρ acts on this space.
We can build a bundle B̃ over Σ̃Ẽ with fiber at x equal to Cx,δ , f0([0,1), lx). Then π1(Ẽ) acts
on this space where we must act by ρ to the fibers. Hence, we can find a quotient space
B fibering over ΣẼ . Then consider the space Cρ,x0,δ (Σ̃Ẽ) to be the space of ρ-equivariant
sections sending x ∈ Σ̃Ẽ to an element of Cx,δ , f0([0,1), lx).
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f0 and f1 give two such sections. This induces section f̂0 and f̂1 of B over ΣẼ . By
contractibility of the fibers, we can use the obstruction theory to obtain the homotopy be-
tween f̂0 and f̂1. This gives us the ρ-equivariant homotopy ft , t ∈ [0,1], between them
using the contractibilty of fibers. We use the fact that a homotopy f ′t between two homeo-
morphisms f ′ and f ′′ of intervals can be realized by an isotopy ( f ′t )

−1 ◦ f ′, assuming each
f ′t are homeomorphisms. Hence, these homotopies give us the desired isotopies. □

We now describe the modification of the developing map by a process that we call the
radial-end-projectivization of the developing map with respect to U and U ′. That is, we
will prove Lemma 9.3.7.

Let Ũ and Ũ ′ denote the closed p-end neighborhoods of Ẽ covering end-neighborhoods
U and U ′, Cl(U)⊂U ′o, respectively. We require U and U ′ to be compatible product neigh-
borhoods diffeomorphic to ΣE × (0,1]. (Recall compatibility from Section 3.1.) Take a
maximal radial ray lx in Ũ ′ passing x ∈ bdŨ ∩ l. Then there exists a unique projective
diffeomorphism Πx : lx → R+ sending

• the endpoint of lx in bdŨ ′ to ∞,
• the other end to 0, and
• bdŨ ∩ l = {x} to 1.

We define ΠŨ ′,Ũ : Ũ ′ → R+ by sending z ∈ lx to Πx(z). There is also a unique projective
diffeomorphism Px : R+ → RPn sending

0 7→ vẼ ,1 7→ dev(l ∩bdŨ) = dev(x),+∞ 7→ dev(l ∩bdŨ ′).

Define v⃗x to be the vector at vẼ of (∂Px(t)/∂ t)|t=0. This does depend on x but not on t.
Let ΠẼ : Ũ ′ → Σ̃E denote the map sending a point of a radial ray in Ũ ′ to its equivalence

class in Σ̃E . Ũ ′ has coordinate functions

(ΠŨ ′,Ũ ,ΠẼ) : Ũ ′ → R+× Σ̃E ,

which is a diffeomorphism. This commutes with the action of ΓΓΓẼ on Ũ ′ and the action on
R+× Σ̃E acting on the first factor trivial. Also, Ũ goes to (0,1)× Σ̃E under the map.

We define a smooth map

(9.3.1) devN : Ũ ′ → RPn given by devN(y) = Px ◦Πx(y) for y ∈ lx ⊂ Ũ ′.

Then under the coordinate of Ũ ′ with affine coordinates on an affine subspace An
x with a

temporary Euclidean norm || · || containing dev(lx) and containing dev(vẼ) as the origin,
we can write locally

(9.3.2) devN(x, t) = fx(t )⃗vx, ||⃗vx||= 1, for x ∈ bdŨ

on a neighborhood of lx0 for some x0 ∈ bdŨ where v⃗x is a unit vector depending only on x
smoothly in the direction of dev(vẼ)dev(x) and

(9.3.3) fx : R+ → R+, fx(0) = 0, fx(1) = ||dev(x)||
fx(∞) =

∣∣∣∣dev(lx ∩bdU ′)
∣∣∣∣ provided dev(lx ∩bdU ′) ∈An

x

is a strictly increasing projective function of t. The coefficients of the 1-st order rational
function fx as a function of t depend smoothly on x since ∂U ′ and ∂U are smooth. Here, we
can actually change the affine subspaces of formAn

x and the coordinates so that locally near
lx we have fx(∞) < ∞. It is easy to see that devN extends to Σ̃E ×{0} as a constant map.
The expression of fx shows that devN is a smooth extension also since it has continuous
partial derivatives of all orders.
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Now we change devN on Ũ ′−Ũ so that it smoothly extends to Õ −Ũ ′. Acutally on
bdŨ ′ and on bdŨ , devN and dev agree by our construction. On each lx, the lines dev|lx
and devN |lx have the same image to dev(lx). Hence, (devN |lx)−1 ◦dev|lx sends lx to lx as
a homeomorphism. We choose U ′′ be the open neighborhood of U in U ′ whose closure
is in the interior of U ′. Let Ũ ′′ denote the component of inverse image containing Ũ . We
choose a partition of unity function φ equal to 1 on Ũ ′−Ũ ′′ and with support in a small
neighborhood of Ũ ′−Ũ in Ũ ′. Of course, we need to choose φ equivariant with respect to
π1(Ẽ), which can be done as in the proof of Lemma 9.3.6. Also, the directional derivative
of φ in the radial direction of lx is non-negative. We define gx : lx →R+ given by ||dev(z)||
for z ∈ lx, which is a smooth function with positive radial directional derivatives along lx.
By isotopying for devN towards the p-end vertex equivariantly and taking smaller U ′ and
U , we may assume without loss of generality that gx ≥ fx for all x ∈ Σ̃Ẽ . Then we define
new smooth function h := (1−φ) fx+φgx which still has positive directional derivatives in
the radial direction of lx. Then this agree with gx in Ũ ′−Ũ ′′ and fx outside a neighborhood
of Ũ ′−Ũ in Ũ ′. We define dev′ : Ũ ′ → RPn by replacing Πx with h in (9.3.1).

This map is the radial-end-projectivization of dev with respect to U ′ and U and agrees
with devN outside a neighborhood of Ũ ′−Ũ in Ũ ′ and agrees with dev on Ũ ′−Ũ ′′.

We define a new developing map dev′ : Õ → RPn by using devN on Ũ and letting it
equal to dev on the complement Õ −Ũ ′′. Lemma 9.3.6 implies that dev′ can be obtained
from dev by isotopies.

For other components of form γ(Ũ) for γ ∈ π1(O), we do the same constructions.

LEMMA 9.3.7. Let U and U ′ be a radial end-neighborhoods so that ClÕ(U) ⊂ U ′

and compatible to Ō . Let Ũ and Ũ ′ denote the p-end neighborhoods of Ẽ covering U
and U ′. We assume that bdU and bdU ′ are transverse to radial rays by taking U and
U ′ smaller if necessary. Then we can modify the developing map in Ũ so that the new
developing map dev′ agrees with dev on Õ − pO(U) so that dev′ extends smoothly on the
end compactification of Ũ and dev′ restricts to each radial line segment is a projective
map. Finally, dev′ = dev◦ ι for an isotopy-lift ι preserving each radial segment in Ũ ′. □

LEMMA 9.3.8. Let Ẽ be a p-T-end. Let Ũ be a proper p-T-end neighborhood of Ẽ.
Then devµ can be precomposed by an isotopy so that devµ extends to the ideal boundary
Σ̃Ẽ as an immersion.

PROOF. For any point x in Σ̃Ẽ , we have a chart (U,φ) where x ∈U . U − Σ̃Ẽ is inside
Õ . By definition of real projective structures as an atlas of compatible charts, we obtain
g ∈ SL±(n+1,R) so that g◦φ agrees with devµ on an open set in U − Σ̃Ẽ , and hence must
agree on U − Σ̃Ẽ . Hence, devµ extend to U as well. By continuing with all points of Σ̃Ẽ ,
we obtain the result.

□

Here, devµ is also equivariant with respect to h if devµ was so. We call (devµ ,h) an
extended developing pair. An extended isotopy is a diffeomorphism Ō → Ō extending an
isotopy of O . An extended isotopy-lift is an extension of an isotopy-lift Ô → Ô .

Then the isotopy-equivalence space D̃efE (O) is defined as the space of extended
developing maps devµ of real projective structures on O with ends with radial structures
and lens-shaped totally geodesic ends with end structures under the action of the group the
extended isotopy-lfts where an extended isotopy-lift ι̂ : Ô → Ô acting by

(devµ ,h) 7→ (devµ ◦ ι̂ ,h).
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We explain the topology. Fix a real projective structure µ with end structure. The
space D(Ô) of maps of form devµ ′ : Ô →RPn will be given the compact open Cr-topology
on Ô .

For any real projective structure µ ′ on O with end structures with an isotopy ιµ,µ ′ so
that ι∗

µ,µ ′(µ ′) = µ the end compactification Ō has an extended isotopy-lift ι̂µ,µ ′ : Ô → Ô .
Now, devµ ′ ◦ ιµ,µ ′ is a developing map of ι∗

µ,µ ′(µ ′) sending the end structures Õ of
µ ′ to radial line. Hence, devµ ′ ◦ ι̂µ,µ ′ is the unique smooth extension. Hence, we can
reinterpret D(Ô) as the space of extensions of developing maps of O with a fixed end
structure for each end.

DEFINITION 9.3.9. The quotient space D(Ô)/E (Ô) of D under the group of ex-
tended isotopy-lifts E (Ô) of form ι̂µ,µ ′ : Ô → Ô is in one-to-one correspondence with
D̃efE (O). The topology on D̃efE (O) is given as the quotient topology of this space, which
is called a Cr-topology.

We define DefE (O) := D̃efE (O)/PGL(n+1,R) by the action

(dev,h(·)) 7→ (φ ◦dev,φ ◦h(·)◦φ
−1),φ ∈ PGL(n+1,R)

as in [49] and [87]. The induced quotient topology is called a Cr-topology of DefE (O).
We can define a map

hol′ : D̃efE (O)→ HomE (π1(O),SL±(n+1,R))

by sending the class of (dev,h) to h. This is well-defined since the isotopies do not change
h. There is an induced map:

hol : DefE (O)→ HomE (π1(O),SL±(n+1,R)/SL±(n+1,R).

For these, if O is closed, we will simply drop the subscripts.
It is well-known:

THEOREM 9.3.10 (see Choi [49]). Let O be a closed orbifold. Then hol : D̃ef(O)→
Hom(π1(O),SL±(n+1,R)) is a local homeomorphism.

9.4. The local homeomorphism theorems

9.4.1. The end condition for real projective structures. Now, we go over to real
projective orbifolds: We are given a real projective orbifold O with ends E1, . . . ,Ee1 of
R-type and Ee1+1, . . . ,Ee1+e2 of T -type. Let us choose representative p-ends Ẽ1, . . . , Ẽe1

and Ẽe1+1, . . . , Ẽe1+e2 .
We define a subspace of HomE (π1(O),PGL(n+1,R)) to be as in Section 9.2.
Let V be an open subset of semi-algebraic subset of

Homs
E (π1(O),PGL(n+1,R))

invariant under the conjugation action so that one can choose a continuous section s(1)V :
V → (RPn)e1 sending a holonomy homomorphism to a common fixed point of h(π1(Ẽi))

for i = 1, . . . ,e1 and s(1)V satisfies

s(1)V (gh(·)g−1) = g · s(1)V (h(·)) for g ∈ PGL(n+1,R).

There might be more than one choice of a section and the domain of definition. s(1)V is said
to be a fixed-point section.
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Again suppose that one can choose a continuous section s(2)V : V → (RPn∗)e2 sending
a holonomy homomorphism to a common dual fixed point of π1(Ẽi) for i = e1 +1, . . . ,e2,
and s(2)V satisfies

s(2)V (gh(·)g−1) = (g∗)−1 ◦ s(2)V (h(·)) for g ∈ PGL(n+1,R)).

There might be more than one choice of section in certain cases. s(2)V is said to be a dual
fixed-point section.

We define sV : V → (RPn)e1 × (RPn∗)e2 as s(1)V × s(2)V and call it a fixing section pro-
vided the p-end holonomy group of each T -type p-end Ẽi acts on a horosphere tangent to
P determined by s(2)V .

Recall from Section 11.0.1. We note that the real projective structure with radial and
totally geodesic ends with end structures also will determine a point of (RPn)e1 ×(RPn∗)e2 .
Conversely, if the real projective structure with radial and totally geodesic ends has the end
structure determined by a section sU if the following hold:

• Ẽi for every i = 1, . . . ,e1 has a p-end neighborhood with a radial foliation with
leaves developing into rays ending at the fixed point of the i-th factor of s(1)V .

• Ẽi for every i = e1 +1, . . . ,e1 + e2
– has a p-end neighborhood with the ideal boundary component in the hyper-

space determined by the i-th factor of s(2)V provided Ẽi is a T-end, or
– has a p-end neighborhood containing a ΓΓΓẼ -invariant horosphere tangent to

the hyperspace determined by the i-th factor of s(2)V provided Ẽi is a horo-
spherical end.

EXAMPLE 9.4.1. If O is real projective and has some singularity of dimension one
in each end-neighborhood of an R-type end, then the universal cover of O has more than
two lines corresponding to singular loci. The developing image of the lines must meet at a
point in RPn, which is a common fixed point of the holonomy group of an end. If O has
dimension 3, this is equivalent to requiring that the end orbifold has corner-reflectors or
cone-points.

Hence, for an open subspace V of a semi-algebraic subset of

Homs
E (π1(O),PGL(n+1,R))

corresponding to the real projective structures on O , there is a section s(1)V determined by
the common fixed points.

(See Theorems 11.1.1 and 11.1.3.)

REMARK 9.4.2 (Cooper). We do caution the readers that these assumptions are not
trivial and exclude some important representations. For example, these spaces exclude
some incomplete hyperbolic structures arising in Thurston’s Dehn surgery constructions
as they have at least two fixed points for the holonomy homomorphism of the fundamental
group of a toroidal end as was pointed out by Cooper. Hence, the uniqueness condition
fails for this class of examples. However, if we choose a section on a subset, then we can
obtain appropriate results. Or if we work with particular types of orbifolds, the uniqueness
holds. See Section 12.

9.4.2. Perturbing horospherical ends. Theorems 6.1.1 and 6.1.2 study the pertur-
bation of lens-shaped R-ends and lens-shaped T-ends.
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The following concerns the deformations of ΓΓΓẼ → PGL(n+1,R) near horospherical
representations. As long as we restrict to deformed representations satisfying the lens-
condition, there exist n-dimensional properly convex domains on which the groups act.
(This answers a question of Tillmann near 2006. We also benefited from a discussion with
J. Porti in 2011.)

Let P be an oriented hyperspace of Sn with a dual point P∗ ∈ Sn∗ represented by a
1-form wP defined on Rn+1. Let P† denote the space of oriented hyperplanes in P. Let
Sn−1∗

P∗ be the space of rays from P∗ corresponding to hyperspaces in P. Then the subspace
P† is dual to Sn−1∗

P∗ : each oriented ray in Sn∗ from P∗ define a hyperspace S′ of P as the set
of common zeros of the 1-forms in the ray. The orientation of S′ is given by the open half-
space where the 1-forms near wP are positive. Conversely, an oriented pencil of oriented
hyperspaces determined by an oriented hyperspace of P is a ray in Sn−1∗

P∗ from P∗. (We
omit the obvious RPn-version.)

Let

HomE ,lh,p(Γ
′,PGL(n+1,R))

(
resp. HomE ,lh,p(Γ

′,SL±(n+1,R))
)

denote the space of representations h fixing a common fixed point p and acts properly and
cocompactly on the lens of a lens-cone over vertex p or is horospherical with a horoball
with vertex p.

Let

HomE ,lh,P(Γ
′,PGL(n+1,R))

(
resp. HomE ,lh,P(Γ

′,SL±(n+1,R))
)

denote the space of representations where h(Γ′) for each element h acts on a hyperspace P
satisfying the lens-condition. (See 9.2.)

Let a convex cone B = ∂B∗{p} over a point p be diffeomorphic to ∂B× (0,1]. Then
B with a vertex p has a radial foliation. We complete B by identifying with ∂B×(0,1) by a
diffeomorphism f sending each leaf to x×(0,1) and attaching ∂B×(0,1] by f . We denote
the partial completion by B̂ diffeomorphic to ∂B× [0,1]. We call B̂ the p-end completion
of B. An action of a group Γ on B extends to B̂ also. B̂/Γ is then the end-compactification
of B/Γ. (See Definition 9.1.1.)

LEMMA 9.4.3 (Horospherical-end perturbation).
(A): Let B be a horoball in RPn (resp. in Sn) and Γ be a group of projective au-

tomorphisms fixing p, p ∈ bdB (resp. p ∈ Sn), so that B/Γ is a horospherical-
end-type orbifold. Then there exists a sufficiently small neighborhood K of the
inclusion homomorphism h0 of Γ in HomE ,lh,p(Γ,PGL(n+1,R))

(resp. HomE ,lh,p(Γ,SL±(n+1,R)))

where
• for each h ∈ K, h(Γ′) acts on a properly convex domain Bh so that Bh/h(Γ′)

is diffeomorphic to B/Γ′ forming a radial end and fixes p,
• Bh forms the lens-shaped or horospherical p-R-end neighborhood,
• there is a diffeomorphism fh : B/Γ′ → Bh/h(Γ′),h ∈ K, so that the lift f̃h :

B → Bh is a continuous family under the Cr-topology as a map into RPn

(resp. in Sn) where f̃h0 is the identity map.
Let B̂ and B̂h denote the p-end compactifications. Then fh extends to the end com-
pactifications f̄h : B̂/Γ′ → B̂h/h(Γ′) and f̄h0 is the identity map. Furthermore, the
lift of this map f̂h : B̂ → RPn (resp. Sn) is continuous in the Cr-topology where
f̂h0 is the identity map.
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(B): Let P be a hyperspace in RPn (resp. in Sn). Let Γ′ denote a projective au-
tomorphism group acting on P and a horoball B tangent to P so that B/Γ′ s a
horospherical-end-type orbifold. Then there exists a sufficiently small neighbor-
hood K of the inclusion homomorphism h0 of Γ′ in HomE ,lh,P(Γ

′,PGL(n+1,R))
(resp. HomE ,lh,P(Γ

′,SL±(n+1,R))) where
• for each h ∈ K, h(Γ′) acts on a properly convex domain Bh so that Bh/h(Γ′)

is homeomorphic to B/Γ′,
• Bh formsa lens-shaped p-T-end or horospherical p-end neighorhood, and
• there is a diffeomorphism fh : B/Γ′ → Bh/h(Γ′), h ∈ K, so that the lift

f̃h : B → Bh is a continuous family under the Cr-topology where f̃h0 is the
identity map.

Let B̂ denote the p-end compactification of B and B̂h denote Bh union with the
p-end ideal boundary component of Bh when h acts properly and cocompactly
on a lens. Then fh extends to the end compactifications f̄h : B̂/Γ′ → B̂h/h(Γ′).
Furthermore, the lift of this map f̂h : B̂ → RPn (resp. Sn) is a continuous family
in the Cr-topology where f̂h0 is the identity map.

PROOF. We will prove for the Sn-version.
(A) Let us choose a larger horoball B′ in B where B′/Γ′ has a boundary component S′Ẽ

so B′/Γ is diffeomorphic to S′Ẽ × [0,1). S′Ẽ is strictly convex and transverse to the radial
foliation. There exists a neighborhood O1 in HomE ,lh,p(Γ

′,SL±(n+ 1,R)) corresponding
to the connection on a fixed compact neighborhood N of S′Ẽ changes only by ε in the Cr-
topology, r ≥ 2, on a compact set containing a compact fundamental domain. (See the
deformation theorem in [87] which generalize to the compact orbifolds with boundary.)

Let h∈O1. The universal cover S̃′Ẽ is a strictly convex codimension-one manifold, and
it deforms to S̃′Ẽ,h that is still strictly convex for sufficiently small ε . Here, S̃′Ẽ,h may not be
embedded in Sn a priori but is a submanifold of the deformed n-manifold Nh from N by the
change of connections. Every ray from p meets S̃′Ẽ,h transversely also by the Cr-condition.

Let −→v x,h be a vector in the direction of x for x ∈ S̃′Ẽ,h which we choose equivariant
with respect to the action of h(Γ′). We may choose so that (x,h) 7→ −→v x,h is continuous.
We form a cone

c(S̃′Ẽ,h) := {[t−→v p +(1− t)−→v x,h]|t ∈ [0,1],x ∈ S̃′Ẽ,h}.

Let Σ̃Ẽ,h denote the space of rays from p ending at S̃′Ẽ,h in c(S̃′Ẽ,h). Here S′h := S̃′Ẽ,h/h(Γ′)

is a compact real projective orbifold of (n−1)-dimension.
Since Γ′ is a cusp group, it is virtually abelian. Since h ∈ HomE ,lh(Γ

′,SL±(n+1,R)),
Lemma A.1.10 implies that Dh : S̃′Ẽ,h → Sn−1

p is an embedding to a properly convex domain

or a complete affine domain Ωh in Sn−1
p where h(Γ′) acts properly discontinuously and

cocompactly when h is not the inclusion map.
There is a one-to-one correspondence from S̃′Ẽ,h to Σ̃Ẽ,h =: Ωh. By convexity of Σ̃Ẽ,h,

the tube domain Tp(Ωh) with vertices p,−p is convex. S̃′Ẽ,h meets each great segments in
the interior the tube domain with vertices at p,−p at a unique point transversely since h
is in O1 for sufficiently small ε . The strict convexity of S̃′Ẽ,h implies that Bh is convex by

Lemma 1.4.3. The proper convexity of Bh follows since S̃′Ẽ,h is strictly convex and meets
each great segment from p in the interior of the tube domain corresponding to Σ̃Ẽ,h, and
hence Cl(Bh) cannot contain a pair of antipodal points.
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By Theorem 8.1.3, the Zariski closure of h(Γ′) is a cusp group Gh extended by a finite
group and Gh/h(Γ′) is compact. Hence, Γ′ is virtually abelian by the Bieberbach theorem.
We take the identity component Nh of Gh, which is an abelian group with a uniform lattice
h(Γ′). The set of orbits of Nh foliates Bh. Since Nh is a normal subgroup of Gh, h(Γ′)
normalizes Nh. Hence, the orbits give us a codimension-one foliation on Bh/h(Γ′) with
compact leaves. The leaves are all diffeomorphic, and hence, we obtain a parameterization
∂B/Γ′× [0,1) to Bh.

Now, h induces isomorphism ĥh : N0 → Nh where ĥh → I as h → h0 := I.
We choose a proper radial path αh : I → Bh from a point of ∂Bh and ending at p. We

may assume that αh is independent of h. We define a parameterization

φ̃h : N × [0,1)→ Bh,(m, t) 7→ ĥh(m)(αh(t)), t ∈ [0,1).

We define f̃h : B → Bh := φ̃h ◦ φ̃
−1
h0

. This gives us a map fh. (Here, we might be changing
Σ̃Ẽ,h.) Since f̃h sends radial segments to radial segments, it extends to a smooth map
f̂h : B̂ → B̂h. Also, on any compact subset J of B̂, a compact foliated set Ĵ contains it. Let
Ĵh denote the image of Ĵ under f̂h. Ĵh is coordinatized by J̌ × I for a fixed compact set
J̌ ⊂ N . Under these coordinates of Ĵ and Ĵh, we can write f̂h as the identity map. Since
ĥh → ĥh0 , we conclude that f̂h|Ĵ uniformly converges to I as h → h0.

Now, we show that Bh is a p-R-end of horospherical or lens type. We know from above
that Ωh, h ∈ O1, is either properly convex or complete affine. Suppose that Ωh is properly
convex. Then we have a tubular action on a tube corresponding to Ωh. By Theorem 5.1.5,
the lens condition is equivalent to the uniform middle eigenvalue condition. Hence, we
have a distanced action by Proposition 5.2.5 and S̃′Ẽ,h must have boundary in a distanced
compact set in the boundary of the tube by Proposition 5.3.10. By taking the convex hull
of S̃′Ẽ,h, we obtain a compact convex set distanced from p. Now, looking at from −p, we
can obtain a smooth lens containing this. Hence, we have a p-R-end of lens type.

Suppose that Ωh is complete affine. Then again S̃′Ẽ,h is strictly convex and develops to
a complete affine space in Sn

p. By Theorem 8.1.2, we have a horospherical end since the
cusp group satisfies the weak uniform middle eigenvalue condition.

(B) The second item is the dual of the first one. If h(Γ′) acts on an open horosphere Bo

tangent to P with the vertex in P properly discontinuously, then the dual group h(Γ′)∗ acts
on a horosphere with a vertex the point P∗ dual to P. By duality Proposition 5.5.5, h∗ is
in HomE ,lh,P∗(Γ,SL±(n+1,R)). We apply the first part, and hence, there exists a properly
convex domain ΩP,h so that ΩP,h/h∗(Γ′) is an open orbifold for h ∈ K for some subset K
of the character space

HomE ,lh,P∗(Γ′,SL±(n+1,R)).

By duality Proposition 5.5.5, ΩP,h is foliated by radial lines from P∗ and RP∗(ΩP,h)⊂
Sn−1

P∗ is a properly convex domain.
Let Bo

h be the properly convex domain dual to Ωo
P,h and hence is a properly convex

domain, and Bo
h/h(Γ′) is a dual orbifold diffeomorphic to ΩP,h/h(Γ′)∗ by Theorem 1.5.8.

We have Bh0 = Bo since the dual of the dual of a properly convex open domain is itself.
Let Γ acts properly on ∂B. Since ∂B is strictly convex, each point of ∂B has a unique

hyperspace sharply supporting B. By Proposition 1.5.4, there is an open hypersurface
S,S ⊂ bdΩP dual to ∂B. Also, Γ′∗ acts properly on S so that S/Γ′∗ is a closed orbifold.
(The closedness again follows since there is a torsion-free group of a finite index and
hence a finite regular-covering manifold.) From the first part, there is an open surface
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Sh,Sh ⊂ bdΩP,h, h ∈ K, meeting each radial ray from P∗ at a unique point. Also, Sh/h(Γ′)∗

is diffeomorphic to ∂B/Γ′∗.
Again, by Proposition 1.5.4, we obtain an open surface S∗h, S∗h ⊂ bdΩ∗

P,h where Γh acts
properly so that S∗h/Γh is a closed orbifold. We define Bh := Ω∗

P,h ∪S∗h.
Since ΩP,h is foliated by radial segments from P∗ with properly convex

RP∗(ΩP,h)⊂ Sn−1
P∗ ,

Dh := P∩bdΩ∗
P,h and is a properly convex domain in P by Proposition 5.5.5.

Note that Γ′ is virtually abelian, and when it is not a cusp group, then it is lens-type
and hence must be virtually diagonalizable.

Define B̂h := Ω∗
P,h∪S∗h ∪Dh, h ∈ K. For the second and third items, of the second part,

we do as above but we choose αh : I → Bh to be a single geodesic segment starting from
x0 ∈ ∂Bh and ending at a point of Dh where αh converges as a parameter of functions to
a geodesic α0 : I → Cl(B) ⊂ Sn

∞ ending at the vertex of the horosphere or a fixed point of
h not on P whenever h is virtually diagonalizable. We assume that αh is a Cr-family of
geodesics. Now, the proof is similar to the above using an isomorphism from the identity
component Ch of the Zariski closure of Γ′ to that of h(Γ′), which is an abelian group since
Γ′ is virtually abelian. We denote by κ : Ch0 → Ch the unique homomorphism extending
h◦h−1

0 on resricted to the abelian group of finite index of Γ′.
Here, we need the images of αh under Ch to form a foliation. Since Ch acts on a prop-

erly convex set Dh, it acts as a diagonalizable group on P by Proposition 1.4.10. Being a
free abelian group satisfying the uniform middle eigenvalue condition, Ch is a diagonaliz-
able group acting on an n-simplex. (We dualize the situation and use Theorem 5.4.3.) We
required that the extension of αh to pass a fixed point of Ch not in Cl(Dh). The images of
g ◦αh, g ∈ Ch, form a foliation of B̂h. Using this we define the map f̃h : B → Bh sending
leaves to leaves as given by the function

g(α0(t)) 7→ κ(g)(αh(t)) for each t ∈ [0,1],g ∈Ch0 .

This map extends to ∂B to ∂Bh.
Finally notice that our constructions of fh all are smooth from Ō . Hence, these are

compatible end neighborhoods.
We have a lens by reflection about P by the fixed point not on P when Γ′ is virtually

diagonalizable. Hence, we have a lens-type end. Otherwisse, we have a horospherical end
as in the end of the proof of the first part. [SnT] □

LEMMA 9.4.4 (Lens-end perturbation).
(A): Let B be a generalized lens-cone in RPn (resp. in Sn) and Γ be a group of pro-

jective automorphisms fixing p, p ∈ bdB (resp. p ∈ Sn), so that B/Γ is a general-
ized lens-end-type orbifold. Then there exists a sufficiently small neighborhood
K of the inclusion homomorphism h0 of Γ in HomE ,lh,p(Γ,PGL(n+1,R))

(resp. HomE ,lh,p(Γ,SL±(n+1,R)))

where
• for each h ∈ K, h(Γ′) acts on a properly convex domain Bh so that Bh/h(Γ′)

is diffeomorphic to B/Γ′ forming a radial end and fixes p,
• Bh forms the lens-shaped p-R-end neighborhood,
• there is a diffeomorphism fh : B/Γ′ → Bh/h(Γ′),h ∈ K, so that the lift f̃h :

B → Bh is a continuous family under the Cr-topology as a map into RPn

(resp. in Sn) where f̃h0 is the identity map.
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Let B̂ and B̂h denote the p-end compactifications. Then fh extends to the end com-
pactifications f̄h : B̂/Γ′ → B̂h/h(Γ′) and f̄h0 is the identity map. Furthermore, the
lift of this map f̂h : B̂ → RPn (resp. Sn) is continuous in the Cr-topology where
f̂h0 is the identity map.

(B): Let P be a hyperspace in RPn (resp. in Sn). Let Γ′ denote a projective
automorphism group acting on P and a lens B meeting P in its interior so
that B/Γ′ s a lens-end-type orbifold, and a component B1 of B−P is a p-end
neighborhood of an end. Then there exists a sufficiently small neighborhood K
of the inclusion homomorphism h0 of Γ′ in HomE ,lh,P(Γ

′,PGL(n+ 1,R)) (resp.
HomE ,lh,P(Γ

′,SL±(n+1,R))) where
• for each h ∈ K, h(Γ′) acts on a lens Bh so that Bh/h(Γ′) is homeomorphic

to B/Γ′,
• A component Bh − P forms lens-shaped p-T-end or horospherical p-end

neighorhood, and
• there is a diffeomorphism fh : B/Γ′ → Bh/h(Γ′), h ∈ K, so that the lift

f̃h : B → Bh is a continuous family under the Cr-topology where f̃h0 is the
identity map.

Let B̂1 denote the p-end compactification of B and B̂1,h denote Bh −P union with
the p-end ideal boundary component of Bh when h acts properly and cocom-
pactly on a lens. Then fh|B1 extends to the end compactifications f̄h : B̂1/Γ′ →
B̂1.h/h(Γ′). Furthermore, the lift of this map f̂h : B̂1 → RPn (resp. Sn) is a con-
tinuous family in the Cr-topology where f̂h0 is the identity map.

PROOF. The proofs are very similar to those of Lemma 9.4.3 using radial segments
and duality. Here, we need the local homeomorphism property of for the closed orbifolds
of Lok [121]. Hence, for nearby homeomorphisms we can choose develpong maps that are
very close near the hypersurfaces bounding the p-end neighborhoods. □

We remark that we can also reinterpret the parameterization as radial projectivization
in Section 9.3.1 by taking a second larger end neighborhood and some modifications of the
parameters.

9.4.3. Local homeomorphism theorems. Let O be a noncompact strongly tame affine
(n+ 1)-orbifold whose ends are assigned to be of R-type or T -type as is the convention
in this paper.

An affine manifold affinely diffeomorphic to the affine suspension of horospherical
end neighborhood is said to be the affinely suspended horoball neighborhood. If an end has
such a neighborhood, then we call the end affine horospherical type. Since the projective
automorphism group of a horosphere fixes a point, the fundamental group of the affine
horospherical end preserves a direction. Thus, the end of an affine horospherical type is of
radial type.

We define the end restricted deformation space for O to be the quotient space of affine
structures on O where

• each end is radial if the end is of R-type or
• is totally geodesic satisfying the suspended lens-condition if the end is of T -type

under the action of group of isotopies preserving the end structures: that is, preserves the
radial foliation if the end is radial or horospherical or extends to a smooth diffeomorphism
if the end is totally geodesic.



9.4. THE LOCAL HOMEOMORPHISM THEOREMS 251

Again Defs
E ,sU

(O) is defined to be the subspace of DefE (O) with the stable irreducible
holonomy homomorphisms in U and the end determined by sU , i.e.,

• each R-type p-end has a p-end neighborhood foliated by geodesic leaves that are
radial to the vector given by sU under the developing map, or

• each T -type p-end is totally geodesic of suspended lens-type satisfying the lens-
condition or horospherical satisfying the suspended lens condition with respect
to the hyperspace determined by sU . (See Section ??.)

THEOREM 9.4.5. Let O be a noncompact strongly tame real projective n-orbifold with
lens-shaped radial ends or lens-shaped totally geodesic ends with types assigned. Let V
be a conjugation-invariant open subset of the union of semialgebraic subsets of

Homs
E (π1(O),PGL(n+1,R)).

Let sV be the fixing section defined on V with images in (RPn)e1 × (RPn∗)e2 . Then the
map

hol : Defs
E ,sV (O)→ reps

E (π1(O),PGL(n+1,R))
sending the real projective structures with ends compatible with sV to their conjugacy
classes of holonomy homomorphisms is a local homeomorphism to an open subset of V ′.

COROLLARY 9.4.6. Let O be a noncompact strongly tame real projective n-orbifold
with lens-shaped radial ends or lens-shaped totally-geodesic ends with end structures and
given types R or T . Assume ∂O = /0. Then the following map is a local homeomorphism :

hol : Defs
E ,u(O)→ reps

E ,u(π1(O),PGL(n+1,R)).

PROOF. It is clear that the limit of a sequence of unique fixed points of representations
must be a fixed point of the limit representation. Also, the limit of correpsonding cyclic
spaces must be in the cyclic spaces of the limit representations. Hence, if the limit repre-
sentation have elements with one-dimensional intersections of the cyclic spaces, then the
corresponding elements of the sequence have one-dimensional intersections of the cyclic
spaces. This proves that the map from the representation spaces to the unique fixed points
is continuous. Now Theorem 9.4.5 implies the conclusion. □

9.4.4. The proof of Theorem 9.4.5. We wish to now prove Theorem 9.4.5 following
the proof of Theorem 1 in Section 5 of [49].

Let O be an affine orbifold with the universal covering orbifold Õ with the covering
map pO : Õ →O and let the fundamental group π1(O) act on it as an automorphism group.

Let U and sU be as above. We will now define a map

hol : D̃efE ,sU (O)→ HomE (π1(O),SL±(n+1,R))

by sending the projective structure to the pair (dev,h) and to the conjugacy class of h
finally.

PROOF OF THEOREM 9.4.5. We show that hol is continuous: There is a codimension-
0 compact submanifold O ′ of O so that π1(O

′)→ π1(O) is an isomorphism. The holonomy
homomorphism is determined on O ′. Since the deformation space has the Cr-topology,
r ≥ 1, induced by dev : Õ ′ → Rn+1, it follows that small changes of dev on compact do-
mains in Õ ′ in the Cr-topology imply sufficiently small changes in h(g′i) for generators g′i of
π1(O

′) and hence sufficiently small change of h(gi) for generators gi of π1(O). Therefore,
hol is continuous. (Actually for the continuity, we do not need any condition on ends.)
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We are aiming to prove the local homeomorphism property of the map

hol : D̃efE ,sU (O)→ HomE (π1(O),SL±(n+1,R))

sending projective structures determined by the section sU to the conjugacy classes of
holonomy homomorphisms is a local homeomorphism on an open subset of U ′. The
continuity of hol was proved at the beginning of this subsection.

Next, we define the local inverse map from a neighborhood in U of the image point.
Let O ′ be a compact suborbifold of O so that O −O ′ is a union U of end neighborhoods.

We will show how to change the proof of Theorem 1 of [49]. Let h be a representation
coming from an affine orbifold O . The task is to reassemble O with new holonomy homo-
morphisms as we vary h as in [49] following approaches of Thurston. Suppose that h′ is in
a neighborhood of h in HomE (π1(O),SL±(n+1,R)).

• As in Lok [121], we consider locally finite collections V of open domains that
cover O . We find subcollection V ′ of compact neighborhoods or end neighbor-
hoods in the covering contractible open sets which covers O again. Here, each
precompact element of V contains a compact domain in V ′ forming a cover of
O ′. The end neighborhoods can meet only if they are in the same component of
U .

• We will give orders to the open sets covering O . The end neighborhoods will
have orders higher than all precompact sets.

• We regard these as sets in Sn+1 by charts.
• We consider the sets that are the intersection

Ui1 ∩·· ·∩Uik , i1 > · · ·> ik, where Ui j ∈ V ′ for j = 1, . . . ,k,

of the largest cardinality of the compact or closed domains in V ′ and find the
corresponding sets in Sn+1 by charts. We map it by isotopies to the corresponding
intersection of deformed collections of domains in Sn+1 corresponding to the
h′(π1(O))-action by Lemmas 3 and 4 in [49] and using the deformations of dev
by post-composing with maps in Lemmas 9.4.3 and 9.4.4. Here, we will follow
the ordering as above when we deform as in Lok [121]. That is, we use the
isotopy of Ui1 restricted to Ui1 ∩·· ·∩Uik when Ui1 has the largest order.

• We extend the isotopies to the sets of intersections of smaller number of sets in
V ′ by Lemma 5 of [49]. By induction, we extend it to all the images of compact
and closed domains in V ′.

• We patch these open sets to build an orbifold Oh′ with holonomy h′ referring
back to O by isotopies.

• Oh′ is diffeomorphic to O by the map constructed by the isotopies.

To show that the local inverse is a continuous map for the Cr-topology of Ô , we only
need to consider compact suborbifolds in O since the holonomy representation depends
only on any compact submanifold whose complement is a union of proper end neighbo-
hoods. For this the same argument as in [49] will apply.

We now prove the local injectivity of hol. Given two structures µ0 and µ1 in a
neighborhood of the deformation space, we show that if their holonomy homomorphisms
are the same, say h : π1(O)→ SL±(n+1,R), then we can isotopy one in the neighborhood
to the other using vector fields as in [49].

Because of the section sU defined on U , given a holonomy h, we have a direction of
the radial end that is unique for the holonomy homomorphism.
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First assume that O has only R-type ends. Recall the compact suborbifold O ′ so that
O −O ′ is diffeomorphic to Ei × (0,1) for each end orbifold Ei where each x× (0,1) is the
image of a radial segment.

We can choose a Riemannian metric on Ō so that an end neighborhood has a product
metric of form Ei × (0,1]. Let dev j be the developing map of µ j for j = 0,1. Then
the Cr-norm distance of extensions dev0 and dev1 to Ō is bounded on each compact set
K ⊂ Ō by our assumption on the closeness of the two structures. Since we chose µ1 and µ2
sufficiently close, dev0 and dev1 can be assumed to be sufficiently close in the Cr-topology
over K. The images of K under each of these maps can be assumed to lie on a neighborhood
of the image of a p-end vertex, say v. Moreover, the radial lines maps to the radial lines
ending at the same ideal end vertex. We may assume that they have the forms of the radial
projectivizations. We can use the argument in the last part of [49] to show that dev1 lifts to
an immersion Ô → Ô equivariant with respect to the deck transformation group. Then we
use the metrics to equivariantly isotopy it to I as in the last section of [49]. Hence, µ0 and

µ1 represent the same point of D̃ef
S
A,E ,sU (O).

Suppose now that O has some lens type T -type ends. Suppose that µ0 and µ1 have
a totally geodesic ideal boundary component corresponding to an end of O . We attach the
totally geodesic ideal boundary component for each end, and then we can argue as in [49]
proving the local injectivity.

Suppose that µ0 and µ1 have horospherical end neighborhoods corresponding to an
end of O . Then these are radial ends and the same argument as the above one for R-type
ends will apply to show the local injectivity.

Finally, we cannot have the situation that µ0 has the totally geodesic ideal boundary
component corresponding to an end while µ1 has a horoball end neighborhood for the
same end. This follows since the end holonomy group acts on a properly convex domain
in a totally geodesic hyperspace and as such the end holonomy group elements have some
norms of eigenvalues > 1. (See Proposition 1.1 of [18] for example.) □

9.5. Relationship to the deformation spaces in our earlier papers

Recall D(P̂) for a Coxeter orbifold P̂ that is not necessarily compact in Definition
2.2.2.

Let O be a strongly tame orbifolds only radial ends and radial end structure E . Recall
the definition of CDefE (O) from Section 9.3.1.

Generalizing this, let DE (O) denote the same set as CDefE (O). We give the topology
by Cr-topology on for the set of all developing maps dev : O → Sn and take the quotient
by right actions by the isotopy lifts Õ and by the left action by composition with elements
of SL±(n+1,R). These were the topology we used before as in [50].

By following Proposition 9.5.1, we obtain that D(P̂) is the same as CDefE (P) as
topological spaces.

We say that a diffeomorphism preserves a radial end structure if an end neighborhood
with the radial foliation structure contains an end neighborhood is mapped into an end
neighborhood sending the radial leaves to radial leaves.

Let Õ denote the universal cover of O . We can form Ō by using the end-compactification
by Definition 9.1.1. A radial end structure preserving isotopies can be extended to a home-
omorphisms of end-compactifications. We call such diffeomorphism end-structure pre-
serving extended isotopies.
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PROPOSITION 9.5.1. Let O be a stronly tame orbifold with only radial ends and radial
end structure E . Then there is a homeomorphism

DE (O) = CDefE (O).

PROOF. We denote by Ô the universal cover of Ō containing Õ as a dense open set.
Hence, by restricting the structure on O only, there is a map

R′
r : CDefE (O)→D(O).

The map is one-to-one and onto since the sets are the same.
Let DÕ denote the space of all developing maps on Õ with radial end structures. Let

Jr( f ) denote the tuples of all jets of f : Õ → RPn of order ≤ r. The topology on DÕ is
given by bases of form

BK,ε(dev) := { f ∈ DO |d(Jr(dev)(x),Jr( f )(x))< ε,x ∈ K, f ∈Cr(Õ,RPn)}

where K ⊂ Õ is a compact set, ε > 0, and dev ∈ DÕ . The topology on DÔ is given by
bases of form

B′
K,ε(dev) := { f ∈ DÔ |d(J

r(dev)(x),Jr( f )(x))< ε,x ∈ K, f ∈Cr(Ô,RPn)}

where K ⊂ Ô is a compact set, ε > 0, and dev ∈ DÔ .
Consider the restriction map

Rr : Cr(Ô,RPn)→Cr(Õ,RPn)

inducing R′
r. Since compact subsets of Õ are compact subsets of Ō , the inverse image

under Rr of a basis element of Cr(Õ,RPn) is a basis element in Cr(Ō,RPn). Hence, the
induced map

R′
r : CDefE (O) = DŌ/GŌ →D(O) = DO/GO

is continuous.
Now we find the inverse of R′

r:
Recalling Definition 9.1.2, we define:

• Let GO denote the group of isotopies of O preserving the radial end structures of
O , and

• let GŌ denote the group of radial end structure preserving extended isotopies of
Ō .

• The isotopy-lifts ι : Õ → Õ form a group which we denote by GÕ .
• Denote by GÔ the group of the extensions of isotopy-lifts ι̂ : Ô → Ô of isotopies

in O .

Fix the union U of mutually disjoint R-end neighborhoods and radial foliations on
each component in O .

Also, we choose a union U ′ of such neighborhoods so that ClÕ(U)⊂U ′. Let Ũ denote
the inverse image of U and Ũ ′ that of U ′.

• denote by GO,U ′,U the group of isotopies of form ι of O acting on each compo-
nent of U preserving the radial folations and U ′.

• Let GÕ,U ′,U denote the isotopy-lifts ι̃ of O to Õ acting on each component of Ũ ′

and Ũ which are lifts of elements of GO,U ′,U .
• Let GÔ,U ′,U be the extensions of isotopy-lifts of Õ to Ô acting on each component

of Ũ ′ and Ũ .
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Clearly there is a natural isomorphism by extension GO,U ′,U → GÔ,U ′,U with the inverse
map given by the restriction to O .

Let DO,U,U ′ denote the space of functions of form dev in a development pair (dev,h)
so that dev|Ũ ′ equals devN |Ũ ′ constructed for U and U ′ by the radial end-projectivization
in Lemma 9.3.7. (We may have to construct on a larger union of p-end neighborhood
because of the smoothing process and restrict to U and U ′.) By Lemma 9.3.7, we obtain a
natural map DO,U,U ′/GO,U ′,U → DO/G that is a one-to-one onto map.

Also, denote by DŌ,U,U ′ denote the space of functions of form dev which are ex-
tended developing maps and dev|Ũ equals devN |Ũ constructed for U and U ′ by radial
end-projectivization in Lemma 9.3.7.

Recall from the elementary analysis that the Cr-topology on a compact set K is a
metric topology with the metric dK given by taking the supremum of the distances of jets
up to order ≤ r at a compact set.

We claim that the canonical map F : DO,U,U ′/GO,U ′,U →DO/GO is a homeomorphism:
Let us take a compact neighborhood KF of a fundamental domain F of Õ − Ũ . Then
we define a metric on DO,U,U ′ by dDO,U,U ′ between two developing maps f1, f2 is defined
as supx∈KF

d(Jr( f1)(x),Jr( f2)(x)). Since the developing map on Ũ is determined by the
developing map restricted on KF as we can see by a radial end-projectivization with respect
to U and U ′, we obtain a metric dDO,U,U ′ on DO,U,U ′ giving us the Cr-topology on DO,U,U ′ .
The map F is continuous since it is induced by the inclusion map DO,U ′,U → DO .

There is an inverse map G : DO/G
u → DO,U,U ′/G u

U ′,U given by taking a developing
map f and modifying it by radial end-projectivization. There are choices involved, but
they are well-defined up to isotopy-lifts.

Any isotopy ι induces a homeomorphism ι∗ in DO . To show the continuity of G, we
take a ball BdO,U,U ′ ( f ,ε) for f ∈ DO,U,U ′ show that there is a neighborhood of f ◦ ι in DO

in the Cr-topology going into it for ι ∈ G Õ . Since we can take ι∗(B) as a neighborhood
for f ◦ ι , it is sufficient to find a neighborhood B of f in DO in the Cr-topology. Let KF
denote a compact set in Õ −Ũ . We take a sufficiently small δ , δ > 0, the neighborhood
BKF ,δ ( f ) so that each of its element g is still in BdDO,U,U ′

( f ,ε) after applying the isotopy

of radial end-projectivization with respect to U and U ′: This is because we only need to
worry about the compact set KF ∩ClÕ(Ũ

′) while g after radial end-projectivization with
respect to U ′ and U is determind in this compact set. If g is sufficiently close to f on KF
in the Cr-topology already in the form of Lemma 9.3.7, then

• the leaves of the radial foliation of g intersected with KF is Cr-close to ones for
f and

• the required isotopy ιg for radial end-projectivization of g is also sufficiently
Cr-close to I on KF in the uniform Jr-topology defined on U .

Hence, by taking sufficiently small δ , g ◦ ιg is in BdDO,U,U ′
( f ,ε). Since we are estimating

everything in a compact set KF , and finding ιg depending on g|KF , these methods are
possible. (By the uniform topology, we mean the topology using the norm of differences
of two functions on U but not just one a compact subset of U .)

Also, DŌ,U,U ′/GŌ,U ′,U → DŌ/GŌ is a homeomorphism similarly.
It is a triviality that the restriction map DŌ,U,U ′ → DO,U,U ′ is a homeomorphism.

Hence, the induced map DŌ,U,U ′/GŌ,U ′,U → DO,U,U ′/GO,U ′,U is a homeomorphism. Since
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there is a commutative diagram

DŌ,U,U ′/G u
Ō,U ′,U →DO,U,U ′/GO,U ′,U

↓ ↓
DŌ/GŌ → DO/GO .(9.5.1)

Since the downarrows maps are homeomorphisms by above, and the upper row map is a
homeomorphism, it follows that the bottom row is continuous.

This means that there is a continous map DO/GO → DŌ/GŌ giving us the inverse of
R′

r. □



CHAPTER 10

Relative hyperbolicity and strict convexity

We will show the equivalence between the relative hyperbolicity of the fundamental
group of the properly convex real projective orbifolds with the lens-shaped radial ends
or totally geodesic ends or horospherical ends with the strict convexity of the orbifolds
relative to the ends. In Section 10.1, we will show how to add some lenses to the T-ends
so that the ends become boundary components and how to remove some open sets to make
R-ends into boundary components. Some constructions preserve the strict convexity and so
on. In Section 10.2, we describe the action of the end fundamental group on the boundary
of the universal cover of a properly convex orbifold. In Section 10.3, we prove Theorem
10.3.1 that the strict convexity implies the relative hyperbolicity of the fundamental group
using Yaman’s work. We then present the converse of this Theorem 10.3.4. For this, we
use the work of Druţu and Saphir on tree graded spaces and asymptotic cones.

10.1. Some constructions associated with ends

We will discuss some constructions to begin. It will be sufficient to prove for the case
Õ ⊂ Sn in this chapter by Proposition 1.4.2. So we will not give any RPn version here.

The purpose of this chapter is to prove Corollary 11.0.3 the equivalence of the strict
convexity of O and the relative hyperbolicity of π1(O) with respect to the end fundamental
groups. Cooper-Long-Tillman [67] and Crampon-Marquis [68] proved the same result
when we only allow horospherical ends. Benoist told us at an IMS meeting at the National
University of Singapore in 2016 that he has proof for this theorem for n = 3 using trees
as he has done in closed 3-dimensional cases in [24] using the Morgan-Shalen’s work on
trees [134]. For convex cocompact actions, there are some related later work by Islam and
Zimmer [104] and [103], and Weisman [155] for relatively hyperbolic groups for compact
orbifold groups.

Recall that properly convex strongly tame real projective orbifolds with generalized
lens-shaped or horospherical ends satisfying (NA) and (IE) have strongly irreducible ho-
lonomy groups by Theorem 6.0.4. In this chapter, we will fix the union U of all concave
end neighborhoods for radial ends and lens end neighborhoods for T-ends and horospher-
ical neighborhoods of ends mutually disjoint from one another. Let Ũ denote the inverse
image in Õ .

10.1.1. Modifying the T-ends. For T-ends, by the lens condition, we only consider
the ones that have CA-lens neighborhoods in some ambient orbifolds. First, we discuss the
extension to bounded orbifolds.

THEOREM 10.1.1. Suppose that O is a strongly tame properly convex real projective
orbifold with generalized lens-shaped or horospherical R- or T -ends and satisfy (IE).
Let E be a lens-shaped T-end, and let SE be a totally geodesic hypersurface that is the
ideal boundary corresponding to E. Let L be a lens-shaped end neighborhood of SE in an
ambient real projective orbifold containing O . Then

257
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• L ∪O is a properly convex real projective orbifold and has a strictly convex
boundary component corresponding to E.

• Furthermore, if O is strictly SPC and Ẽ is a hyperbolic end, then so is L∪O
which now has one more boundary component and one less T-ends.

PROOF. Let Õ be the universal cover of O , which we can identify with a properly
convex bounded domain in an affine subspace. Then SE corresponds to a T-p-end Ẽ and
a totally geodesic hypersurface S = S̃Ẽ . And L is covered by a lens L̃ containing S. The
p-end fundamental group π1(Ẽ) acts on Õ and L̃1 and L̃2 the two components of L̃− S̃Ẽ in
Õ and outside Õ respectively.

□

Lemma 10.1.2 generalizes Theorem 3.7 of [88].

LEMMA 10.1.2. Suppose that S̃Ẽ is the totally geodesic ideal boundary of a lens-
shaped T-end Ẽ of a strongly tame real projective orbifold O .

• Given a π1(Ẽ)-invariant properly convex open domain Ω1 with bdΩ1 ∩Sn−1
∞ =

S̃Ẽ , for each point p of bdS̃Ẽ , any sharply supporting hyperspace H of S̃Ẽ at p in
Sn−1

∞ , there exists an AS-hyperspace to Õ containing H.
• At each point of bdS̃Ẽ , the hyperspace sharply supporting any π1(Ẽ)-invariant

properly convex open set Ω with bdΩ∩Sn−1
∞ = S̃Ẽ is unique if π1(Ẽ) is hyper-

bolic.
• We are given two π1(Ẽ)-invariant properly convex open domains Ω1 with bdΩ1∩
Sn−1

∞ = S̃Ẽ , and Ω2 with bdΩ2 ∩Sn−1
∞ = S̃Ẽ from the other side. Then Cl(Ω1)∪

Cl(Ω2) is a convex domain with

Cl(Ω1)∩Cl(Ω2) = Cl(S̃Ẽ)⊂ bdΩ1 ∩bdΩ2

and their AS-hyperspaces at each point of bdS̃Ẽ coincide.

PROOF. Let An denote the affine subspace that is the complement in Sn of the hy-
perspace containing S̃Ẽ . Because π1(Ẽ) acts properly and cocompactly on a lens-shaped
domain, By Theorem 5.5.4, h(π1(Ẽ)) satisfies the uniform middle eigenvalue condition.

The domain Ω1 has an affine half-space H(x) bounded by an AS-hyperspace for
each x ∈ bdS̃Ẽ containing Ω1. Here, H(x) is uniquely determined by π1(Ẽ) and x and
H(x)∩Sn−1

∞ by Theorems 4.1.1 and 4.3.1. The respective AS-hyperspaces at each point of
Cl(S̃Ẽ)− S̃Ẽ to Ω1 and Ω2 have to agree by Lemmas 4.2.12 and 4.3.8.

The second item follows by the third item and Theorem 1.1 of [22]. □

CONTINUATION OF THE PROOF OF THEOREM 10.1.1. By Lemma 10.1.2, L̃2∪ S̃Ẽ ∪
Õ is a convex domain. If L̃2 ∪ Õ is not properly convex, then it is a union of two cones
over S̃Ẽ over of [±vx] ∈ Rn+1, [vx] = x. This means that Õ has to be a cone contradicting
the strong irreducibility of h(π1(O)). Hence, it follows that L̃2 ∪ Õ is properly convex.

Suppose that O is strictly SPC and π1(Ẽ) is hyperbolic. Then every segment in bdÕ or
a non-C1-point in bdÕ is in the closure of one of the p-end neighborhood. bdL̃2 −Cl(S̃Ẽ)
does not contain any segment in it or a non-C1-point. bdÕ −Cl(S̃Ẽ) does not contain
any segment or a non-C1-point outside the union of the closures of p-end neighborhoods.
bd(Õ ∪ L̃2 ∪ S̃Ẽ) is C1 at each point of Λ(Ẽ) := Cl(S̃Ẽ)− S̃Ẽ by the uniqueness of the
sharply supporting hyperspaces of Lemma 10.1.2.

Recall that S̃Ẽ is strictly convex since π1(Ẽ) is a hyperbolic group. (See Theorem 1.1
of [22].) Thus, Λ does not contain a segment, and hence, bd(Õ ∪ L̃2 ∪ S̃Ẽ) does not contain
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one. Therefore, L2 ∪O is strictly convex relative to the remaining ends. Now we do this
for every copy g(L2) of L2 for g ∈ π1(O).

Since L̃2 ∪ Õ has a Hilbert metric by [112], the action is properly discontinuous. □

COROLLARY 10.1.3. Suppose that O is a noncompact strongly tame properly convex
real projective orbifold with a p-end Ẽ, and π1(Ẽ) is hyperbolic.

(i) Let Ẽ be a lens-shaped totally geodesic p-end. Let L be a CA-lens containing a
totally geodesic properly convex hypersurface Ẽ so that

Λ := Cl(S̃Ẽ)− S̃Ẽ = bdL−∂L.

Then each point of Λ has a unique sharply supporting hyperspace of L.
(ii) Let Ẽ be a lens-shaped radial p-end. Let L be a CA-lens in the p-end neighbor-

hood. Define Λ := bdL− ∂L. Then each point of Λ has a unique sharply sup-
porting hyperspace of L.

PROOF. (i) is already proved in Lemma 10.1.2.
(ii) is proved in Proposition 5.5.8. □

10.1.2. Shaving the R-ends. We call the following construction shaving the ends.

THEOREM 10.1.4. Given a strongly tame SPC-orbifold O and its universal cover Õ ,
there exists a collection of mutually disjoint open concave p-end neighborhoods for lens-
shaped p-ends. We remove a finite union of concave end-neighborhoods of some R-ends.
Then

• we obtain a convex domain as the universal cover of a strongly tame orbifold
O1 with additional strictly convex smooth boundary components that are closed
(n−1)-dimensional orbifolds.

• Furthermore, if O is strictly SPC with respect to all of its ends, and we remove
only some of the concave end-neighborhoods of hyperbolic R-ends, then O1 is
strictly SPC with respect to the remaining ends.

PROOF. If O1 is not convex, then there is a triangle T in Õ1 with three segments
s0,s1,s2 so that T − so

0 ⊂ Õ1 but so
0 − Õ1 ̸= /0. (See Theorem A.2 of [46] for details.) Since

Õ1 is an open manifold, so
0−Õ1 is a closed subset of so

0. Then a boundary point x ∈ so
0−Õ1

is in the boundary of one of the removed concave-open neighborhoods or is in bdÕ itself.
The second possibility implies that O is not convex as Õ1 ⊂ Õ . The first possibility implies
that there exists an open segment meeting bdU ∩ Õ at a unique point but disjoint from U .
This is geometrically not possible since bdU ∩ Õ is strictly convex towards the direction of
U . These are contradictions.

Since Õ is properly convex, so is Õ1. Since bdU ∩ Õ is strictly convex, the new
corresponding boundary component of Õ1 is strictly convex.

Now we go to the second part. We suppose that O is strictly SPC. Let H denote the set
of p-ends with hyperbolic p-end fundamental groups whose concave p-end neighborhoods
were removed in the equivariant manner. For each Ẽ ∈ H , denote by UẼ the concave
p-end neighborhood that we are removing.

Any segment in the boundary of the developing image of O is in the closure of a p-
end neighborhood of a p-end vertex. For the p-end-vertex vẼ of a p-end Ẽ, the domain
RvẼ

(Õ) ⊂ Sn−1
vẼ

is strictly convex by [22] if π1(Ẽ) is hyperbolic. Since bdRvẼ
(Õ) con-

tains no straight segment, only straight segments in Cl(U)∩ bdÕ for the concave p-end
neighborhood U of Ẽ are in the segments in

⋃
S(vẼ). Thus, their interiors are disjoint from

bdÕ1, and hence bdÕ1 contains no geodesic segment in
⋃

Ẽ∈H Cl(UẼ)∩bdÕ .
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Since we removed concave end neighborhoods of the lens-shaped ends with the hyper-
bolic end fundamental groups, any straight segment in bdÕ1 lies in the closure of a p-end
neighborhood of a remaining p-end vertex.

A non-C1-point of bdÕ1 is not on the boundary of the concave p-end neighborhood U
for a hyperbolic p-end Ẽ nor in bdÕ −

⋃
Ẽ∈H Cl(UẼ). We show that points of Λ = L−∂L

are C1-points of bdÕ: Cl(U)∩bdÕ1 contains the limit set Λ = L−∂L for the CA-lens L in
a lens-neighborhood. Õ has the same set of sharply supporting hyperspaces as L at points
of Λ since they are both π1(Ẽ)-invariant convex domains by Corollary 10.1.3. However,
the sharply supporting hyperspaces at Λ of L are also supporting ones for Õ1 by Corollary
10.1.3 since L ⊂ Õ1 as we removed the outside component U of Õ −L. Thus, Õ1 is C1 at
points of Λ.

Also, points of bdÕ −
⋃

Ẽ∈H Cl(UẼ) are C1-points of bdÕ since O is strictly SPC.
Let x be a point of this set. Suppose that x ∈ so for a segment s in bdÕ1. Then s ⊂ bdÕ
and s is not in Cl(UẼ) for any vẼ since we removed subsets of Õ to obtain Õ1. Hence this
is not possible. Suppose that x has more than two sharply supporting hyperspaces P1,P2
to Õ1 at x. We may assume that P1 is a sharply supporting hyperspace to Õ . Since P2 is
not supporting Õ , a component H ′

2 disjoint from Õ1 meets Õ . Then H ′
2 ∩ Õ is a convex

domain, which we denote by Ω2. Ω2 ⊂
⋃

Ẽ∈H Cl(UẼ). Now, it is easy to see that Cl(UẼ)

for at most one p-end Ẽ meets H ′
2. Since x ∈ Õ2, x is in the closure of Cl(UẼ)∩H ′

2. Thus,
x ∈ Cl(UẼ)∩Cl(Õ1)⊂ ΛvẼ

for a limit set ΛvẼ
. However, we proved that there is a unique

supporting hyperspace at x to Õ1 in the above paragraph. Hence, O1 is strictly SPC. □

10.2. The strict SPC-structures and relative hyperbolicity

10.2.1. The Hilbert metric on O . Recall Hilbert metrics from Section 1.1.3. A
Hilbert metric on an orbifold with an SPC-structure is defined as a distance metric given
by cross ratios. (We do not assume strictness here.)

Given an SPC-structure on O , there is a Hilbert metric which we denote by dÕ on Õ
and hence on Õ . Actually, we will make O slightly small by inward perturbations of ∂O
preserving the strict convexity of ∂O by Lemma 1.4.6. The Hilbert metric will be defined
on original Õ . (We call this metric the perturbed Hilbert metric.) This induces a metric on
O , including the boundary now. We will denote the metric by dO .

Given an open properly convex domain Ω, we note that given any two points x,y in Ω,
there is a geodesic arc xy with endpoints x,y so that its interior is in Ω.

PROPOSITION 10.2.1. Let Ω be a properly convex open domain. Let P be a subspace
meeting Ω, and let x be a point of Ω−P :

(i): There exists a shortest path m from x to P∩Ω that is a line segment.
(ii): The set of shortest paths to P from a point x of Ω−P have endpoints in a

compact convex subset K of P∩Ω.
(iii): For any line m′ containing m and y ∈ m′, the segment in m′ from y to the point

of P∩Ω is one of the shortest segments.
(iv): When P is a complete geodesic in Ω with x ∈ Ω−P, outside the compact set

K, K ⊂ P, of endpoints of shortest segments from x to P, the distance function
from P−K to x is strictly increasing or strictly decreasing.

PROOF. (i) The distance function f : P∩Ω→R defined by f (y) = dΩ(x,y) is a proper
function where f (x)→ ∞ as x → z for any boundary point z of P∩Ω in P. Hence, there
exists a shortest segment with an endpoint x0 in P∩Ω. (iv) is also proved.
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FIGURE 1. The shortest geodesic m to a geodesic l.

(ii) Let γ be any geodesic in P∩Ω passing x0. We need to consider the 2-dimensional
subspace Q containing γ and x. The set of endpoints of shortest segments of Ω in Q is a
connected compact subset containing x0 by Proposition 1.4. of [45]. Hence, by considering
all geodesics in P∩Ω passing x0, we obtain that the endpoints of the shortest path to P from
x is a connected compact set. We take two points z1,z2 on it. Then the segment connecting
z1 and z2 is also in the set of endpoints by Proposition 1.4 of [45]. Hence, the set is convex.

(iii) Suppose that there exists y ∈ m′, so that the shortest geodesic m′′ to P∩Ω is
not in m′. Consider the 2-dimensional subspace Q containing m′ and m′′. Then this is a
contradiction by Corollary 1.5 of [45].

(iv) Again follows by considering a 2-dimensional subspace containing P and m. (See
Proposition 1.4 of [45] for details.) □

An endpoint in P of a shortest segment is called a foot of the perpendicular from x to
γ .

10.2.2. Strict SPC-structures and the group actions. By Corollary 6.3.3, strict
SPC-orbifolds with generalized lens-shaped or horospherical R- or T -ends have only
lens-shaped or horospherical R- or T -ends.

An elliptic element of g is a nonidentity element of π1(O) fixing an interior point of
Õ . Since π1(O) acts discretely on the space Õ with a metric, an elliptic element has to be
of finite order.

LEMMA 10.2.2. Let O be a strongly tame strict SPC-orbifold. Let Ẽ be a p-end of Õ .

(i) Suppose that Ẽ is a horospherical p-end. Let B be a horoball p-end neighborhood
with a p-end vertex p corresponding to Ẽ. There exists a homeomorphism ΦẼ :
bdB−{p} → bdÕ −{p} given by sending a point x to the endpoint of maximal
convex segment containing x and p in Cl(Õ).

(ii) Suppose that Ẽ is a lens-shaped radial p-end. Let U be a lens-shaped radial
p-end neighborhood with the p-end vertex p corresponding to Ẽ. There exists a
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homeomorphism ΦẼ : bdU ∩ Õ → bdÕ−Cl(U) given by sending a point x to the
other endpoint of the maximal convex segment containing x and p in Cl(Õ).

Moreover, each of the maps denoted by ΦẼ commutes with elements of h(π1(Ẽ)).

PROOF. (i) By Theorem 8.1.3(i) ΦẼ is well-defined. The same proposition implies
that bdB is smooth at p and bdÕ has a unique sharply supporting hyperspace. Therefore
the map is onto.

(ii) The second item follows from Theorems 5.4.2 and 5.4.3 since they imply that the
segments in S(p) are maximal ones in bdÕ from p. □

We now study the fixed points in Cl(Õ) of elements of π1(O). Recall that a great
segment is a geodesic arc in Sn with antipodal p-end vertices. It is not properly convex.

Note that we can replace a generalized lens to a lens for a strongly tame strictly SPC-
orbifold by Corollary 6.3.3.

LEMMA 10.2.3. Let O be a strongly tame strict SPC-orbifold with lens-shaped or
horospherical R- or T -ends. Let g be an infinite order element of a p-end fundamental
group π1(Ẽ). Then every fixed point x of g in Cl(Õ) satisfies one of the following:

• x is in the closure of a p-end-neighborhood that is a concave end-neighborhood
of an R-p-end,

• x is in the closure of a p-ideal boundary component of a T-p-end or
• x is the fixed point of a horospherical R-p-end.

PROOF. Suppose that the p-end Ẽ is a lens-shaped R-end. The direction of each seg-
ment in the interior of the lens cone with an endpoint vẼ is fixed by only the finite-order
element of π1(Ẽ) since π1(Ẽ) acts properly discontinuously on S̃Ẽ . Thus, the fixed points
are on the rays in the direction of the boundary of Ẽ. They are in one of S(vẼ) for the p-end
vertex vẼ corresponding to Ẽ by Theorems 5.4.2 and 5.4.3. Hence, the fixed points of the
holonomy homomorphism of π1(Ẽ) is in the closure of the lens-cone with end vertex vẼ
and nowhere else in Cl(Õ).

If Ẽ is horospherical, then the p-end vertex vẼ is not contained in any segment s in
bdÕ by Theorem 8.1.3. Hence vẼ is the only point S∩ bdÕ of any invariant subset S of
π1(Ẽ) by Lemma 10.2.2. Thus, the only fixed point of π1(E) in bdÕ is vẼ .

Suppose that E is a lens-shaped T-p-end. Since Ẽ is a properly convex real projective
orbifold that is closed, we obtain an attracting fixed point a and a repelling fixed point r
of g|Cl(S̃Ẽ) by [17]. Then a and r are attracting and repelling fixed points of g|Cl(Õ) by
the existence of the CA-lens neighborhood of S̃Ẽ since Theorem 5.5.4 implies the uniform
middle eigenvalue condition.

Suppose that we have a fixed point s ∈ bdÕ distinct from a and r. We claim that as
and rs are in bdÕ . The norm of the eigenvalue associated with s is strictly between those
of r and s by the uniform middle eigenvalue condition. Let P denote the two-dimensional
subspace containing r,s,a. Suppose that one of the segment meets Õ at a point x. We
take a convex open-ball-neighborhood B of x in P∩ Õ . Suppose that x ∈ rso. Then using
the sequence {gn(B)}, we obtain a great segment in Cl(Õ) by choosing n → ∞. This is a
contradiction. If x ∈ aso, we can use {g−n(B)} as n → ∞, again giving us a contradiction.
Hence, as,rs ⊂ bdÕ .

Since Ẽ has a one-sided neighborhood U in a CA-lens neighborhood of S̃Ẽ by choosing
a smaller such neighborhood U if necessary, we may assume that Cl(U)∩bdÕ is in Cl(S̃Ẽ).
By the strict convexity of Õ , we see that the nontrivial segments as and rs have to be in
Cl(S̃Ẽ). (See Definition 6.0.3.) □
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See Crampon and Marquis [68] and Cooper-Long-Tillmann [67] for similar work to
the following. We remind the reader that generalized lens-shaped R-ends are lens-shaped
R-ends in the following assumption by Corollary 6.3.3,

PROPOSITION 10.2.4. Suppose that O is a strongly tame strict SPC-orbifold with
lens-shaped ends or horospherical R- or T -ends satisfying (IE) and (NA). Then each
nonidentity and infinite-order element g of π1(O) has two exclusive possibilities:

• g|Cl(Õ) has exactly two fixed points in bdÕ none of which is in the closures of
the p-end neighborhoods for distinct ends, and g is positive proximal.

• g is in a p-end fundamental group π1(Ẽ), and g|Cl(Õ)
– has all fixed points in bdÕ in the closure of a concave p-end neighborhood

of a lens-shaped radial p-end Ẽ.
– has all fixed points in bdÕ in Cl(S̃Ẽ) for the ideal boundary component S̃Ẽ

of a lens-shaped totally geodesic p-end Ẽ, or
– has a unique fixed point in bdÕ at the horospherical p-end vertex.

PROOF. Suppose that g has a fixed point at a horospherical p-end vertex v for a p-
end Ẽ. We can choose the horoball U at v that maps into an end-neighborhood of O . A
horoball p-end neighborhood is either sent to a disjoint one or sent to the identical one.
Since g(U)∩U ̸= /0 by the geometry of a horoball having a smooth boundary at v, g must
act on the horoball, and hence g is in the p-end fundamental group. The p-end vertex is the
unique fixed point of g in bdÕ by Lemma 10.2.3.

Similarly, suppose that g ∈ π1(O) fixes a point of the closure U of a concave p-end
neighborhood of a p-end vertex v of a lens-shaped end. g(Cl(U)) and Cl(U) meet at a
point. By Corollary 6.3.1, g(Cl(U)) and Cl(U) share the p-end vertex and hence g(U) =U
as g is a deck transformation. Therefore, g is in the p-end fundamental group of the p-end
of v. Lemma 10.2.3 implies the result.

Suppose that g ∈ π1(O) fixes a point of Cl(S̃Ẽ) for a totally geodesic ideal boundary
S̃Ẽ corresponding to a p-end Ẽ. Again Corollary 6.3.1 and Lemma 10.2.3 imply the result
for this case.

Suppose that an element g of π1(O) is not in any p-end fundamental subgroup. Then
by above, g does not fix any of the above types of points. We show that g has exactly two
fixed points in bdÕ:

Suppose that g ∈ π1(O) fixes a unique point x in the closure of bdÕ and x is not in
the closure of p-end neighborhoods by the first part of the proof. Then x is a C1-point by
the strict convexity. (See Definition 6.2.3.) Suppose that we have two eigenvalues with the
largest norm > 1 and the smallest norm < 1 respectively. If the largest norm eigenvalue is
not positive real, Cl(Õ) contains a nonproperly convex subset as we can see by an action
of gn on a generic point of Õ . Hence, the largest norm eigenvalue is positive and so is
the smallest norm eigenvalue. We obtain attracting and repelling subspaces easily with
these, and there are at least two fixed points. This is a contradiction. Therefore, g has
only eigenvalues of unit norms. However, Lemma 1.3.10 shows that there is a sequence of
simple closed curves ci whose the sequence of Hilbert lengths is going to zero. Hence, g
must be freely homotopic to an end neighborhood. This is absurd.

We conclude that g∈ π1(O) not in a p-end fundamental groups fixes at least two points
a and r in bdÕ . We choose the two fixed points to have the positive real eigenvalues that
are largest and smallest absolute values of the eigenvalues of g. (As above, the largest and
smallest norm eigenvalues must be positive for Õ to be properly convex.)
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No fixed point of g in bdÕ is in the closures of p-end neighborhoods by the first part of
the proof. By strict convexity, the interior of Õ contains an open line segment l connecting
a and r.

Suppose that there is a third fixed point t in Cl(Õ), which must be a boundary point.
Let S denote the subspace spanned by a,r, t. The point t is not in the closures of p-end
neighborhoods as we assumed that g is not in the p-end fundamental group. Then the
line segment connecting t to the a or r must be in bdÕ: Assume without loss of generality
tao ⊂ Õ by taking g−1 and switching notation of a and r if necessary. Since g acts properly,
the norms of eigenvalues of g at t or a are distinct. We can form a segment s in Õ ∩ S
transverse to the segment. Then {gk(s)} geometrically converges to a segment in bdÕ
containing t with endpoints r and r− as k →−∞. Thus, the existence of t contradicts the
proper convexity of Cl(Õ).

Hence, there are exactly two fixed points of g in bdÕ of the positive real eigenvalues
that are largest and smallest absolute values of the eigenvalues of g. □

PROPOSITION 10.2.5. Suppose that O is a noncompact strongly tame strict SPC-
orbifold with lens-shaped ends or horospherical R- or T -ends. Let Ẽ be an end. Then for
a p-end Ẽ, (bdÕ −K)/π1(Ẽ) is a compact orbifold where K =

⋃
S(Ẽ) for a lens-shaped

radial p-end Ẽ, K = Cl(S̃Ẽ) for totally geodesic p-end Ẽ, or K = {vẼ} for horospherical
p-end Ẽ.

PROOF. Suppose that Ẽ is a lens-shaped R-p-end or horospherical type. By Lemma
10.2.2, the homeomorphism ΦẼ : S̃Ẽ → bdÕ −K gives us the result.

Suppose that Ẽ is a lens-shaped T-p-end. Let Õ∗ denote the dual domain. Then there
exists a dual radial p-end Ẽ∗ corresponding to Ẽ. Hence, (bdÕ∗−K′)/π1(Ẽ∗) is compact
for K′ equal to the closure of p-end neighborhoods of Ẽ∗ in the radial case or the vertex in
the horospherical case.

Recall Section 1.5. Let bdAgÕ be the augmented boundary with the fibration ΠAg, and
let bdAgÕ∗ be the augmented boundary with the fibration map Π∗

Ag. Let K′′ := Π
−1
Ag(K)

and K′′′ := Π
∗−1
Ag (K′). The discussion on in the proof of Corollary 5.5.1 shows that there is

a duality homeomorphism

DÕ : bdAgÕ −K′′ → bdAgÕ∗−K′′′.

Now (bdAgÕ∗−K′′′)/π1(Ẽ∗) is compact since bdÕ∗−K′ has a compact fundamental
domain, and the space is the inverse image in bdAgÕ∗ of bdÕ∗−K′. By (iv) of Proposition
1.5.4, (bdAgÕ −K′′)/π1(Ẽ) is compact also. Since the image of this set under the map
induced by a proper map ΠAg is (bdÕ −K)/π1(Ẽ). Hence, it is is compact. □

10.3. Bowditch’s method

10.3.1. The strict convexity implies the relative hyperbolicity. There are results
proved by Cooper, Long, and Tillmann [67] and Crampon and Marquis [68] similar to
below. However, the ends have to be horospherical in their work. By Lemma 6.3.3, for
strict SPC-orbifold, generalized lens-shaped ends are lens-shaped. We will use Bowditch’s
result [30] to show

THEOREM 10.3.1. Let O be a noncompact strongly tame strict SPC-orbifold with
lens-shaped ends or horospherical R- or T -ends E1, . . . ,Ek and satisfies (IE) and (NA).
Assume ∂O is smooth and strictly convex. Let Ũi be the inverse image Ui in Õ for a
mutually disjoint collection of neighborhoods Ui of the ends Ei for each i = 1, . . . ,k. Then
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• π1(O) is relatively hyperbolic with respect to the end fundamental groups

π1(E1), . . . ,π1(Ek).

Hence O is relatively hyperbolic with respect to U :=U1 ∪ ·· ·∪Uk as a metric
space.

• If π1(El+1), . . . ,π1(Ek) are hyperbolic for some 1 ≤ l ≤ k (possibly some of the
hyperbolic ones), then π1(O) is relatively hyperbolic with respect to the end
fundamental group π1(E1), . . . ,π1(El).

PROOF. We show that π1(O) is relatively hyperbolic with respect to the end funda-
mental groups π1(E1), . . . ,π1(Ek).

• We now collapse each set of form Cl(Ui) ∩ bdÕ = S̃Ẽ for a concave p-end
neighborhood Ui to a point and

• collapse Cl(S̃Ẽ) for each lens-shaped totally geodesic end Ẽ to a point.
By Corollary 6.3.1, these sets are mutually disjoint balls. Let CB denote the collection, and
let CB :=

⋃
CB.

We claim that for each closed set J in bdÕ , the union of CJ of elements of CB meeting
J is also closed: Let us choose a sequence {xi} for xi ∈ Ci, Ci ∩ J ̸= /0, Ci ∈ CB. Suppose
that {xi}→ x. Let yi ∈Ci ∩J. Let vi be the p-end vertex of Ci if it is from a R-p-end. Then
define si := xivi ∪ vi,yi ⊂ Ci if Ci is radial or else si := xiyi ⊂ Ci. Choose a subsequence
so that {si} geometrically converges to a limit containing x. The limit s∞ is a singleton, a
segment or a union of two segments. By the strict convexity of Õ , we obtain that s∞ is a
subset of an element of CB and s∞ meets J. Thus, x ∈ s∞ ⊂C j for C j ∩J ̸= /0. We conclude
that CJ is closed.

We denote this quotient space bdÕ/∼ by B. By Proposition 10.3.8, B is a metrizable
space.

We show that π1(O) acts on the metrizable space B as a geometrically finite conver-
gence group. By Theorem 0.1 of Yaman [157] following Bowditch [30], this shows that
π1(O) is relatively hyperbolic with respect to π1(E1), . . . ,π1(Ek). The definition of conical
limit points and so on are from the article.

(I) We first show that the group acts properly discontinuously on the metric space of
ordered mutually distinct triples in B = ∂ Õ/∼. Suppose not. Then there exists a sequence
of nondegenerate triples {(pi,qi,ri)} of points in bdÕ converging to a mutually distinct
triple {(p,q,r)} so that

pi = γi(p0),qi = γi(q0), and ri = γi(r0)

where {γi} is a sequence of mutually distinct elements of π1(O) and the equivalence classes
[p0], [q0], [r0] are mutually distinct and so are [p], [q], [r]. By multiplying by some uniformly
bounded element Ri in PGL(n+1,R) but not necessarily in h(π1(O)), we obtain that Ri ◦γi
for each i fixes p0,q0,r0 and restricts to a diagonal matrix with entries λi,δi,µi on the plane
with coordinates so that p0 = e1,q0 = e2,r0 = e3.

Then we can assume that

λiδiµi = 1,λi ≥ δi ≥ µi > 0

by restricting to the plane and up to choosing subsequences and renaming. Thus {λi}→ ∞

and {µi} → 0: otherwise, both of these two sequences are bounded. Let Pi denote the
2-dimension subspace spanned by pi,qi,ri. Then γi|Pi is a sequence of uniformly bounded
automorphisms. Let Di = Cl(Õ ∩Pi). Then the sequence of maximal d-distances from
points of Di to bdÕ is uniformly bounded below by a positive number: If not, the geometric
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limit of Di is a nontrivial disk in bdÕ containing p,q,r. Since p,q,r are in mutually distinct
equivalence classes, this contradicts the strict convexity. Then for a compact subset K of
Õ , K ∩Di ⊂ Õ is not empty for sufficiently large i. Choose pi ∈ K ∩Di. Then γi(pi) is
in a dÕ -bounded neighborhood of K independent of i since otherwise γi is not uniformly
bounded on Õ ∩Pi as indicated by the Hilbert metric. Hence, γi(K) is in a dÕ -bounded
neighborhood of K. This contradicts the proper discontinuity of the action by ΓΓΓ.

Let P0 denote the 2-dimensional subspace containing p0,q0, and r0. By strictness of
convexity, as we collapsed each of the p-end balls, the interiors of the segments p0q0, q0r0,
and r0 p0 are in the interior of Õ .

We claim that one of the sequence {λi/δi} or the sequence {δi/µi} are bounded:
Suppose not. Then {λi/δi}→ ∞ and {δi/µi}→ ∞. We choose generic segments s0 and t0
in Õ with a common endpoint q0 and the respective other endpoint ŝ0 and t̂0 in different
components of P∩O − p0q0 so that

d(ŝ0,q0),d(t̂0,q0)≥ δ for a uniform δ > 0.

We choose s0 and t0 so that their directions from q0 differ from those of p0q0 and q0r0
at least by a small constant δ ′ > 0. Then the sequence {Ri ◦ γi(s0 ∪ t0)} geometrically
converges to the segment with endpoint p0 passing q0. The segment is a great segment.
Since Ri is bounded, this implies that there exists such a segment in Cl(Õ). This is a
contradiction to the proper convexity of Õ .

Suppose now that the sequence λi/δi is bounded: Now the sequence of segments
{piqi} converges to pq whose interior is in Õ . Then we see that pq must be in the boundary
of Õ: Each point in pq must be the limit points of a sequence {yi} for yi ∈ γi(s) for some
compact subsegment s ⊂ p1q1

o by the boundedness of the above ratio and the proper-
discontinuity of the action. This contradicts the strict convexity as we assumed that p,q,
and r represent distinct points in B. If we assume that δi/µi is bounded, then we obtain a
contradiction similarly.

This proves the proper discontinuity of the action on the space of distinct triples.
(II) By Propositions 10.2.4 and 10.2.5, each group of form Γx for a point x of B= Õ/∼

is a bounded parabolic subgroup in the sense of Bowditch [157].
Now we take lens-cone end neighborhood for each radial end instead. We still choose

ones mutually disjoint from themselves and nonradial ones in U. We denote by U′ the
union of the modified end-neighborhoods. Let U′

1, . . . ,U
′
k denote its components. Let Ũ′

k
denote the inverse image of U′

k in Õ for each k.
(III) Let p ∈ bdÕ be a point that is not in a horospherical endpoint or an equivalence

class corresponding to a lens-shaped p-end of radial or totally geodesic type of B. Hence,
[p] = {p} in bdÕ/ ∼. That is, there is no segment containing p in one of the collapsed
sets. We show that [p] is a conical limit point. This will complete our proof by Theorem
0.1 of [157].

To show that [p] is a conical limit point, we will find a sequence of holonomy trans-
formations γi and distinct points a,b ∈ ∂B so that {γi([p])} → a and {γi(q)} → b locally
uniformly for q ∈ ∂B−{p}: To do this, we draw a line l in Õ from a point of the funda-
mental domain to p where as t → ∞, l(t) → p in Cl(Õ). We may assume that the other
endpoint p′ of l is in distinct equivalence class from [p]. Since l(t) is not eventually in a
p-end neighborhood, there is a sequence {ti} going to ∞ so that l(ti) is not in any of the
p-end neighborhoods in Ũ′1 ∪ ·· · ∪ Ũ′

k. Let p′ be the other endpoint of the complete ex-
tension of l(t) in Õ . We can assume without generality that p′ is not in the closure of any
p-end neighborhood by choosing the line l(t) differently if necessary.
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Since (Õ − Ũ′1 − ·· ·− Ũ′
k)/Γ is compact, we have a compact fundamental domain

F of Õ − Ũ′1 −·· ·− Ũ′
k with respect to Γ. Note that for the minimum distance, we have

d(F,bdÕ)>C0 for some constant C0 > 0.
We note: Given any line m passing F , the two endpoints must be in distinct equivalence

classes because of the convexity of each component of Ũ′.
We find a sequence of points zi ∈ F so that γi(l(ti)) = zi for a deck transformation γi.

Then {γi} is an unbounded sequence.
Using Definition 1.3.15, we may choose a set-convergent subsequence of {((γi))} that

is convergent in S(Mn+1(R)) to ((γ∞)) for γ∞ ∈ Mn+1(R). Hence, A∗({γi}) = S(Imγ∞)∩
Cl(Õ). Also, on Cl(Õ)−N∗({γi})∩Cl(Õ), {γi} is convergent to a subset of A∗({γi})
locally uniformly as we can easily deduce by linear algebra and some estimation.

Since N∗({γi}) is a convex subset of bdÕ and A∗({γi}) is a convex subset of bdÕ by
Theorem 1.3.21, they are in collapsed sets of bdÕ by the strictness of the convexity.

If p ̸∈ N∗({γi}), then γi(l(ti)) is also bounded away from N∗({γi}), and hence γi(l(ti))
accumulates only to A∗({γi}). This is a contradiction. Thus, p ∈ N∗({γi}). Since N∗({γi})
is a convex compact subset of bdÕ , we must have

N∗({γi})⊂ [p].

Thus, for all q ∈ bdÕ − [p], we obtain a local uniform convergence under γi to A∗({γi}).
This shows that p is a conical limit point. We let b be the collapsed set containing A∗({γi}).

Our line l equals the interior of pp′. We choose a subsequence of γi so that the cor-
responding subsequence {γi(pp′)} geometrically converges to a line passing F . Since p
and p′ are in district equivalence classes, [γi(p′)] converges to b, and γi(pp′) passes F , it
follows that γi(p) converges to a point of the equivalence class a distinct from b by our
note above.

Finally, we remove concave end-neighborhoods for El+1, . . . ,Ek or add lens end neigh-
borhoods by Theorems 10.1.4 and 10.1.1. The resulting orbifold is a strict SPC-orbifold
again and we can apply the result (i) to this case and obtain (ii). □

10.3.2. The theorem of Druţu. The author obtained a proof of the following theorem
from Druţu. See [75] for more details.

THEOREM 10.3.2 (Druţu). Let O be a strongly tame properly orbifold with gener-
alized lens-shaped ends and horospherical R- or T -ends and satisfies (IE) and (NA).
Let π1(E1), . . . ,π1(Em) be end fundamental groups where π1(El+1), . . . ,π1(Em) for l ≤
m are hyperbolic groups. Then π1(O) is a relatively hyperbolic group with respect to
π1(E1), . . . ,π1(Em) if and only if π1(O) is one with respect to π1(E1), . . . ,π1(El).

PROOF. With the terminology in the paper [75], π1(O) is a relatively hyperbolic group
with respect to the end fundamental groups π1(E1), . . . ,π1(Em) if and only if π1(O) with a
word metric is asymptotically tree graded (ATG) with respect to all the left cosets gπ1(Ei)
for g ∈ π1(O) and i = 1, . . . ,m.

We claimed that π1(O) with a word metric is asymptotically tree graded (ATG) with
respect to all the left cosets gπ1(Ei) for g ∈ π1(O) and i = 1, . . . ,m if and only if π1(O)
with a word metric is asymptotically tree graded with respect to all the left cosets gπ1(Ei)
for g ∈ π1(O) and i = 1, . . . , l.

Conditions (α1) and (α2) of Theorem 4.9 in [75] are satisfied still when we drop end
fundamental groups π1(En+1), . . . ,π1(Em) or add them. (See also Theorem 4.22 in [75].)

For the condition (α3) of Theorem 4.9 of [75], it is sufficient to consider only hexagons.
According to Proposition 4.24 of [75] one can take the fatness constants as large as one
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wants, in particular θ (measuring how fat the hexagon is) much larger than χ prescribing
how close the fat hexagon is from a left coset.

If θ is very large, left cosets containing such hexagons in their neighborhoods can
never be cosets of hyperbolic subgroups since hyperbolic groups do not contain fat hexagons.
So the condition (α3) is satisfied too whether one adds π1(En+1), . . . ,π1(Em) or drop
them. □

10.3.3. Converse. We will prove the converse to Theorem 10.3.1. We will use the
theory of tree-graded spaces and asymptotic cones [76] and its appendix.

• We shave off every generalized lens-shaped R-ends of O by Theorem 10.1.4 to
obtain O(1).

• We expand O to O(2) by adding lens neighborhoods to totally geodesic ideal
boundary components by Theorem 10.1.1.

• We then take out the interior of outside parts of the lens of O(2) for every T-ends
to obtain O(3).

• Next we remove a collection of the mutually disjoint horospherical end neigh-
borhoods. Let the resulting compact orbifold be denoted O(4).

Now S̃Ẽ for every totally geodesic p-end Ẽ is in Õ(i) for i = 2,3,4.

PROPOSITION 10.3.3. Let O be a noncompact strongly tame properly convex real
projective orbifold with generalized admissible ends. Let O(4) have the restricted metric
dÕ(2) . Then Õ(4) is quasi-isometric with π1(O).

PROOF. Let π1(O) have the set of generators g1, . . . ,gq. Since we removed all the end-
neighborhoods of Oe, our orbifold OM is compact. Hence, Õ(4) has a compact fundamental
domain F . We find a function Õ(4) → π1(O) by defining gFo to go to g and defining
arbitrarily the faces of F to go to ggi. and hence there is a function from it to π1(O)
decreasing distances up to a positive constant.

Conversely, there is a function from π1(O) to ÕM by sending g to g(x0) for a fixed
x0 ∈ Fo. This is also distance decreasing up to a positive constant. Hence, this proves the
result. □

THEOREM 10.3.4. Let O be a strongly tame properly convex real projective orbifold
with generalized lens-shaped or horospherical R- or T -ends and satisfies (IE) and (NA).
Assume ∂O is smooth and strictly convex. Suppose that π1(O) is a relatively hyperbolic
group with respect to the end groups π1(E1), . . . ,π1(Ek) where Ei are horospherical for
i = 1, . . . ,m and generalized lens-shaped for i = m + 1, . . . ,k for 0 ≤ m ≤ k. Then O
is strictly SPC with respect to the ends E1, . . . ,Ek with lens-type R-ends and T-ends or
horospherical ends.

PROOF. Since an ε-mc-p-end-neighborhood is always proper by Corollary 6.2.12 for
sufficiently small ε , we choose the end neighborhood of any generalized lens-shaped R-
p-end Ẽi to be the image of an ε-mc-p-end-neighborhood for some ε > 0. Assume that
all shaved-off parts are inside the union of these. We can choose all such neighborhoods
and horospherical end neighborhoods and lens-shaped end neighborhoods for T-ends to be
mutually disjoint by Corollaries 6.2.9 and 6.2.12. Let Ũ denote the union of the inverse
images of the end neighborhoods.

Suppose that O is not strictly convex. We divide into two cases: First, we assume
that there exists a segment in bdÕ not contained in the closure of a p-end neighborhood.
Second, we assume that there exists a non-C1-point in bdÕ not contained in the closure of
a p-end neighborhood.
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(I) We assume the first case now. We will obtain a triangle with boundary in bdÕ(3):
Let l be a nontrivial maximal segment in bdÕ(3) not contained in the closure of a p-end
neighborhood intersected with bdÕ(3). First, l does not meet the closure of a horospherical
p-end neighborhood by Theorem 8.1.3. By Theorems 5.4.2 and 5.4.3 if lo meets the closure
of a lens-shaped R-p-end neighborhood, then lo is in the closure. Also, suppose that lo

meets S̃Ẽ for a totally geodesic p-end Ẽ. Then lo ∩ ∂Cl(S̃Ẽ) ̸= /0. l is in the hyperspace
P containing S̃Ẽ since otherwise we have some points of S̃Ẽ in the interior of Cl(Õ). We
take a convex hull of l∪ S̃Ẽ which is a domain D containing S̃Ẽ where π1(Ẽ) acts on. Then
D is still properly convex since so is Cl(Õ). Since Do has a Hilbert metric, π1(Ẽ) acts
properly on Do. By taking a torsion-free subgroup by Theorem 1.1.19, we obtain that
S̃Ẽ/π1(Ẽ)→ Do/π1(Ẽ) has to be surjective. Hence, Do = S̃Ẽ . Therefore, lo ⊂ Cl(S̃Ẽ), a
contradiction. (See Theorem 4.1 of [61] and [20].) Therefore, l meets the closures of p-end
neighborhoods possibly only at its endpoints.

Let P be a 2-dimensional subspace containing l and meeting the interior of Õ(3) out-
side Ũ. By above, lo is in the boundary of P∩ Õ(3). Draw two segments s1 and s2 in
P∩ Õ(3) from the endpoint of l meeting at a vertex p in the interior of Õ(3).

Let I denote the index set of components of Ũ. Let Ui be a component of Ũ.
Define Ai to be the set of points x of lo with an open d-metric ball-neighborhood in

Cl(O)∩P in the closure of a single componentUi. By definition, Ai is open in lo. Also, lo

is not a subset of single Ai since otherwise l is in the closure of Ui, a contradiction. Since
lo is connected, lo −

⋃
i∈I Ai is not empty. Choose a point x in it. For any open d-metric

ball-neighborhood B of x in Cl(Õ)∩P, we cannot have B∩ Õ ⊂ Ũ since otherwise B is in
a single Cl(Ui). For each open ball-neighborhood B of x, B−Ũ is not empty. We conclude
that (Õ − Ũ)∩P has a sequence of points {xi} converging to a point x of lo.

Then we claim
dO(2)(xi,s1 ∪ s2)→ ∞ :

Consider any sequence of any maximal straight segment ti from xi passing a point yi of s1
or s2. Let us orient it in the direction of yi from xi. Then let δ+ti be the forward endpoint
of ti and δ−ti the backward one. Then the d-distance from yi to δ+ti goes to zero by the
maximality of l, which implies the Hilbert metric result by the cross-ratio consideration.

Recall that there is a compact fundamental domain F of Õ − Ũ under the action of
π1(E). Now, we can take xi to the fundamental domain F by gi. We choose gi to be a
sequence of mutually distinct elements of π1(O). We choose a subsequence so that we
assume without loss of generality that {gi(T )} geometrically converges to a convex set,
which could be a point or a segment or a nondegenerate triangle. Since gi(T )∩F ̸= /0, and
the sequence ∂gi(T ) exits any compact subsets of Õ always while

{dO(2)(gi(xi),∂gi(T ))}→ ∞

and gi(T ) passes F , we see that a subsequence of {gi(T )} converges to a nondegenerate
triangle, say T∞.

By following Lemma 10.3.5, T∞ is so that ∂T∞ is in
⋃

S(vẼ) for a generalized lens-
shaped R-p-end Ẽ.

Now, T∞ is so that ∂T∞ ⊂ Cl(U1) for a p-end neighborhood U1 of a generalized lens-
shaped end Ẽ. Then for sufficiently small ε > 0, the ε-dO -neighborhood of T∞ ∩ Õ is a
subset of U1 as U1 was chosen to be an ε-mc-p-end-neighborhood (see Lemma 6.2.11).
However as {gi(T )} → T∞ geometrically, for any compact subset K of Õ , gi(T )∩K is a
subset of U1 for sufficiently large i. But gi(T )∩F ̸= /0 for all i and the compact fundamental
domain F of Õ −Ũ , disjoint from U1. This is a contradiction.
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Also, since the triangle condition is satisfied, the generalized lens R-end must also be
a lens R-end by Lemma 5.3.20.

(II) Now we suppose that bdÕ has a non-C1-point x outside the closures of p-end
neighborhoods. Then we go to the dual Õ∗ and the dual group Γ∗ where Õ∗/Γ∗ is a
strongly tame properly convex orbifold with horospherical ends, lens-shaped T-ends or
generalized lens-shaped R-ends by Corollary 5.5.7 and Theorem 1.5.8. Here the type T
and R are switched for the correspondence between the ends of O and O∗ by Corollary
5.5.7.

Then we have a one-to-one correspondence of the set of p-ends of Õ to the set of
p-ends of Õ∗, and we obtain that x corresponds to a convex subset of dim ≥ 1 in bdÕ
containing a segment l not contained in the closure of p-end neighborhoods using the map
D in Proposition 5.5.5. Thus, the proof reduces to the case (I).

By Theorem 6.0.4, we obtain that our orbifold is strictly SPC. □

Recall that the interior of a triangle has a Hilbert metric called the hex metric by de
la Harpe [72]. The metric space is isometric with a Euclidean space with norms given by
regular hexagons. The unit norm of the metric is a regular hexagon ball for this metric. A
regular hexagon of side length l is a hexagon in the interior of a triangle T with geodesic
edges parallel to the sides of the unit norms and with all edge lengths equal to l. The
regular hexagon is the boundary of a ball of radius l. The center of a hexagon is the center
of the ball.

LEMMA 10.3.5. Assume the premise of Theorem 10.3.4. Let T be a triangle in ˜O(3)

with T o ∩ Õ(3) ̸= /0 and ∂T ⊂ bdÕ(3). Then ∂T ⊂
⋃

S(Ẽ) for an R-p-end Ẽ.

PROOF. Let F be the fundamental domain of Õ(3).
Again, we assume that π1(O) is torsion-free by Theorem 1.1.19 since it is sufficient

to prove the result for the finite cover of O . Hence, π1(O) acts freely on Õ .
Let T ′ be a triangle with T ′o ∩ Õ(3) ̸= /0 and ∂T ′ ⊂ bdÕ(3). Suppose that T ′ meets

infinitely many horoball p-end neighborhoods in Ũ of horospherical p-ends, and the dO(2)-
diameters of T ′ intersected with these are not bounded. We consider a sequence of such
sets Ai with dOM -diameter Ai going to +∞, and we choose a deck transformation gi so
that gi(Cl(Ai)) intersects the fundamental domain F of ÕM . We choose a subsequence so
that {gi(T ′)} and {gi(Ai)} geometrically converge to a triangle T ′′ and a compact set A∞

respectively. Here, T ′′ intersects F and the interior of T ′′ is in Õ . gi(Ai) = gi(T ′′)∩Hi for a
horoball Hi whose closure meets F . Since only finitely many closures of the horoball p-end
neighborhoods in Õ meet F , there are only finitely many such Hi, say Hi1 , . . . ,Him . Now,
T ′′ meets one such Hi j so that its vertex is in the boundary of T ′′ since the dOM -diameter
of gi(T ′′)∩Hi = gi(Ai) goes to +∞. This contradicts Theorem 8.1.3.

Thus, the dO(2)-diameters of horospherical p-end neighborhoods intersected with L
are bounded above uniformly. Therefore, by choosing a horospherical end neighborhood
sufficiently far inside each horospherical end neighborhood by Corollary 6.2.9, we may
assume that L does not meet any horospherical p-end neighborhoods. That is we choose a
horoball V ′ inside a one V so that

dOM (V ′,∂V )>
1
2

sup{dO(2)-diam{V ∩T ′}|V ∈ V ,T ′ ∈ T }

where V is the collection of horoball p-end neighborhoods that we were given in the be-
ginning and T is the collection of all triangles T ′ meeting with Õ(3) and with boundary in
bdÕ(3) –(*).

For i in the index set I of p-ends, we define L1,i to be the following subsets of Õ(3):
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• Cl(U(vẼ))∩ Õ(3) where U(vẼ) is the open shaved-off concave p-end neighbor-
hood of Ẽ when Ẽ is a generalized lens-shaped R-p-end,

• Cl(S̃Ẽ)∩ Õ(3) if Ẽ is a lens-shaped totally geodesic end, or
• Cl(UẼ)∩ Õ(3) for a horoball UẼ for a horospherical end Ẽ.

By Theorem 1.5 of [75], π1(O) is relatively hyperbolic with respect to

π1(E1), . . . ,π1(Ek)

if and only if every asymptotic cone π1(O) is asymptotically tree graded with respect to
the collection of left cosets of

L = {gπ1(Ei)|g ∈ π1(O)/π1(Ei), i = 1, . . . ,k}.

By Theorem 5.1 of [76], Õ(4) with the metric dÕ(2) is asymptotically tree-graded with
respect to L1,i, i = 1,2, . . . , since π1(O) is quasi-isometric with Õ(4) with the cosets of
π1(Ei) mapping quasi-isometric into L1, j by Proposition 10.3.3.

Now, we consider Õ(3) and bdÕ(3).
For any θ > 0,ν ≥ 8, a regular hexagon in T ′o with side length l > νθ is (θ ,ν)-fat

according to Definition 5.1 of Druţu [75]. By Theorem 4.22 of [75], there is χ > 0 so that
a regular hexagon Hl with side length l > νθ is in χ-neighborhood V1 of L1,i with respect
to dO(2) that is either contained in a concave p-end neighborhood of an R-p-end, a CA-lens
of a T-p-end or a horoball p-end neighborhood.

Choose a family of regular hexagons

{Hl |Hl ⊂ T
′o, l > νθ}

with a common center in T
′o. Hence,

⋃
l>νθ Hl = T

′o −K1 for a bounded set K1,K1 ⊂ T
′o.

By the above paragraph, T
′o −K1 ⊂V1. Now, ∂T ′ ⊂ bdÕ(3) must be in the closure of L1,i

by Lemma 10.3.6.
If Li,1 is from a horospherical p-end, ∂T ′ must be a point. This is absurd. In the case

of a T-p-end, the hyperspace containing T ′ must coincide with one containing S̃Ẽ . This
is absurd since T ′o is a subset of Õo. In the case of an R-p-end Ẽ, ∂T ′o must lie on a
subset that has segments extending those segments in S(vẼ). Theorems 5.4.2 and 5.4.3,
this means ∂T ⊂

⋃
S(vẼ). □

LEMMA 10.3.6. Let V be a χ-neighborhood of L1,i in Õ(3) under the metric dO(3) .
Then Cl(V )∩bdÕ(3) = Cl(L1,i)∩bdÕ(3).

PROOF. We recall the metric. We first extend Õ and shave off to Õe. Then we remove
the parts of the lenses outside the ideal end orbifold for T-p-ends and remove horoballs of
ends to obtain Õ(3).

Clearly, Cl(V )∩bdÕ(3) ⊃ Cl(L1,i)∩bdÕ(3). Suppose that L1,i is from a horospherical
p-end. Then the equality is clear since V is contained in a horospherical p-end neighbor-
hood.

Suppose that L1,i is from a T-p-end of lens type. Then there is a CA-lens L containing
L1,i. The closure of V in Õ(3) has a compact fundamental domain FV . Theorem 5.5.4 and
Lemma 4.4.2 applied to any sequence of images of FV imply the equality.

Suppose that L1,i is from an R-p-end of lens type. Then the closure of L1,i in Õ(3)

has a compact fundamental domain FV . Theorem 5.3.21 and Lemma 5.3.9 and Proposi-
tion 5.3.10 again show the equality since the limit sets are independent of the choice of
neighborhoods. □
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We recapitulate the results:

COROLLARY 10.3.7. Assume that O is a strongly tame SPC-orbifold with generalized
lens-shaped or horospherical R- or T -ends and satisfies (IE) and (NA). Let

E1, . . . ,Em,Em+1, . . . ,Ek

be the ends of O where Em+1, . . . ,Ek are some or all of the hyperbolic ends. Assume
∂O = /0. Then π1(O) is a relatively hyperbolic group with respect to the end groups
π1(E1), . . . ,π1(Em) if and only if O1 as obtained by Theorem 10.1.4 is strictly SPC with
respect to ends E1, . . . ,Em.

PROOF. If π1(O) is a relatively hyperbolic group with respect to the end groups
π1(E1), . . . ,π1(Em), then π1(O) is a relatively hyperbolic group with respect to the end
groups π1(E1), . . . ,π1(Ek) by Theorem 10.3.2. By Theorem 10.3.4, it follows that O is
strictly SPC with respect to the ends E1, . . . ,Ek. Theorem 10.1.4 shows that O1 is strictly
SPC with respect to E1, . . . ,Em.

For converse, if O1 is strictly SPC with respect to E1, . . . ,Em, then O is strictly SPC
with respect E1, . . . ,Ek. By Theorem 10.3.1, π1(O) is a relatively hyperbolic group with
respect to the end groups π1(E1), . . . ,π1(Ek). The conclusion follows by Theorem 10.3.2.

□

10.3.4. A topological result.

PROPOSITION 10.3.8. Let X be a compact metrizable space. Let CX be a countable
collection of mutually disjoint compact connected sets. The collection has the property
that CK :=

⋃
C∈CX ,C∩K ̸= /0 C is closed for any closed set K. We define the quotient space

X/∼ with the equivalence relation x ∼ y iff x,y ∈C for an element C ∈ CX . Then X/∼ is
metrizable.

PROOF. We show that X/ ∼ is Hausdorff, 2-nd countable, and regular and use the
Urysohn metrization theorem. We define a countable collection B of open sets of X as
follows: We take an open subset L of X that is an ε-neighborhood for ε ∈ Q,ε > 0 of an
element of CX or a point of a dense countable set Y in X −

⋃
CX . We form

L−
⋃

C∩bdL ̸= /0,C∈CX

C

for all such L containing an element of CX or a point of Y . This is an open set by the premise
since bdL is closed. The elements of B are neighborhoods of elements of CX and Y . Also,
each element of CX or a point of Y is contained in an element of B. Furthermore, each
element of B is a saturated open set under the quotient map. Hence, X/ ∼ is Hausdorff
and 2-nd countable.

Now, the proof is reduced to showing that X/∼ is regular. For any saturated compact
set K in X and a disjoint element Y of CX or a point of X not in any of CX , let UK and UY
denote the disjoint neighborhoods of X of K and Y respectively. We form

U :=UK −
⋃

C∩bdUK ̸= /0,C∈CX

C, and V :=VK −
⋃

C∩bdVK ̸= /0,C∈CX

C.

Then these are disjoint open neighborhoods. □



CHAPTER 11

Openness and closedness

Lastly, we will prove the openness and closedness of the properly (resp. strictly)
convex real projective structures on the deformation spaces of a class of orbifolds with
generalized lens-shaped or horospherical R- or T -ends. We need the theory of Cram-
pon and Marquis and Cooper, Long, and Tillmann on the Margulis lemma for convex real
projective manifolds. The theory here partly generalizes that of Benoist on closed real pro-
jective orbifolds. In Section 11.1, we give some definitions and state the main results of
the monograph: various Ehresmann-Thurston-Weil principles holding in certain circum-
stances. In Section 11.2, we state the openness results that we will prove in this chapter.
Mainly, we will use fixing-sections to prove the results here. We will show that the small
deformations preserve the convexity. The idea is to use the Hessian functions in the com-
pact part and use the approximation of the original domain by the covering domains of the
end neighborhoods. In Section 11.3, we will show the closedness of the convexity under
the deformations, first assuming the irreducibility of the holonomy representations. In Sec-
tion 11.3.3, we show that we actually do not need to assume the irreducibility a priori. Any
sequence of properly convex real projective structures will converge to the one whenever
the corresponding sequence of representations converges algebraically. In Section 11.4,
we prove Theorem 11.1.4, the most general result of this monograph. Here, we show the
natural existence of the fixing section.

11.0.0.1. Main theorems. We now state our main results:

• We define Defs
E ,lh(O) to be the subspace of DefE (O) consisting of real projec-

tive structures with generalized lens-shaped or horospherical R- or T -ends and
stable irreducible holonomy homomorphisms.

• We define CDefE ,lh(O) to be the subspace of DefE (O) consisting of SPC-structures
with generalized lens-shaped or horospherical R- or T -ends.

• We define CDefE ,u,lh(O) to be the subspace of DefE ,u(O) consisting of SPC-
structures with generalized lens-shaped or horospherical R- or T -ends.

• We define SDefE ,lh(O) to be the subspace of DefE ,lh(O) consisting of strict SPC-
structures with lens-shaped or horospherical R- or T -ends.

• We define SDefE ,u,lh(O) to be the subspace of DefE ,u,lh(O) consisting of strict
SPC-structures with lens-shaped or horospherical R- or T -ends.

By defintion, these spaces all have stable holonomies only. (By Theorem 6.0.4, some
of these has to have stable holonomies by a topological conditions.) We remark that these
spaces are dual to the same type of the spaces but we switch the R-end with T -ends
and vice versa by Proposition 5.5.5. Also by Corollary 6.3.3, for strict SPC-orbifolds
with generalized lens-shaped or horospherical R- or T -ends have only lens-shaped or
horospherical R- or T -ends.

The following theorems are to be regarded as examples of the so-called Ehresmann-
Thurston-Weil principle.

273
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THEOREM 11.0.1. Let O be a noncompact strongly tame n-orbifold, n ≥ 2, with gen-
eralized lens-shaped or horospherical R- or T -ends. Assume ∂O = /0. Suppose that O
satisfies (IE) and (NA). Then the subspace

CDefE ,u,lh(O)⊂ Defs
E ,u,lh(O)

is open.
Suppose further that every finite-index subgroup of π1(O) contains no nontrivial in-

finite nilpotent normal subgroup. Then hol maps CDefE ,u,lh(O) homeomorphically to a
union of components of

repE ,u,lh(π1(O),PGL(n+1,R)).

THEOREM 11.0.2. Let O be a strict SPC noncompact strongly tame n-dimensional
orbifold, n ≥ 2, with lens-shaped or horospherical R- or T -ends and satisfies (IE) and
(NA). Assume ∂O = /0. Then

• π1(O) is relatively hyperbolic with respect to its end fundamental groups.
• The subspace SDefE ,u,lh(O) ⊂ Defs

E ,u,lh(O) of strict SPC-structures with lens-
shaped or horospherical R- or T -ends is open.

Suppose further that every finite-index subgroup of π1(O) contains no nontrivial infinite
nilpotent normal subgroup. Then hol maps the deformation space SDefE ,u,lh(O) of strict
SPC-structures on O with lens-shaped or horospherical R- or T -ends homeomorphically
to a union of components of

repE ,u,lh(π1(O),PGL(n+1,R)).

Theorems 11.0.1 and 11.0.2 are proved by dividing into the openness result in Section
11.0.1 and the closedness result in Section 11.0.2.

11.0.1. Openness. For openness of SDefE ,lh(O), we will make use of:

COROLLARY 11.0.3 (Corollary 10.3.7). Assume that O is a noncompact strongly tame
SPC n-orbifold, n ≥ 2, with generalized lens-shaped or horospherical R- or T -ends and
satisfies (IE) and (NA). Let

E1, . . . ,Ek

be the ends of O . Assume ∂O = /0. Then π1(O) is a relatively hyperbolic group with
respect to the end groups π1(E1), ...,π1(Ek) if and only if O is strictly SPC with respect to
ends E1, . . . ,Ek.

THEOREM 11.0.4. Let O be a noncompact strongly tame real projective n-orbifold,
n≥ 2, and satisfies (IE) and (NA). Assume ∂O = /0. In Defs

E ,u,lh(O), the subspace CDefE ,u,lh(O)
of SPC-structures with generalized lens-shaped or horospherical R- or T -ends is open,
and so is SDefE ,u,lh(O).

PROOF. Homs
E ,u(π1(O),PGL(n+ 1,R) is an open subset of HomE (π1(O),PGL(n+

1,R)) by Proposition 9.2.3. On Homs
E ,u(π1(O),PGL(n+ 1,R)) has a uniqueness section

defined by Lemma 11.0.5. Now, Theorem 11.0.6 proves the result. □

We are given a properly real projective orbifold O with ends E1, . . . ,Ee1 of R-type
and Ee1+1, . . . ,Ee1+e2 of T -type. Let us choose representative p-ends Ẽ1, . . . , Ẽe1 and
Ẽe1+1, . . . , Ẽe1+e2 . Again, e1 is the number of R-type ends, and e2 the number of T -type
ends of O .

We define a subspace of HomE ,lh(π1(O),PGL(n+1,R)) to be as in Section 9.2.
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Let V be an open subset of a semi-algebraic subset of

Homs
E (π1(O),PGL(n+1,R))

invariant under the conjugation action of PGL(n+1,R) so that the following hold:

• one can choose a continuous section s(1)V : V → (RPn)e1 sending a holonomy
homomorphism to a common fixed point of ΓΓΓẼi

for i = 1, . . . ,e1 and

• s(1)V satisfies

s(1)V (gh(·)g−1) = g · s(1)V (h(·)) for g ∈ PGL(n+1,R).

s(1)V is said to be a fixed-point section.
If Ẽi for every i = 1, . . . ,e1 has a p-end neighborhood with a radial foliation with

leaves developing into rays ending at the point of the i-th factor of s(1)V , we say that radial

end structures are determined by s(1)V .
Again we assume that V is a open subset of a semi-algebraic subset of

Homs
E ,lh(π1(O),PGL(n+1,R))

invariant under the conjugation action by PGL(n+1,R), and the following hold:

• one can choose a continuous section s(2)V : V → (RPn∗)e2 sending a holonomy
homomorphism to a common dual fixed point of ΓΓΓẼi

for i = e1 +1, . . . ,e1 + e2,

• s(2)V satisfies s(2)V (gh(·)g−1) = (g∗)−1 ◦ s(2)V (h(·)) for g ∈ PGL(n+1,R), and

• letting PV (Ẽi) denote the null space of the i-th value of s(2)V for i= e1+1, . . . ,e1+

e2, ΓΓΓẼi
acts on the hyperspace PV (Ẽi) satisfying the lens-condition for Ẽi.

s(2)V is said to be a dual fixed-point section.
If each Ẽi for every i = e1 +1, . . . ,e1 + e2

• has a p-end neighborhood with the ideal boundary component in the hyperspace
determined by the i-th factor of s(2)V provided Ẽi is a T-end, or

• has a p-end neighborhood containing a ΓΓΓẼ -invariant horosphere tangent to the
hyperspace determined by the i-th factor of s(2)V provided Ẽi is a horospherical
end,

we say that end structures for the totally geodesic end are determined by s(2)V .

We define sV : V → (RPn)e1 × (RPn∗)e2 as s(1)V × s(2)V and call it a fixing section.

LEMMA 11.0.5. We can define section

su : HomE ,u,lh(π1(O),PGL(n+1,R))→ (RPn)e1 × (RPn∗)e2

by choosing for each holonomy and each p-end the unique fixed point and the unique
hyperspace as the images.

PROOF. su is a continuous function since a sequence of fixed points or dual fixed
points of end holonomy group is a fixed point or a dual fixed point of the limit end holo-
nomy group. □

We call su the uniqueness section.
Let V and sV : V → (RPn)e1 × (RPn∗)e2 be as above.



276 11. OPENNESS AND CLOSEDNESS

• We define Defs
E ,sV ,lh(O) to be the subspace of DefE ,sV (O) of real projective

structures with generalized lens-shaped or horospherical R- or T -end structures
determined by sV , and stable irreducible holonomy homomorphisms in V .

• We define CDefE ,sV ,lh(O) to be the subspace consisting of SPC-structures with
generalized lens-shaped or horospherical R- or T -end structures determined by
sV and holonomy homomorphisms in V in Defs

E ,sV ,lh(O).
• We define SDefE ,sV ,lh(O) to be the subspace of consisting of strict SPC-structures

with lens-shaped or horospherical R- or T -end structures determined by sV and
holonomy homomorphisms in V in Defs

E ,sV ,lh(O).

THEOREM 11.0.6. Let O be a noncompact strongly tame real projective n-orbifold,
n ≥ 2, with generalized lens-shaped or horospherical R- or T -ends and satisfies (IE) and
(NA). Assume ∂O = /0. Choose an open PGL(n+ 1,R)-conjugation invariant subset of a
union of semialgebraic subsets of

V ⊂ Homs
E ,lh(π1(O),PGL(n+1,R)),

and a fixing section sV : V → (RPn)e1 × (RPn∗)e2 .
Then CDefE ,sV ,lh(O) is open in Defs

E ,sV ,lh(O), and so is SDefE ,sV ,lh(O).

This is proved in Theorem 11.2.1.
By Theorems 11.0.4 and 11.0.6, we obtain:

COROLLARY 11.0.7. Let O be a noncompact strongly tame real projective n-orbifold,
n ≥ 2, with generalized lens-shaped or horospherical R- or T -ends and satisfies (IE) and
(NA). Assume ∂O = /0. Then

hol : CDefE ,u,lh(O)→ reps
E ,u,lh(π1(O),PGL(n+1,R))

is a local homeomorphism.
Furthermore, if O has a strict SPC-structure with lens-shaped or horospherical R- or

T -ends, then so is

hol : SDefE ,u,lh(O)→ reps
E ,u,lh(π1(O),PGL(n+1,R)).

11.0.2. The closedness of convex real projective structures. The results here will
be proved in Chapter 11 in Part 3.

We recall
reps

E (π1(O),PGL(n+1,R))
the subspace of stable irreducible characters of

repE (π1(O),PGL(n+1,R))

which is shown to be the open subset of a semi-algebraic subset in Section 9.2, and de-
note by reps

E ,u,lh(π1(O),PGL(n+ 1,R)) the subspace of stable irreducible characters of
repE ,u,lh(π1(O),PGL(n+1,R)), an a union of open subsets of semialgebraic sets.

THEOREM 11.0.8. Let O be a noncompact strongly tame SPC n-orbifold, n ≥ 2, with
generalized lens-shaped or horospherical R- or T -ends and satisfies (IE) and (NA). As-
sume ∂O = /0, and that the nilpotent normal subgroups of every finite-index subgroup of
π1(O) are trivial. Then the following hold :

• The deformation space CDefE ,u,lh(O) of SPC-structures on O with generalized
lens-shaped or horospherical R- or T -ends maps under hol homeomorphically
to a union of components of repE ,u,lh(π1(O),PGL(n+1,R)).
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• The deformation space SDefE ,u,lh(O) of strict SPC-structures on O with lens-
shaped or horospherical R- or T -ends maps under hol homeomorphically to
the union of components of repE ,u,lh(π1(O),PGL(n+1,R)).

PROOF. Homs
E ,u(π1(O),PGL(n+ 1,R) is an open subset of HomE (π1(O),PGL(n+

1,R) by Proposition 9.2.3. Corollary 11.3.5 proves this by the existence of the uniqueness
section of Lemma 11.0.5. □

The following is probably the most general result.

THEOREM 11.0.9 (Theorem 11.1.4). Let O be a noncompact strongly tame SPC n-
orbifold, n ≥ 2, with generalized lens-shaped or horospherical R- or T -ends and satisfies
(IE) and (NA). Assume ∂O = /0. Then

• Suppose that every finite-index subgroup of π1(O) contains no nontrivial infinite
nilpotent normal subgroup and ∂O = /0. Then hol maps the deformation space
CDefE ,lh(O) of SPC-structures on O with generalized lens-shaped or horospher-
ical R- or T -ends homeomorphically to a union of components of

repE ,lh(π1(O),PGL(n+1,R)).

• Suppose that every finite-index subgroup of π1(O) contains no nontrivial infinite
nilpotent normal subgroup and ∂O = /0. Then hol maps the deformation space
SDefE ,lh(O) of strict SPC-structures on O with lens-shaped or horospherical R-
or T -ends homeomorphically to a union of components of

repE ,lh(π1(O),PGL(n+1,R)).

For example, these apply to the projective deformations of hyperbolic manifolds with
torus boundary as in [6].

11.1. Introduction

We will allow for these structures that a radial lens-cone end could change to a horo-
spherical type and vice versa, and a totally geodesic lens end could change to a horospher-
ical one and vice versa. However, we will not allow a radial lens-cone end to change to a
totally geodesic lens end.

For a strongly tame orbifold O , we recall conditions in Definition 6.0.1.
(IE) O or π1(O) satisfies the infinite-index end fundamental group condition (IE) if

[π1(E) : π1(O)] = ∞ for the end fundamental group π1(E) of each end E.
(NA) O or π1(O) satisfies the nonannular property if

π1(Ẽ1)∩π1(Ẽ2)

is finite for two distinct p-ends Ẽ1 and Ẽ2 of O .
The following theorems are to be regarded as examples of the so-called Ehresmann-

Thurston-Weil principle.

THEOREM 11.1.1. Let O be a strongly tame n-orbifold with generalized lens-shaped
or horospherical R- or T -ends. Assume ∂O = /0. Suppose that O satisfies (IE) and (NA).
Then

• the subspace of SPC-structures

CDefE ,u,lh(O)⊂ Defs
E ,u,lh(O)

is open.
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• Suppose further that every finite-index subgroup of π1(O) contains no nontrivial
infinite nilpotent normal subgroup and ∂O = /0. Then hol maps CDefE ,u,lh(O)
homeomorphically to a union of components of

repE ,u,lh(π1(O),PGL(n+1,R)).

The proof of Theorem 11.1.1 and that of following Theorem 11.1.3 are as follows:
The openness follows from Theorem 11.2.1 by the uniqueness section obtained by Lemma
11.0.5. Corollary 11.3.5 proves the closedness. For the first item of Theorem 11.1.3, we
give:

REMARK 11.1.2. A strongly tame SPC-orbifold O with generalized lens-shaped or
horospherical R- or T -ends satisfying (IE) and (NA) is strictly SPC with lens-shaped or
horospherical R- or T -ends if and only if π1(O) is relatively hyperbolic with respect to
its end fundamental groups. Corollary 6.3.3 shows this by Theorems 10.3.1 and 10.3.4.

THEOREM 11.1.3. Let O be a strongly tame strictly SPC n-dimensional orbifold with
lens-shaped or horospherical R- or T -ends and satisfies (IE) and (NA). Assume ∂O = /0.
Then

• π1(O) is relatively hyperbolic with respect to its end fundamental groups.
• The subspace SDefE ,u,lh(O) ⊂ Defs

E ,u,lh(O), of strict SPC-structures with lens-
shaped or horospherical R- or T -ends is open.

• Suppose further that every finite-index subgroup of π1(O) contains no nontrivial
infinite nilpotent normal subgroup and ∂O = /0. Then hol maps the deformation
space SDefE ,u,lh(O) of strict SPC-structures on O with lens-shaped or horo-
spherical R- or T -ends homeomorphically to a union of components of

repE ,u,lh(π1(O),PGL(n+1,R)).

Finally, we use the eigenvector-sections to prove in Section 11.4:

THEOREM 11.1.4 (Main result of the monograph). Let O be a strongly tame n-dimensional
SPC-orbifold with lens-shaped or horospherical R- or T -ends and satisfies (IE) and (NA).
Assume ∂O = /0. Then

• Suppose that every finite-index subgroup of π1(O) contains no nontrivial infinite
nilpotent normal subgroup and ∂O = /0. Then hol maps the deformation space
CDefE ,lh(O) of SPC-structures on O with generalized lens-shaped or horospher-
ical R- or T -ends homeomorphically to a union of components of

repE ,lh(π1(O),PGL(n+1,R)).
• Suppose that every finite-index subgroup of π1(O) contains no nontrivial infinite

nilpotent normal subgroup and ∂O = /0. Then hol maps the deformation space
SDefE ,lh(O) of strict SPC-structures on O with lens-shaped or horospherical R-
or T -ends homeomorphically to a union of components of

repE ,lh(π1(O),PGL(n+1,R)).

For example, these apply to hyperbolic manifolds with torus boundary as in [6].

11.2. The openness of the convex structures

In this section also, we will only need RPn versions. Given a strongly tame real projec-
tive orbifold O with e1 R-ends and e2 T -ends, each end Ei, i= 1, . . . ,e1,e1+1, . . . ,e1+e2,
has an orbifold structure of dimension n−1 and inherits a real projective structure.

Let U and sU : U → (RPn)e1 × (RPn∗)e2 be as in Section 9.4.1.
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• We define Defs
E ,sU ,lh(O) to be the subspace of DefE ,lh(O) of real projective

structures with generalized lens-shaped or horospherical R- or T -ends deter-
mined by sU , and stable irreducible holonomy homomorphisms in U .

• We define CDefE ,sU ,lh(O) to be the subspace consisting of SPC-structures with
generalized lens-shaped or horospherical R- or T -ends in DefE ,sU ,lh(O).

• We define SDefE ,sU ,lh(O) to be the subspace of consisting of strict SPC-structures
with lens-shaped or horospherical R- or T -ends in DefE ,sU ,lh(O).

THEOREM 11.2.1. Let O be a strongly tame real projective n-orbifold with gener-
alized lens-shaped or horospherical R- or T -ends and satisfies (IE) and (NA). Assume
that ∂O = /0. For a PGL(n+ 1,R)-conjugation invariant open subset U of a union of
semi-algebraic subsets of

Homs
E ,lh(π1(O),PGL(n+1,R)),

and a PGL(n+1,R)-equivariant fixing section sU : U → (RPn)e1 × (RPn∗)e2 , the follow-
ing are open subspaces

CDefE ,sU ,lh(O)⊂ Defs
E ,sU ,lh(O),

SDefE ,sU ,lh(O)⊂ Defs
E ,sU ,lh(O).

For orbifolds such as these, the deformation space of convex structures may only be a
proper subset of space of the characters.

By Theorem 11.2.1 and Theorem 9.4.5, we obtain:

COROLLARY 11.2.2. Let O be a strongly tame real projective n-orbifold with gen-
eralized lens-shaped or horospherical R- or T -ends and satisfies (IE) and (NA). Assume
that ∂O = /0. Let U and sU be as in Theorem 11.2.1. Suppose that U has its image U ′ in

reps
E ,lh(π1(O),PGL(n+1,R)).

Then
hol : CDefE ,sU ,lh(O)→ U ′

is a local homeomorphism, and so is

hol : SDefE ,sU ,lh(O)→ U ′.

PROOF. Theorem 9.4.5 shows that the map

hol : Defs
E ,sV (O)→ reps

E (π1(O),PGL(n+1,R))
is an open one when we don’t require “ce” condition. Proposition 11.2.6 tells us the open-
ness of the images here. Theorem 11.2.1 completes the proof. □

Here, in fact, one needs to prove for every possible continuous section.
Koszul [114] proved these facts for closed affine manifolds and expanded by Goldman

[88] for the closed real projective manifolds. See [49], [61] and also Benoist [23].

11.2.1. The proof of the openness. The major part of showing the preservation of
convexity under deformation is Proposition 11.2.4 on Hessian function perturbations. (These
parts are already explored in [66]; however, we are studying R-ends and T-ends, and we
also have conceived these ideas independently.)

We mention that our approach for openness is slightly different from that of Cooper-
Long-Tillman [67] since they are using their canonical invariant hessian metrics for end-
neighborhoods. Our hessian metrics for end-neighborhoods are not canonical ones as theirs
are.
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Recall that a convex open cone V is a convex cone of Rn+1 containing the origin O in
the boundary. Recall that a properly convex open cone is a convex cone so that its closure
does not contain a pair of v⃗,−⃗v for a nonzero vector in Rn+1. Equivalently, it does not
contain a complete affine line in its interior.

A dual convex cone V ∗ to a convex open cone is a subset of Rn+1∗ given by the
condition φ ∈V ∗ if and only if φ (⃗v)> 0 for all v⃗ ∈ Cl(V )−{O}.

Recall that V is a properly convex open cone if and only if so is V ∗ and (V ∗)∗ = V
under the identification (Rn+1∗)∗ =Rn+1. Also, if V ⊂W for a properly convex open cone,
then V ∗ ⊃W ∗.

For properly convex open subset Ω of Sn, its dual Ω∗ in Sn∗ is given by taking a cone
V in Rn+1 corresponding to Ω and taking the dual V ∗ and projecting it to Sn∗. The dual Ω∗

is a properly convex open domain if so was Ω.
Recall the Koszul-Vinberg function for a properly convex cone V and the dual properly

convex cone V ∗

(11.2.1) fV ∗ : V → R+ defined by x ∈V 7→ fV ∗(x) =
∫

V ∗
e−φ(x)dφ

where the integral is over the euclidean measure in Rn+1∗. This function is strictly convex
if V is properly convex. fV ∗ is homogeneous of degree −(n+ 1). Writing D as the affine
connection, we will write the Hessian Dd log( f ). The hessian is positive definite and norms
of unit vectors are strictly bounded below in a compact subset K of V −{O}. (See Chapter
4 of [86] and [152].) The metric Dd log( f ) is invariant under the group Aff(V ) of affine
transformation acting on V . (See Theorem 6.4 of [86].) In particular, it is invariant under
scalar dilatation maps. (For extensive survey, see Shima [143].)

A Hessian metric on an open subset V of an affine space is a metric of form ∂ 2 f/∂xi∂x j
for affine coordinates xi and a function f : V → R with a positive definite Hessian defined
on V . A Riemannian metric on an affine manifold is a Hessian metric if the manifold is
affinely covered by a cone and the metric lifts to a Hessian metric of the cone.

Let O have an SPC-structure µ with generalized lens-shaped or horospherical R- or
T -ends. Clearly Õ is a properly convex open domain. Then an affine suspension of O
has an affine Hessian metric defined by Ddφ for a function φ defined on the cone in Rn+1

corresponding to Õ by above.
A parameter of real projective structures µt , t ∈ [0,1] on a strongly tame orbifold O

is a collection so that the restriction µt |K to each compact suborbifold K is a continuous
parameter; In other words, the associated developing map devt |K̂ : K̂ → Sn (resp. RPn) for
every compact subset K̂ of Õ is a family in the Cr-topology continuous for the variable t.
(See Definition 9.3.9, Choi [49] and Canary-Epstein-Green [33].)

DEFINITION 11.2.3. Let O be a strongly tame orbifold with ends. Let U be a union
of mutually disjoint end neighborhoods, and let µ0 and µ1 be two real projective structures
on O . Let dev0,dev1 : Ô → Sn be extended developing maps. We say that µ0 and µ1 on
O are δ -close in the Cr-topology, r ≥ 2, on the compactification Ō if for a compact path-
connected domain K in Ô mapping onto Ō , the associated developing maps g0 ◦dev0|K
and g1 ◦dev1|K are δ -close in Cr-topology for some g0 and g1 in SL±(n+1,R).

Recall the Vinberg metric from Sections 4.4 and 12.3 of Goldman [89], which is a
Hessian metric.

PROPOSITION 11.2.4. Let O be a strongly tame orbifold with ends and satisfies (IE)
and (NA). Suppose that O has an SPC structures µ0 with generalized lens-shaped or horo-
spherical R- or T -ends and the affine suspension of O with µ0 has a Hessian metric.
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(See Section 1.2.1.) The ends of O are given R-type or T -types. Suppose that one of the
following holds:

• µ0 is SPC, and a Cr-continuous parameter, r ≥ 2, of real projective structure µt ,
t ∈ [0,1], radial or totally geodesic ends with end holonomy groups of general-
ized lens-shaped or horospherical R- or T -ends where the R-types or T -types
of ends are preserved.

• We may also let µti to be a sequence for ti ∈ [0,1] with {µti} → µ0 as ti → 0 in
the Cr-topology for r ≥ 0.

Then for sufficiently small t, the affine suspension C(Õ) for Õ with µt also has a Hessian
metric invariant under the group of dilatations.

PROOF. We will prove for Sn. It will be sufficient since we aim to obtain the Hessian
metric on C(Õ). We will keep Õ and the action of the deck transformation group fixed
and only change the structures on it. Note that the subsets here remain fixed and the only
changes are on the real projective structures, i.e., the atlas of charts to Sn.

Let Õ in Sn denote the universal covering domain corresponding to µ0. Again dev0
being an embedding identifies the first with subsets of Sn but devt is not known to be so.
We shall prove this below.

We will prove this by steps:
(A) The first step is to understand the deformations of the end-neighborhoods.
(B) We change the Hessian function on the cone associated with the universal covers.

We need to obtain one for the deformed end neighborhoods by Hessian functions
from Koszul-Vinberg integrals and another one the outside of the union of end
neighborhoods by isotopies and patch the two together.

(A) Let Ẽ ′ be a p-end of Õ , and it corresponds to a p-end of Õ ′ as well. Let E be the
end of O corresponding to Ẽ. There exists a Cr-parameter of real projective structures µt
with generalized lens-shaped or horospherical R- or T -ends. We can also find a parameter
of developing maps devt associated with µt where devt |K is a continuous with respect to t
for each compact K ⊂ Ô . To begin with, we assume that Ẽ ′ keeps being a lens-shaped or
horospherical p-end.

Let ht denote the holonomy homomorphism associated with devt for each t. Recall
that Theorems 6.1.1 and 6.1.2 study the perturbation of lens-shaped R-ends and T-ends.
Lemma 9.4.3 studies the perturbations of a horospherical R- or T -end to either a R-end
or to a T-end.

In this monograph, we do not allow R-type ends to change to T -type ends and vice
versa as this will make us to violate the local injectivity property from the deformation
space to a space of characters. (See Theorem 9.4.5.) Let Ẽ be a p-end. Thus, we need to
consider only four cases to prove openness:

(I): ht(Ẽ) changes from the holonomy group of a radial p-end to that of a radial
p-end in the cases:

(a): ht(Ẽ) changes from the holonomy group of a radial p-end of generalized
lens-shaped becoming that of a generalized lens-shaped radial p-end.

(b): ht(Ẽ) changes from the holonomy group of a horospherical p-end to that
of a generalized lens-shaped radial p-end or a horospherical p-end.

(II): ht(Ẽ) changes from the holonomy group of totally geodesic ends of lens type
or horospherical R- or T -ends changes to that of themselves here.

(a): ht(Ẽ) changes from the holonomy group of a lens-shaped totally geodesic
p-end to that of a lens-shaped totally geodesic p-end.



282 11. OPENNESS AND CLOSEDNESS

(b): ht(Ẽ) changes from the holonomy group of a horospherical p-end to that
of a horospherical p-end or to a lens-shaped totally geodesic p-end.

These hold for the corresponding holonomy homomorphisms of the fundamental groups
of ends by the premise. (The above happens in actuality as well. See [4],[5], and [6].)

We will now work on one end at a time: Let us fix a p-end Ẽ of R-type of Õ . Let v be
the p-end vertex of Ẽ for µ0 and v′ that for µ1. We denote by v = v0 and v′ = v1. Assume
that vt is the p-end vertex of Ẽ for µt . Let devt and ht denote the developing map and
the holonomy homomorphism of µt . Assume first that the corresponding p-end for µ is of
radial or horospherical type. By post-composing the developing map by a transformation
near the identity, we assume that the perturbed vertex vt of the corresponding p-end Ẽ is
mapped to v0, i.e., v = devt(vt).

(I) Suppose that Ẽ is a generalized lens-shaped radial p-end or a horospherical p-end
for µ0. Then the holonomy group of Ẽ is that of a generalized lens-shaped radial p-end or
a horospherical p-end for µt under (I).

Let Λ0 denote the limit set in the tube of the radial p-end Ẽ for Õ if Ẽ is lens-shaped
radial p-end, or {vẼ = v} if Ẽ is a horospherical type for µ0. (See Definition 6.2.1.)

• Recall that Rv(devt(Õ)) denotes the space of directions of segments from v in
devt(Õ),

• Rv(devt(At)) denotes the space of directions of segments from v of devt(Õ) in
Rv(Õ) passing through the set dev(At)⊂ devt(Õ).

(i) We first find domains Ωs0 with smooth boundary approximating Õ on which h(π1(Ẽ))
acts. Here s0 will be a parameter that we will use to vary Ωs0 for fixed holonomy repre-
sentations. Here, Ωs0 is a lens-cone for Õ with µ0 so that ∂Ωs0 = bdÕΩs0 which is the top
boundary component of the lens.

• Suppose that Ẽ is a lens-shaped lens-shaped R-p-end for µ0. Then we obtain a
hypersurface ∂Ωs0 as the top boundary component of a CA-lens as obtained by
Theorem 5.1.4. The property of the strict lenses of Theorems 5.4.2 and 5.4.3
imply

Cl(∂Ωs0)−∂Ωs0 ⊂ Λs0

for the limit set Λs0 of Ẽ since a generalized lens-shaped end also satisfies the
uniform middle eigenvalue condition by Theorem 5.3.21. Also, each radial ge-
odesic is transverse to ∂Ωs0 . ∂Ωs0 ∪

⋃
S(v) bounds a properly convex domain

Ωs0 .
• Suppose that Ẽ is a horospherical R-p-end for µ0. Then we obtain a ∂Ωs0 as

a boundary of a convex domain invariant under h0(π1(Ẽ)). Again Ωs0 ∪ {v}
bounds a properly convex domain Ωs0 .

Choose some small ε > 0. By Lemma 6.2.8, if Ẽ is a lens-shaped R-p-end or a horo-
spherical R-p-end, we may choose Ωs0 that

dH(Ωs0 ,Õ)< ε.

Suppose that Ẽ is merely a generalized lens-shaped R-p-end. Then we can still form
a lens-cone neighborhood V of in the tube domain corresponding to the directions of the
p-end domain Σ̃Ẽ for Ẽ. We can choose a smooth top boundary component approximates
bdÕ −

⋃
S(⃗vẼ) from outside by Proposition 5.3.14. Hence, any ε > 0, sufficiently large 0

satisfies
dH(Ωs0 ,Õ)< ε
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still holds. Here, ∂Ωs0 may not be a subset of Õ unless Ẽ is lens-shaped and not just
generalized lens-shaped. However, this is irrelevant for our purposes.

For each ε , we will choose the parameter s0 so that the above is satisfied. So, s0 is
considered to vary for our purposes.

(ii) Now our purpose is to find a convex domain Ωs0,t where ht(π1(E) acts on and
approximating Ω0, and show that it contains an embedded image of a p-end neighborhood.
We denote by Σ̃Ẽ,t the universal cover of the end orbifold associated with for a p-end Ẽ of
Õ with µt . By our end holonomy group condition in the premise, Corollary A.1.12 shows
that Σ̃Ẽ,t is again complete affine or properly convex.

For the R-type end E, O has a concave end-neighborhood or a horospherical end-
neighborhood for E bounded by a smooth compact end orbifold S′E transverse to the radial
rays. Here, S′E is diffeomorphic to ΣE clearly.

For a sufficiently small t in µt , we obtain a domain Ut ⊂ O with U0 ⊂ Ωs0/h0(π1(Ẽ))
bounded by an inverse image of a compact orbifold S′E,t diffeomorphic to S′E still transverse
to radial rays by Propositions 5.3.11 and 5.3.12. S′E,t is either strictly concave if SE was
strictly convex if ΣE was horospherical. (The strict convexity and the transversality follow
since the change of affine connections are small as the argument of Koszul [114].)

Since the change was sufficiently small, we may assume that S′E,t still bounds an end-
neighborhood Ut of product form by Lemma 11.2.5.

□

LEMMA 11.2.5. Suppose that Ũ is a R-p-end neighborhood of Õ covering an end-
neighborhood U of an end E in O . Then for sufficiently small change of real projective
structures in Cr-sense, r ≥ 2, in the compact open topology, hypersurface St sufficiently
close to S in the C0-sense in terms of a parameterizing map still bounds an end neighbor-
hood of E. Letting S̃t be a component of the inverse image of S on which π1(Ẽ) acts, we
still have that S̃t bounds a p-end neighborhood of Ẽ.

PROOF. Straightforward. □

PROOF OF PROPOSITION 11.2.4 CONTINUED. Let Λt denotes the limit set in
⋃

S(v)t
for generalized radial p-end cases and Λt = {v} for the horospherical case. Let S(v)t denote
the set of maximal segments in the closure of Ut from v corresponding to bdRv(devt(Õ))
of µt .

Suppose that Ẽ is a lens-shaped R-p-end for µ0. We showed above that the Cr-change
r ≥ 2 of µt from µ0 be sufficiently small so that we obtain a region Ωs0,t in Bo

t with ∂Ωs0,t
strictly convex and transverse to radial rays under devt . Here, Ωs0,0 = Ωs0 .

Choose a compact domain F in ∂Ωs0 . Let Ft denote the corresponding deformed set
in ∂Ωs0,t . By Theorem 8.1.2, π1(Ẽ) is virtually abelian. For sufficiently small t, 0 < t < 1,
devt(Ft) is a subset of the tube Bt determined by devt(Ut) since Bt and a paramterization
of devt(Ft) depends continuously on t by Corollary A.1.13.

• By transversality to the segments mapping to ones from v under devt , it follows
that devt |∂Ωs0,t gives us a smooth immersion to a convex domain Σ̃Ẽ,t that equals
the space of maximal segments in Bt with vertices v and v−.

• By Corollary A.1.12, the immersion devt |∂Ωs0,t to a properly convex domain
Σ̃Ẽ,t is a diffeomorphism if Σ̃Ẽ,t is properly convex. It is also so if ht(π1(Ẽ)) is
horospherical since this follows from the classical Bieberbach theory using the
Euclidean metric on Σ̃Ẽ where it develops.
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Since π1(Ẽ) is the fundamental group of a generalized lens-shaped or horospherical p-end,
it follows that

devt(Cl(∂Ωs0,t)−∂Ωs0,t)⊂ devt(Λt)

by Theorems 8.1.3, 5.4.2, and 5.4.3.
Suppose that Ẽ is a generalized lens-shaped or lens-shaped R-p-end for µt , t > 0.

Since ∂Ωs0,t is convex, each point of ∂Ωs0,t ∪
⋃

S(v)t has a neighborhood that maps under
the completion d̂evt to a convex open ball. Thus, ∂Ωs0,t ∪

⋃
S(v)t bounds a compact ball

Ωs0,t ∪
⋃

S(v)t by Lemma 1.4.3 since the local convexity implies the global convexity and
they are in Bt .

Suppose that Ẽ is a horospherical R-p-end. For t > 0, ∂Ωs0,t ∪{v} bounds a convex
domain Ωs0,t by the local convexity of the boundary set ∂Ωs0,t ∪{v} and Lemma 1.4.3.

□

PROPOSITION 11.2.6. Assume as in Proposition 11.2.4, and (I) in the proof. Then for
µt for sufficiently small t, the end corresponding to E is always generalized lens-shaped
R-end or a horospherical R-end. Also, if µ ′ is sufficiently Cr-close to µ , then the end of O
with µ ′ is a generalized lens-shaped R-end or a horospherical R-end.

PROOF. The above arguments prove this since we are studying arbitrary deformations.
□

PROOF OF PROPOSITION 11.2.4 CONTINUED. (iii) We will show how these regions
deform approximating Ωs0 in the Hausdorff metric sense. We define rv(K) the union of
great segments with an endpoint v in directions of K, K ⊂ Rv.

• Let K be a compact convex subset of Ωs0,0 with smooth boundary, and Kt the
perturbed one in Ωs0,t and Ẽ be the corresponding p-end. We can form a compact
set inside Ωs0,t consisting of segments from the p-end vertex to K in the set
of radial segments. For µt from µ0 changed by a sufficiently small manner, a
compact subset rv(K)⊂ rv(Õ) is changed to a compact convex domain rv(Kt)⊂
rv(Σ̃Ẽ,t).

We choose s0 large enough so that K ⊂ Ωo
s0

. For sufficiently small t, Ωs0,t ∩rv(Kt) is
a convex domain since ∂Ωs0,t is strictly convex and transverse to great segments from v
and hence embeds to a convex domain under devt . We may assume that Ωs0,t ∩ rv(Kt) is
sufficiently close to Ωs0 ∩ rv(K) as we changed the real projective structures sufficiently
small in the Cr-sense. See Definition 11.2.3.

An ε-thin space is a space which is an ε-neighborhood of its boundary for small ε > 0.
By Lemma 3.1.5 and Corollary A.1.13, we may assume that Cl(rv(Õ)) and Cl(rv,t(Õ)) are
ε-d-close convex domains in the Hausdorff sense for sufficiently small t. Thus, given an
ε > 0, we can choose K and K′

t and a sufficiently small deformation of the real projective
structures so that Ωs0 ∩ (rv(Õ)− rv(K)) is an ε-thin space, and so is Ωs0,t ∩ (rv(Õ)−
rv(Kt)) for sufficiently small changes of t. Moreover,

Cl(Ωs0)∩ (rv(Õ)−rv(K))⊂ Nε(Cl(Ωs0 ∩rv(K))) and

Cl(Ωs0,t)∩ (rv(Õ)−rv(Kt))⊂ Nε(Cl(Ωs0,t ∩rv(Kt)));(11.2.2)

The reason is that the sharply supporting hyperspaces of Cl(Ωs0) at points of ∂rv(K)∩
Cl(Ωs0) are in arbitrarily small acute angles from geodesics from v and similarly for those
of Cl(Ωs0,t) for sufficiently small t by Corollary 5.5.8.

Therefore we conclude for (I) that for any ε > 0, there exists δ ,δ > 0

(11.2.3) dH(Cl(Ωs0),Cl(Ωs0,t))< ε
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provided |t| < δ ; that is, we choose µ0,t sufficiently close to µ0: First, we choose K and
deformation Kt so that it satisfies (11.2.2) for t < δ for some δ > 0. Then we choose t
sufficiently small so that Ωs0,t ∩R(Kt) is sufficiently close to Ωs0 ∩R(K).

Also, Ωs0,t contains a concave p-end neighborhood of Ẽ for µt for sufficiently small
t > 0. This can be assured by taking K sufficiently large containing a fundamental domain
of Rx(Õ) and sufficiently large Kt containing a fundamental domain Ft of Rt(devt(O)) for
ht(π1(Ẽ)) deformed from F by Proposition 11.2.6.

(II) Now suppose that Ẽ is a lens-shaped T-p-end or horospherical p-end of type T ,
and we suppose that ht(Ẽ) is a lens-shaped T-p-end for µt for t > 0. Other cases are similar
to (I).

We take Ωs0 to be the convex domain obtained as in Lemma 6.2.8 with strictly convex
boundary component ∂1Ωs0 and totally geodesic one S̃Ẽ,0 in bdΩs0 . Now, Ωs0/h(π1(Ẽ))
has strictly convex boundary component ∂Ωs0/h(π1(Ẽ)) and totally geodesic boundary
S̃Ẽ,0/h(π1(Ẽ)) when Ẽ is a T-p-end. If Ẽ is a horospherical end, ∂Ωs0/h(π1(Ẽ)) still is a
strictly convex compact (n−1)-orbifold.

Here, we note bdΩs0 = ∂Ωs0 ∪Cl(S̃Ẽ).
Suppose that µt is sufficiently close to µ0. Then by Theorem 6.1.2, we deform the

lens-shaped T-end for Ẽ:

• we obtain a properly convex domain Ωs0,t for sufficiently small t with a strictly
convex boundary ∂1Ωs0,t and S̃t , and

• ∂Ωs0,t is also cocompact under the π1(Ẽ)-action associated with µ1 and strictly
convex.

See Proposition 5.3.11. We choose Ωs0 to be L0 ∩ Õ for a lens in an ambient orbifold
containing L0. We also have bdΩs0,t = ∂Ωs0,t ∪Cl(S̃Ẽ,t) where S̃Ẽ,t is the ideal boundary
component for Ẽ for µt . By Proposition 5.3.11, L0 deforms to a properly convex domain
Lt so that Lt ∩ Õt is Ωs0,t where Õt is Õ with a real projective structure µt . We have

Cl(∂Ωs0,t)−∂Ωs0,t = ∂Cl(S̃Ẽ,t)

for a totally geodesic ideal boundary component S̃Ẽ,t by Theorem 4.4.1. Therefore the
union of ∂Ωs0,t and a totally geodesic ideal boundary component Cl(S̃Ẽ,t) bounds a prop-
erly convex compact n-ball in Sn. We can find a properly convex lens L0 for Ẽ at µ0 with
L0 ∩ Õ in a p-end neighborhood Ωs0 . Since the change of µt is sufficiently small, Lt ∩ Õt
is still in a p-end neighborhood of Ẽ by Lemma 11.2.5. We obtain a lens-shaped p-end
neighborhood for Ẽ and O with µt by Theorem 4.4.1.

We may assume without loss of generality that the hyperspace VẼ containing S̃Ẽ,t
is fixed. Moreover, we may assume by choosing sufficiently large Ωs0 without loss of
generality that dH(Ωs0 ,Õ)< ε for any ε > 0.

By Lemma 5.3.9, a sharply supporting hyperspace at a point of bdS̃Ẽ is uniformly
bounded away from VẼ . A sequence of sharply supporting hyperspaces can converge to
a sharply supporting one. Let us choose a sufficiently small ε > 0. Let B be a compact
ε-neighborhood of ∂Ωs0 so that

dH(∂Ωs0 −B,∂Cl(S̃Ẽ))< ε.

Given a sharply supporting hyperspace Wx of a point x of ∂Ωs0 of Ωs0 , there exists a sharply
supporting closed hemisphere Hx bounded by Wx.
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We define the shadow S of ∂B as the set⋂
x∈∂B

Hx ∩VẼ .

Then we can choose sufficiently small ε so that dH(S,dev0(Cl(S̃Ẽ))) ≤ ε . We can also
assure that Wx meets VẼ in angles in (δ ,π −δ ) for some δ > 0 by compactness of ∂B and
the continuity of map x 7→Wx.

Suppose that we change the structure from µ0 to µt with a small C2-distance. Then
B will change to B′

t with Wx change by small amount. The new shadow S′t will have the
property dH(S′t ,Cl(S̃Ẽ,t)) ≤ ε for a sufficiently small Cr-change, r ≥ 2, of µt from µ0.
Hence, we obtain that for each ε > 0, there exists δ ,δ > 0 so that

(11.2.4) dH(∂Ωs0,t −B′
t ,∂Cl(S̃Ẽ,t))< ε

provided |t| < δ . Therefore by Corollary A.1.13 for each ε > 0, there exists δ ,δ > 0 so
that

dH(Cl(S̃Ẽ),Cl(S̃Ẽ,t))< ε.

Recall that bdΩs0 = ∂Ωs0 ∪ Cl(S̃Ẽ) and bdΩs0,t = ∂Ωs0,t ∪ Cl(S̃Ẽ,t). Combining with
(11.2.4) and the sufficiently small change of B to Bt , we obtain that each ε > 0, there
exists δ ,δ > 0 so that

(11.2.5) dH(Cl(Ωs0),Cl(Ωs0,t))< ε

provided |t|< δ .
Suppose that Ẽ was a horospherical p-end of type T . Again, the argument is simi-

lar. We start with Ωs0 which is horospherical with strictly convex boundary, and tangent
to a hyperspace P0. The deformation gives us strictly convex hypersurface ∂Ωs0,t and a
hyperspace Pt where ht(π1(Ẽ)) acts on.

We assume without loss of generality that Pt = P for small t > 0. For sufficiently
small t, we obtain a domain bounded by ∂Ωs0,t and the closure Cl(S̃Ẽ,t) of a totally geo-
desic ideal boundary component. By taking duals by Corollary 5.5.7, we have lens-shaped
or horospherical R-p-end Ẽ. Proposition 11.2.6 shows that we obtain a domain Ω∗

s0,t ap-
proximating Ω∗

s0
where ∂Ω∗

s0,t is dual to ∂Ωs0,t . Then Ω∗∗
s0,t approximates Ωs0 as much as

one wishes to by Lemma 1.5.14.
We show that we have an embedded image of a p-end neighborhood in Ωs0,t . The

hypersurface ∂Ωs0 is embedded in Õ with µ0. Let F be a compact fundamental domain
of ∂Ωs0 by h(π1(Ẽ)). Now, dev−1

t (∂Ωs0,t) contains a compact fundamental domain Ft

perturbed from F . Let S̃t denote a component of the inverse image of ∂Ωs0,t under devt
containing perturbed fundamental domain Ft deformed from F . We deduce that π1(Ẽ) acts
on S̃t since ht(π1(Ẽ)) acts on ∂Ωs0,t .

By above, ht(π1(Ẽ)) acts on ∂Ωs0,t properly and cocompactly giving us a closed orb-
ifold as a quotient. Since devt |Ft is an embedding for sufficiently small t, the equivariance
tells us that devt : S̃t → ∂Ωs0,t is a diffeomorphism.

Since the change is sufficiently small S̃t still bounds a p-end neighborhood of O by
Lemma 11.2.5.

Before going on with the part (B) of the proof we briefly do a slight generalization.
□

COROLLARY 11.2.7. We consider all cases (I), (II). For each ε > 0, there exists δ ,δ >
0 depending only on Cl(Ωs0) so that we can choose a convex domain Ωs0,1 where h1(π1(Ẽ))
acts on for the holonomy homomorphism h1 so that
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• Ωs0,1 contains a domain that is the embedded image of a p-end neighborhood of
Ẽ by a developing map dev1 for µ1 associated with h1 and

•

(11.2.6) dH(Cl(Ωs0),Cl(Ωs0,1))< ε

provided µ0 and µ1 are δ -close in Cr-topology, r ≥ 2, on the compact set O −U for a
union of U of end neighborhoods of O .

PROOF. Suppose that this is false. There exists a sequence of real projective structures
µti with µti → µ0 in the C2-topology on O −U . Then letting the associated holonomy of
µti be denoted by hti , {hti} converges to h0 for µ0. We can apply the argument of cases (I),
(II), to show that (11.2.6) holds for every ε > 0. □

PROOF OF PROPOSITION 11.2.4 CONTINUED. (B) With Õ with µt , we obtain a spe-
cial affine suspension on O×S1 with the affine structure µ̂t . Let C(Õ) be the cone over Õ .
Then this covers the special affine suspension. Let µ̃t denote the affine structure on C(Õ)
corresponding to µ̂t . For each µt , it has an affine structure µ̃t , different from the induced
one from Rn+1 as for t = 0. We recall the scalar multiplication

s ·v = sv,v ∈C(Õ),s ∈ R

for any affine structure µ̃t . Also, given a subset K of Õ , we denote by C(K) the corre-
sponding set in C(Õ). This set is independent of µ̃t but will have different affine structures
nearby.

For µ0, Õ is a domain in Sn. Recall the Koszul-Vinberg function f : C(Õ) → R+

homogeneous of degree −n−1 as given by (11.2.1). (See Lemma 11.2.9.) By our choice
above, the Hausdorff distance between Cl(Ωs0) and Õ can be made as small as desired for
some choice of 0.

By the proof of Theorem 9.4.5 in Page 252 constructing the local inverse maps applied
to strongly tame orbifolds with boundary, there exists a diffeomorphism

Ft : Ωs0/h0(π1(E))→ Ωs0,t/ht(π1(E)) with a lift F̃t : Ωs0 → Ωs0,t

so that F̃t → I on every compact subset of C(Õ) in the Cr-topology as t → 0. That is, on
every compact subset K of C(Õ),

{
∣∣∣∣D jF̃t −D jI|K

∣∣∣∣}→ 0 for every multi-index j,0 ≤ | j| ≤ r.

We may assume that F̃t commutes with the radial flow Ψ̂s : Õ → Õ for s ∈R by restricting
Ft to a cross-section of C(Õ) of the radial flow and extending radially. (See the paragraph
after Definition 1.2.1.)

By the third item of Lemma 1.5.14 and Lemma 11.2.9, the Hessian functions f ′t ◦ F̃t

defined by (11.2.1) on the inverse image F̃−1
t (C(Ωs0,t)

o) is as close to the original Hessian
function f in any compact subset of C(Õ) in the Cr-topology, r ≥ 2, as we wish provided
|t − t0| is sufficiently small. By construction, f ′t is homogeneous of degree −n−1.

The holonomy groups h(π1(O)) and ht(π1(Ẽ)) being in SL±(n+1,R) preserve f and
f ′t under deck transformations respectively.

Now do this for all p-ends. Let Ut be the π1(O)-invariant mutually disjoint union
of p-end neighborhoods of p-ends of Õ . We construct a function f ′t on C(Ut) for µt and
sufficiently small |t|.

Let U be the corresponding π1(O)-invariant union of proper p-end neighborhoods of
Õ for µ0. For each component Ui of U, we construct f ′i,t ◦ F̃i on C(Ui) using Ωs0 so that
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f ′i,t satisfies the above properties and F̃i is constructed as above forUi. We call f ′t the union
of these functions.

Let V be a π1(O)-invariant compact neighborhood of the complement of U in Õ .

• Let ∂sV be the image of ∂V×{s} inside the regular neighborhood of ∂V in U
parameterized as ∂V× [−1,1] for s ∈ [−1,1].

• We assign ∂V = ∂0V.
• Let ∂[s1,s2]V denote the image of ∂Vt ×{[s1,s2]} inside the regular neighborhood

of ∂V in V∩U′ for a neighborhood U′ of Cl(U)∩ Õ .

We find a C∞ map φt : C(U′)∩C(V)→ R+ so that φt(s−→v ) = φt(
−→v ) for every s > 0 and

f ′t (
−→v ) = φt(

−→v ) f (−→v ) and φt is very close to the constant value 1 function. By making
f ′t / f near 1 and the derivatives of f ′t / f up to two near 0 as possible, we obtain φt that
has derivatives up to order two as close to 0 in a compact subset as we wish: This is
accomplished by taking a partition of unity functions p1, p2 invariant under the radial flow
so that

• p1 = 1 on C(W ) for

W := ∂[0,s1]V∪ (U′−V) for s1 < 1,

• p1 = 0 on C(Õ −N) for a neighborhood N of W in ∂(−1,1)V∪ (U′−V), and
• p1 + p2 = 1 identically.

We assume that
1− ε < f ′t / f < 1+ ε in C(U′∩V),

and f ′t / f has derivatives up to order two sufficiently close to 0 by taking f ′t and f suffi-
ciently close in C(U′)∩C(V) by taking sufficiently small t. We define

φt = ( f ′t / f − (1− ε))p1 + ε p2 +(1− ε),0 < t < 1

as f ′t and f are homogeneous of degree −n− 1. Then 1− ε < φt < 1+ ε and derivatives
of φt up to order two are sufficiently close to 0 by taking sufficiently small ε as we can see
easily from computations. Thus, using φt we obtain a function f obtained from f ′t and φt f
on C(W ) and extending them smoothly for sufficiently small |t|.

We can check the welded function from f ′t and φt f has the desired Hessian properties
for µt for sufficiently small t since the derivatives of φt up to order two can be made
sufficiently close to zero. Now we do this for every p-end of Õ .

The −(n+ 1)-homogeneity gives us the invariance of the Hessian metric under the
scalar dilatations and the affine lifts of the holonomy groups. (See Chapter 4 of [86].) This
completes the proof for Proposition 11.2.4. [SnS] □

This is a strengthened version of Proposition 11.2.4.

COROLLARY 11.2.8. Let O be a strongly tame orbifold with ends and satisfies (IE)
and (NA). Suppose that O has an SPC-structures µ0 with generalized lens-shaped or horo-
spherical R- or T -ends and the suspension of O with µ0 has a Hessian metric. Let U be
a union of mutually disjoint end neighborhoods of O . Suppose the following hold:

• Let µ1 be an SPC-structure with generalized lens-shaped or horospherical R-
or T -ends so that µ0 and µ1 are ε-close in Cr-topology on O−U for r ≥ 2, and

• the R-end holonomy group of µ1 are either lens-type or horospherical type and
the T-end holonomy group of µ1 are totally geodesic satisfying the lens condi-
tions.
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Then for sufficiently small ε , the affine suspension C(Õ) for Õ with µ1 also has a Hessian
metric invariant under dilations and the affine suspensions of the holonomy homomorphism
for µ1.

PROOF. We use Corollary 11.2.7 so that (11.2.6) holds with sufficiently small ε . Now
we use the step (B) of the proof of Proposition 11.2.4. [SnS] □

LEMMA 11.2.9. Let V be a properly convex cone, and let V ∗ be a dual cone. Suppose
that a Koszul-Vinberg function fV ∗(x) is defined on a compact neighborhood B of x con-
tained in a convex cone V . Let V1 be another properly convex cone containing the same
neighborhood. Let Ω := S(V ∗) and Ω1 := S(V ∗

1 ) for the dual V ∗
1 of V1. For given any

integer s ≥ 1 and ε > 0, there exists δ > 0 so that if the Hausdorff distance between Ω and
Ω1 is δ -close, then fV ∗(x) and fV ∗

1
(x) are ε-close in B in the Cr-topology.

PROOF. We prove for Sn. By Lemma 1.5.14, we have

Ω
∗ ⊂ Nδ (Ω

∗
1),Ω

∗
1 ⊂ Nδ (Ω

∗),

(Ω−Nδ (∂Ω))∗ ⊂ Ω
∗
1, and

(Ω1 −Nδ (∂Ω1))
∗ ⊂ Ω

∗(11.2.7)

provided δ is sufficiently small. We choose sufficiently small δ > 0 so that

B ⊂ Ω−Nδ (∂Ω),Ω1 −Nδ (∂Ω1).

Recall the Koszul-Vinberg integral (11.2.1). For fixed φ ∈V ∗ or ∈V ∗
1 , the functions e−φ(x)

and the derivatives of e−φ(x) with respect to x in the domains are uniformly bounded on
B since φ and its derivatives are bounded function on B. The integral is computable from
an affine hyperspace meeting V ∗ and V ∗

1 in bounded precompact convex sets. Also, the
integration is with respect to φ . The result follows by (11.2.7). (See Section 4.1.2 of [86].)
[SnS] □

11.2.2. The proof of Theorem 11.2.1.

THE PROOF OF THEOREM 11.2.1. Suppose that O has an SPC-structure µ with gen-
eralized lens-shaped or horospherical R- or T -ends. Let U be the union of end neighbor-
hoods of product form with mutually disjoint closures. By premises, the end structures are
given.

We assume that µ0 and µs correspond to elements of U in Defs
E ,sU ,lh(O). We show

that a structure µs that has generalized lens-shaped or horospherical R- or T -ends suffi-
ciently close µ in O −U is also SPC.

Let h : π1(O) → SL±(n+ 1,R) be the lift of the holonomy homomorphism corre-
sponding to µ0 where Õ ⊂ Sn is a properly convex domain covering O . Let hs : π1(O)→
SL±(n+1,R) be the lift of the holonomy homomorphism corresponding to µs sufficiently
close to h in

U ⊂ Homs
E ,lh(π1(O),SL±(n+1,R)).

By Theorem 9.4.5, it corresponds to a real projective structure µs on O . Since [µs] ∈
Defs

E ,lh(O), it is sufficient to show that µs is a properly convex real projective structure.
Let O := C(Õ)/h(π1(O)) with C(Õ) as the universal cover. Let Õs denote Õ with

µs. One applies special affine suspension to obtain an affine orbifold O ×S1. (See Section
1.2.1.) The universal cover is still C(Õ) and has a corresponding affine structure µ̃s. We
denote C(Õ) with the lifted affine structure of µ̃s by C(Õ)s. Recall the Kuiper completion
Ĉ(Õ)s of C(Õ)s. This is a completion of C(Õ)s the path metric induced from the pull-back
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of the standard Riemannian metric on Sn+1 by the developing map devs of µ̃s. (Here the
image is in Rn+1 as an affine subspace of Sn+1.) The developing maps always extend to
ones on Ĉ(Õ)s which we denote by devs again. (See [43] and [46] for details.)

By Corollary 11.2.8, an affine suspension µ̃s of µs also have a Hessian function φ since
µs is in a sufficiently small C2-neighborhood of µ in O −U. The Hessian metric Ddφ is
invariant under affine automorphism groups of C(Õ) by construction. We prove that µ̃s is
properly convex, which will show µs is properly convex:

Suppose that µ̃s is not convex. Then there exists a triangle T embedded in Ĉ(Õ)s
where a point in the interior of an edge of T is in the ideal set

δ∞Õs := Ĉ(Õ)s −C(Õ)s

while T o and the union l′ of two other edges are in C(Õ)s. We can move the triangle T so
that the interior of an edge l has a point x∞ in δ∞Õs, and devs(l) does not pass the origin.
We form a parameter of geodesics lt , t ∈ [0,ε] in T so that

l0 = l and lt ⊂C(Õ)s with ∂ lt ⊂ l′

is close to l in the triangle. (See Theorem A.2 of [46] for details.)
Let p,q be the endpoints of l. Then the Hessian metric is Dsdφ for a function φ defined

on C(Õ)s. And dφ |p and dφ |q are bounded, where Ds is the affine connection of µs. This
should be true for pt and qt for sufficiently small t uniformly. Let u, u ∈ [0,1], be the affine
parameter of lt , i.e., lt(s) is a constant speed line in Rn+1 when developed. We assume that
u ∈ (εt ,1−εt) parameterize lt for sufficiently small t where εt → 0 as t → 0 and dlt/ds = v⃗
for a parallel vector v⃗. The function Ds

vdvφ(lt(u)) is uniformly bounded since its integral
d⃗vφ(lt(u)) is strictly increasing by the strict convexity and converges to certain values as
u → εt ,1− εt .

Since ∫ 1−εt

εt

Ds
vdvφ(lt(u))du = dφ(pt)(⃗v)−dφ(qt)(⃗v),

the function
√

Ds
v⃗d⃗vφ(lt(u)) is also integrable by Jensen’s inequality, and the length of lt∫ 1−εt

εt

√
Ds

v⃗d⃗vφ(lt(u))du

under the Hessian metric Ddφ have an upper bound
√

dφ(pt)(⃗v)−dφ(qt)(⃗v) by the same
inequality. Since√

dφ(pt)(⃗v)−dφ(qt)(⃗v)→
√

dφ(p0)(⃗v)−dφ(q0)(⃗v) as t → 0,

the length of lt is uniformly bounded.
U corresponds to an inverse image Ũ in Õ and to C(Ũ)s the inverse image in C(Õ)s.

The minimum distance between components of U is bounded below since the metric is
invariant under scalar dilatations in C(Õ)s. Since (C(Õs)−C(Ũ)s)/⟨R+I⟩ is compact, if l
meets infinitely many components of C(Ũ)s, then the length is infinite.

As t → 0, the number is thus bounded, l can be divided into finite subsections, each of
which meets at most one component of C(Ũ)s.

Let l̂ be the subsegment of l in C(Õ)s containing x∞ in the ideal set of the Kuiper
completion of C(Õs) with respect to devs and meeting only one component C(Ũ1)s of
C(Ũ)s with bds ∈ bdC(U1)s. Let l̂t be the subsegment of lt so that the parameter of the
endpoints of segements of form l̂t converges to those of l̂ as t → 0. Let p′ and q′ be the
endpoint of l̂.
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Suppose that C(Ũ1)s ⊂C(Õ)s corresponds to a lens-shaped or horospherical R-p-end
neighborhood Ũ′

1 in Õs. and x∞ is on a line corresponding to the p-end vertex of Ũ′
1.

We project to Sn from by the projection Π′ : Rn+1 −{O} → Sn. Then by the proper-
convexity of Σ̃Ẽ contradicts this when Ẽ is an R-p-end of generalized lens-type. When Ẽ
is a horospherical p-end, the whole segment must be in bdÕ by convexity. Theorem 8.1.3
contradicts this.

Now suppose that Π′(x∞) is in the middle of the radial line from the p-end vertex.
Then the interior of the triangle is transverse to the radial lines. Since our p-end orbifold
Σ̃Ẽ is convex, there cannot be such a line with a single interior point in the ideal set.

If C(Ũ1)s is the inverse image in C(Õ)s of a generalized lens-shaped T-p-end neighbor-
hood Ũ1 in Õs, then clearly there is no such a segment l containing an ideal x∞ in its interior
similarly.

Now suppose that a subsegment l1 of l contains an ideal pojnt in its interior but is
disjoint from Ũ. There is connected arc in l1∩C(Õ−Ũ)s ending at an ideal point x∞. This
is arc is never in a compact subset of C(Õ)s. However, we showed above that the Hessian
length of lt is bounded. Since for a subarc l1,t of lt , the parameter {l1,t} converges to l1
as t → 0. Thus, the Hessian length of l1 is also finite. Since C(Õ − Ũ) covers a compact
orbifold that is the affine suspended over O−U, the Hessian metric is compatible with any
Riemannian metric. Since l1 is in a compact orbifold, it cannot have a finite Riemannian
length.

This is again a contradiction. Therefore, Õs is convex.
Finally, for sufficiently small deformations, the convex real projective structures are

properly convex. Suppose not. Then there is a sequence {µsi} of sufficiently small de-
formed convex real projective structures which are not properly convex. By Proposition
1.1.4, there exists a unique great sphere Si0 in the boundary of the nonproperly convex set.
By uniqueness, the holonomy hsi acts on Si0 .

The sequence of structures converges to the beginning µ in Õ −U . By taking limits,
the original holonomy has to be reducible.

Suppose now that O with µ is strictly SPC with lens-shaped or horospherical R- or
T -ends. The relative hyperbolicity of Õ with respect to the p-ends is stable under small
deformations since it is a metric property invariant under quasi-isometries by Theorem
10.3.1.

The irreducibility and the stability follow since these are open conditions in

Hom(π1(O),SL±(n+1,R)).

Also, the ends are lens-shaped or horospherical.
By Theorem 6.0.4, the holonomy is not in a parabolic group. This completes the proof

of Theorem 11.2.1. [SnS] □

11.3. The closedness of convex real projective structures

We recall reps
E (π1(O),PGL(n+1,R)) the subspace of stable irreducible characters of

repE (π1(O),PGL(n+1,R)) which is shown to be an open subset of a semialgebraic set in
Section 9.2, and denote by reps

E ,lh(π1(O),PGL(n+1,R)) the subspace of stable irreducible
characters of repE ,lh(π1(O),PGL(n+1,R)), an open subset of a semialgebraic set.

11.3.1. Preliminary of the section. Recall the definition of compatible end-compactification
from Sections 3.1.2 and 3.1.3.
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LEMMA 11.3.1. Let hi,h ∈ HomE ,lh(π1(O)),SL±(n+1,R))
(resp. ∈ HomE ,lh(π1(O)),PGL(n+1,R))).

Suppose that the following hold:
• Let O be a strongly tame real projective orbifold with ends assigned types R and

T satisfying (IE) and (NA) with a compatible end compactification.
• Let Ωi be a properly convex open domain in Sn (resp. RPn).
• Suppose that Ωi/hi(π1(O)) is an n-dimensional noncompact strongly tame SPC-

orbifold with generalized lens-shaped or horospherical R- or T -ends.
• Assume that each p-end holonomy group hi(π1(E j)) of hi(π1(O)) of type R has a

p-end vertex v j
i corresponding to the p-end structure where {v j

i } forms a conver-
gent sequence as i → ∞. We assume that hi 7→ v j

i extends to an analytic function
near h.

• Assume that each p-end holonomy group hi(π1(E j)) of hi(π1(O)) of type T has
a hyperplane P j

i containing the p-ideal boundary component where {P j
i } forms

a convergent sequence as i → ∞. We assume that hi 7→ P j
i extends to an analytic

function near h.
• Suppose that {hi}→ h algebraically where h is discrete and faithful.
• Cl(Ωi)→ K for a compact properly convex domain K ⊂ Sn, Ko ̸= /0.

Then the following holds:
• Oh :=Ko/h(π1(O)) is a strongly tame SPC-orbifold with generalized lens-shaped

or horospherical R- or T -ends to be denoted Oh diffeomorphic to O .
• For each p-end Ẽ of the universal cover Õh of Oh, Ko has a subgroup h(π1(Ẽ))

acting on a h(π1(Ẽ))-invariant open set UẼ where UẼ/h(π1(Ẽ)) is an end neighbor-
hood that is one of the following:

– a horospherical or lens-shaped totally geodesic end neighborhood provided
Ẽ is a T -p-end,

– a horospherical or concave end neighborhood provided Ẽ is a R-p-end.
• Finally, suppose that there is a fixed strongly tame properly orbifold O ′ with an

ideal boundary structure and diffeomorphism fi : O ′ → Ωi/hi(π1(O)) for suf-
ficiently large i extending to a diffeomorphism of an end-compactification Ō ′

to the end compactification of Ωi/hi(π1(O)) compatible with R-end and T-end
structures given by v j

i and P j
i . Then Ko/h(π1(O)) is an orbifold with a diffeo-

morphism f from O ′ extending to a diffeomorphism from Ō ′ to an end compact-
ification of Ko/h(π1(O)) with the above R-end and T-end structures.

PROOF. Again, we prove for Sn. The holonomy group h(π1(O)) acts on Ko with a
Hilbert metric. Hence, Ko/h(π1(O)) is an orbifold to be denoted Oh. (See Lemma 1 of
[54].)

Since h∈HomE ,lh(π1(O),SL±(n+1,R)) holds, each p-end holonomy group h(π1(Ẽ))
acts on a horoball H ⊂ Sn, a generalized lens-cone, or a totally geodesic hypersurface S̃Ẽ
with a CA-lens L. In the first case, we can choose a sufficiently small horoball U inside
Ko and in H since the sharply supporting hyperspaces at the vertex of H must coincide by
the invariance under h(π1(Ẽ)) by a limiting argument. By Lemma 5.5.2, U component of
Ko −bdU is a p-end neighborhood.

Now, we consider the second case. Let v be a limit of the sequence {vẼ,i} of the fixed
p-end vertices of hi(π1(Ẽ)). We obtain v ∈ K. Also, v ̸∈ Ko since otherwise the elements
fixing it has to be of finite order by the proper discontinuity of the Hilbert isometric action
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of h(π1(Ẽ)). For each i, hi(π1(Ẽ)) acts on a lens-cone Li ∗{vẼ,i}. We may assume without
loss of generality that vẼ,i is constant by changing devi by a convergent sequence {gi} of
elements of SL±(n+1,R). We may assume that hi in a continuous parameter converging
to h since there are finitely many components in the above real algebraic set. By Corollary
A.1.13 and the condition ”ce”, we may assume that

{Cl(RvẼ,i
(Ωi))}→ Kv

for a properly convex domain Kv on which h(π1(Ẽ)) acts. Since Ωi is a subset of a
tube domain for RvẼ,i

(Ωi), we deduce that Ω is a subset of a tube domain for Ko
v . Since

Ko
v/h(π1(Ẽ)) is a closed properly convex orbifold, and RvẼ

(Ω) ⊂ Ko
v , it follows that they

are equal by Lemma 1.4.16. Hence, RvẼ
(Ω) is properly convex. By the Hilbert metric

on this domain, h(π1(Ẽ)) acts properly discontinuously on it. Since h(π1(Ẽ)) satisfies the
uniform middle eigenvalue condition by premise, Theorem 5.3.21 shows that the action is
distanced in a tubular domain corresponding to RvẼ

(Ko). Hence, h(π1(Ẽ)) acts properly
and cocompactly on a generalized lens L in K. The group h(π1(Ẽ)) acts on an open set
UL := L∗{vẼ}−L. We may choose one with sufficiently large L so that the lower bound-
ary component ∂−L is a subset in Ko since we can make UL ∩TvẼ

(F) be as small as we
wish for any compact fundamental domain F for RvẼ

(Ko) and h(π1(Ẽ)). By Lemma 5.5.2,
UL is a p-end neighborhood of Ẽ.

In the third case, we can find a CA-lens neighborhood of a totally geodesic domain
S̃Ẽ,i ⊂ Cl(Ωi)∩Pi in a hypersurface Pi on which hi(π1(Ẽ)) acts. We may assume without
loss of generality that Pi is constant by changing devi by a convergent sequence gi in
SL±(n+1,R). We may assume by taking subsequences that {Cl(S̃Ẽ,i)}→ D for a properly
convex domain D by Corollary A.1.13.

By Corollary 1.4.17, Do/h(π1(Ẽ)) is a closed orbifold homotopy equivalent to SE,i
up to finite manifold covers. By Theorem 5.5.4, h(π1(Ẽ)) satisfies the uniform middle
eigenvalue condition with respect to the hyperspace containing D. By Theorem 4.4.1, the
group h(π1(Ẽ)) acts on a component L1 of L−P is in Ko for a lens L. Then Lo

1 is a p-end
neighborhood of Ẽ by Lemma 5.5.2. Hence, we constructed R-end and T-end structures
for each end for Ko/π1(O).

We apply Theorem 6.0.4 to show that the end structure is SPC.
The end compactification Ōh of Ko/h(π1(O)) is given by attaching the cover of ideal

boundary component for each p-T-end and attaching ΣE × [1,0) to an end-neighborhood of
an R-end E by a diffeomorphism restricting to a proper map as in Section 9.3.

For the final part, recall from Section 9.2 that Homs
E , f (π1(O),SL±(n+1,R)) is Zariski

dense. The homomorphism h is in it by Proposition 5.4.4. We choose p-end vertices the
hyperspace containing the p-ideal boudndary components be obtained by respective limits
of the corresponding sequence of corresponding objects of hi. By premise on the analytic
extension, we can build a fixed section sU on a Zariski open subset U containing h by
Proposition 5.4.4. By Theorem 9.4.5, we obtain a subspace of the parameter of real pro-
jective structures on a strongly tame orbifold O ′ with end structures determined by sU for
each point of U .

By premise, the p-end vertices of Ωi and the hypersurfaces containing the p-ideal
boundary components are determined also by sU for sufficiently large i. Now, O ′ :=
Ko/h(π1(O)) is realized as a convex real projective orbifold with ends determined by
sU also. By Theorem 9.4.5, there is a neighborhood U ′ ⊂ U where every holonomy
is realized by a convex real projective structure with end structures determined by sU .
Since hi may be assumed to be in U ′ except for finitely many is, a structure µi on O ′
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has has holonomy hi. By Theorem 11.3.2, Ωi/hi(π1(O)) is projectively diffeomorphic to
O ′ with a convex real projective structure µi with identical R-end and T-end structures for
sufficiently large i.

By Theorem 11.3.2, for µi with holonomy in U ′, Ωi/hi(π1(O)) has an end com-
pactification Ō ′

i . Since this end compactification is compatible with the R-end and T-end
structures also, fi extends to a diffeomorphism Ō ′ → Ō ′

i . Since hi ∈ U ′ deformed from h,
Ō ′

i is isotopic to Ōh.
By premise, the diffeomorphism fi : O ′ → Ωi/hi(π1(O)) extends smoothly as a dif-

feomorphism from Ō ′ to Ō ′
i . Hence, O and O ′ are diffeomorphic with end structures

preserved. By Corollary 9.3.3, the respective end compactifications of O and O ′ are dif-
feomorphic.

Again the RPn-version follows by Proposition 1.4.2. [SnP] □

THEOREM 11.3.2 (Uniqueness of domains). Let Γ be a discrete projective automor-
phism group of a properly convex open domain Ω ⊂ Sn. Suppose that Ω/Γ is a strongly
tame SPC n-orbifold with generalized lens-shaped or horospherical R- or T -ends and
satisfies (IE) and (NA). Assume ∂O = /0. Suppose that for each vẼ ∈ bdΩ for each R-p-end
Ẽ is specified up to A in Sn and so is each hyperplane for each T-p-end Ẽ meeting bdΩ.
Then Ω is a unique domain with these properties up to the antipodal map A .

PROOF. Suppose that Ω1 and Ω2 are distinct open domains in Sn satisfying the above
properties. For this, we assume that Γ is torsion-free by taking a finite-index subgroup by
Theorem 1.1.19. We claim that Ω1 and Ω2 are disjoint:

Suppose that Ω′ := Ω1 ∩Ω2 is a nonempty open set. Since Ω1,Ω2, and Ω′ are all
n-cells, the set of p-ends of Ω1, the set of those of Ω2, in one-to-one correspondences by
considering their p-end fundamental groups. The types are also preserved by the premise.

Suppose that Ẽ1 and Ẽ2 are corresponding R-p-ends of generalized lens-type. The p-
end vertex vẼ j

of a generalized lens-shaped R-p-end Ẽ j of Ω j, j = 1,2, is determined up
to A by the premise.

Suppose that vẼ1
and vẼ2

are antipodal. The interior of Ω′ ∗{vẼ j
}, j = 1,2, are in Ω j

by the convexity of Cl(Ω j). Also, Ω1 ∪Ω2 is in a convex tube TvẼ1
(Σ̃Ẽ1

) with the vertices

vẼ1
and its antipode vẼ2

in the direction of Σ̃Ẽ1
. Also, the convex hull of Cl(Ω1)∪Cl(Ω2)

equals TvẼ1
(Σ̃Ẽ1

). h(π1(O)) acts on the unique pair of antipodal points {vẼ1
,vẼ2

}. Hence,
h(π1(O)) is reducible contradicting the premise.

Suppose that vẼ1
= vẼ2

. Then RvẼ1
(Ω1) and RvẼ1

(Ω2) are not disjoint since otherwise
Ω1 and Ω2 are disjoint. Lemma 1.4.16 shows that they are equal. The generalized lens-
cone p-end neighborhood U1 in Ω1 and one U2 in Ω2 must intersect. Hence, by Lemma
5.5.2, the intersection of a generalized lens-cone p-end neighborhood of Ω1 and that of Ω2
is one for Ω′:

Suppose that Ẽ j is a horospherical p-end of Ω j, j = 1,2. Then p-end vertices vẼ j
,

j = 1,2, are either equal or antipodal since there is a unique antipodal pair of fixed points
for the cusp group ΓẼ j

, j = 1,2. Since the fixed point in vẼ j
is the unique limit point of

{γn(p)} as n → ∞ for any p ∈ Ω j, it follows that vẼ1
= vẼ2

. We can verify that Ω1,Ω2, and
Ω′ share a horospherical p-end neighborhood from this by Lemma 5.5.2.

Similarly, consider the ideal boundary component S̃Ẽ1
for a T-p-end Ẽ1 of Ω1 and the

corresponding S̃Ẽ2
for a T-p-end Ẽ2 of Ω2. Since ΓΓΓẼ1

acts on a properly convex domain Ω′,
Theorem 5.5.4 and Lemma 4.4.2 show that Cl(Ω′)∩P is a nonempty properly convex set
in Cl(S̃Ẽ1

).
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We claim that a point Cl(S̃Ẽ2
) for Ω2 cannot be antipodal to any point of Cl(S̃Ẽ1

):
Suppose not. Then Cl(S̃Ẽ2

) = R2(Cl(S̃Ẽ1
)) for a projective automorphism R2 acting as I or

A on a collection of independent subspaces of P by Lemma 1.4.16. There exists a pair
of extremal points p1 ∈ Cl(S̃Ẽ1

) and p2 ∈ Cl(S̃Ẽ2
), antipodal to each other. Here, there

exists a point c ∈ S̃Ẽ j
and a sequence g( j)

i such that {g( j)
i (c)} → p j by Lemma 5 of [151].

By Lemma 4.4.2, {g( j)
i (d)} → p j for a point d ∈ Ω′. This implies that Ω′ is not properly

convex, a contradiction.
Thus, we obtain S̃Ẽ = S̃′Ẽ again by Lemma 1.4.16. Since Ω′ is a h(π1(Ẽ))-invariant

open set in one side of P, it follows that Ω′ contains a one-sided lens neighborhood L1 by
Lemma 4.3.1. By Lemma 5.5.2, L1 is a p-end neighborhood of Ω′.

We have concave p-end neighborhoods for radial p-ends, lens p-end neighborhoods for
totally geodesic p-ends, and horoball p-end neighborhoods of p-ends for each of Ω1, Ω2,
and Ω′. We verify from above discussions that a p-end neighborhood of Ω1 exists if and
only if a p-end neighborhood of Ω2 exists and their intersection is a p-end neighborhood
of Ω′. Ω′/Γ is a closed submanifold in Ω1/Γ and in Ω2/Γ. Thus, Ω1/Γ,Ω2/Γ, and Ω′/Γ

are all homotopy equivalent relative to the union of disjoint end-neighborhoods. The map
has to be onto in order for the map to be a homotopy equivalence as we can show using
relative homology theories, and hence, Ω′ = Ω1 = Ω2.

Suppose that Ω1 and A (Ω2) meet. Then similarly, Ω1 = A (Ω2).
Suppose now that Ω1 ∩Ω2 = /0 and Ω1 ∩A (Ω2) = /0. Suppose that Ω1 has a p-end Ẽ

of type R. The corresponding pair of the p-end neighborhoods share the p-end vertex or
have antipodal p-end vertices by the premise. Since Ω1 and Ω2 are disjoint, it follows that
Cl(Ω1)∩Cl(Ω2) or Cl(Ω1)∩A (Cl(Ω2) is a compact properly convex subset of dimension
< n and is not empty since the end vertex of the p-ends are in it. The minimal hyperspace
containing it is a proper subspace and is invariant under Γ. This contradicts the strong
irreducibility of h(π1(O)) as can be obtained from Theorem 6.0.4. This also applies to the
case when Ẽ is a horospherical end of type T .

Suppose that Ω1 has a p-end Ẽ1 of type T . Then Ω2 has a p-end Ẽ2 of type T . Now,
ΓẼ1

= ΓẼ2
acts on a hyperspace P containing the S̃Ẽi

in the boundary of bdΩi for i = 1,2.
Here, S̃Ẽ1

/ΓẼ1
and S̃Ẽ2

/ΓẼ2
are closed n− 1-orbifolds. Lemma 1.4.16 shows that their

closures always meet or they are antipodal. Hence, up to A , their closures always meet.
Again

Cl(Ω1)∩Cl(Ω2) ̸= /0 or Cl(Ω1)∩A (Cl(Ω2)) ̸= /0

while we have Ω1 ∩Ω2 = /0 and Ω1 ∩A (Ω2) = /0. We obtain a lower-dimensional convex
subspace fixed by Γ. This is a contradiction. □

11.3.2. The main result for the section. This generalizes Theorem 4.1 of [61] for
closed orbifolds which is really due to Benoist [23].

THEOREM 11.3.3. Let O be a strongly tame SPC n-orbifold with generalized lens-
shaped or horospherical R- or T -ends and satisfies (IE) and (NA). Assume ∂O = /0. We
have an open PGL(n+1,R)-conjugation invariant set U in a semi-algebraic subset of

Homs
E ,lh(π1(O),PGL(n+1,R)),

and a PGL(n+ 1,R)-equivariant fixing section sU : U → (RPn)e1 × (RPn∗)e2 . Let U ′

denote the quotient set under PGL(n+ 1,R). Assume that every finite index subgroup of
π1(O) has no nontrivial nilpotent normal subgroup. Then the following hold :
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• The deformation space CDefE ,sU ,lh(O) of SPC-structures on O with generalized
lens-shaped or horospherical R- or T -ends maps under hol homeomorphically
to a union of components of

U ′ ⊂ reps
E ,lh(π1(O),PGL(n+1,R)).

• The deformation space SDefE ,sU ,lh(O) of strict SPC-structures on O with lens-
shaped or horospherical R- or T -ends maps under hol homeomorphically to
the union of components of

U ′ ⊂ reps
E ,lh(π1(O),PGL(n+1,R)).

PROOF. Define C̃DefE ,lh(O) to be the inverse image of CDefE ,lh(O) in the isotopy-
equivalence space D̃efE (O) in Definition 9.3.5. Let Ũ denote the points of the inverse
image of U in C̃DefE ,lh(O) where the vertices of R-p-ends and hyperspaces of T-p-ends
are determined by sU . Then Ũ is an open subset by Theorem 9.4.5 and Theorem 11.1.4.

We show that

hol : Ũ → U ⊂ Homs
E ,lh(π1(O),PGL(n+1,R))

is a homeomorphism onto a union of components. This will imply the results. Theorem
11.3.2 shows that hol is injective.

Now, hol is an open map by Theorems 11.2.1 and 9.4.5. To show that the image is of
hol is closed, we show that the subset of U corresponding to elements in Ũ is closed. Let
(devi,hi) be a sequence of development pairs so that we have {hi} → h algebraically. Let
Ωi = devi(Õ) denote the corresponding properly convex domains for each i. The limit h
is a discrete representation by Lemma 1.1 of Goldman-Millson [92]. Let Ω̂i denote the lift
of Ωi in Sn and let ĥi : π1(O)→ SL±(n+1,R) be the corresponding lift of hi by Theorem
1.1.20. The sequence {Cl(Ωi)} also geometrically converges to a compact convex set Ω̂

up to choosing a subsequence by Proposition 1.1.9 where ĥ(π1(O)) acts on as in Lemma 1
of [54]. If Ω̂ have the empty interior, h is reducible, and h ̸∈ U , contradicting the premise.
If Ω̂o is not empty and is not properly convex, then the lift of Ω to Sn contains a maximal
great sphere Si, i ≥ 1, or a unique pair of antipodal points {p, p−} by Proposition 1.1.4. In
the both cases, h is reducible. Thus, Ω̂o is not empty and is properly convex. Let Ω denote
the image of Ω̂ under the double covering map. As in [54], since Ωo has a Hilbert metric,
h(π1(O)) acts on Ωo properly discontinuously.

By Lemma 11.3.1, the condition of the generalized lens or horospherical condition for
R-ends or lens or horospherical condition for T -ends of the holonomy representation is a
closed condition in the

Homs
E ,lh(π1(O),PGL(n+1,R))

as we defined above. (It is of course redundant to say that it is not a closed condition when
we drop the notation “ce” from the above character space.)

Define O ′ := Ωo/h(π1(O)). We can deform O ′ with holonomy in an open subset of
Ũ using the openness of hol by Theorem 11.2.1. We can find a deformed orbifold O ′′

i that
has a holonomy hi for some large i. Now, Ωi/hi(O) is diffeomorphic to O being in the de-
formation space. O ′′

i is diffeomorphic to O with the corresponding end-compactifications
since they share the same open domain as the universal cover by the uniqueness for each
holonomy group by Theorem 11.3.2. By the openness of the map hol for O ′, O ′′ is diffeo-
morphic to O ′. Hence, O ′ is diffeomorphic to O .
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Therefore, we conclude that Ũ goes to a closed subset of U . The proof up to here
imply the first item.

Now, we go to the second item. Define S̃DefE ,lh(O) to be the inverse image of
SDefE ,lh(O) in the isotopy-equivalence space D̃efE (O). Let Ũ denote the inverse image
of U in S̃DefE ,lh(O). We show that

hol : Ũ → U

is a homeomorphism onto a union of components of U . Theorem 11.2.1 shows that hol is
a local homeomorphism to an open set. The injectivity of hol follows the same way as in
the above item.

We now show the closedness. By Theorem 10.3.1, π1(O) is relatively hyperbolic with
respect to the end fundamental groups. Let h be the limit of a sequence of holonomy rep-
resentations {hi : π1(O)→ PGL(n+1,R)}. As above, we obtain Ω as the limit of Cl(Ωi)
where Ωi is the image of the developing map associated with hi. Ω is properly convex
and Ωo is not empty. Since h is irreducible and acts on Ωo properly discontinuously, it
follows that Ωo/h(π1(O)) is a strongly tame properly convex orbifold O ′ with generalized
lens-shaped or horospherical R- or T -ends by the above part of the proof. By Theorem
10.3.4 and Corollary 6.3.3, O ′ is a strict SPC-orbifold with lens-shaped or horospherical
R- or T -ends. The rest is the same as above. □

REMARK 11.3.4 (Thurston’s example). We remark that without the end controls we
have, there might be counter-examples as we can see from the examples of geometric limits
differing from algebraic limits for sequences of hyperbolic 3-manifolds. (See Anderson-
Canary [2].)

11.3.3. Dropping of the superscript s. We can drop the superscript s from the above
space. Hence, the components consist of stable irreducible characters. This is a stronger
result.

COROLLARY 11.3.5. Let O be a noncompact strongly tame SPC n-dimensional orb-
ifold with lens-shaped or horospherical R- or T -ends and satisfies (IE) and (NA). Assume
∂O = /0. Assume that no finite-index subgroups π1(O) has a nontrivial nilpotent normal
subgroup. We have a PGL(n+1,R)-conjugation invariant set U open in a union of semi-
algebraic subsets of

HomE ,lh(π1(O),PGL(n+1,R)),
and a PGL(n+ 1,R)-equivariant fixing section sU : U → (RPn)e1 × (RPn∗)e2 . Let U ′

denote the quotient set under PGL(n+1,R). Then the following hold :

• The deformation space CDefE ,sU ,lh(O) of SPC-structures on O with generalized
lens-shaped or horospherical R- or T -ends maps under hol homeomorphically
to a union of components of

U ′ ⊂ repE ,lh(π1(O),PGL(n+1,R)).

• The deformation space SDefE ,sU ,lh(O) of SPC-structures on O with lens-shaped
or horospherical R- or T -ends maps under hol homeomorphically to the union
of components of

U ′ ⊂ repE ,lh(π1(O),PGL(n+1,R)).

Furthermore, U ′ has to be in reps
E ,lh(π1(O),PGL(n+1,R)).
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PROOF. We define C̃DefE ,lh(O) and S̃DefE ,lh(O) as above. Let Ũ be the inverse
image of U . We will show that the image of Ũ under hol in U is closed and consists of
stable irreducible characters. Now Theorem 11.3.3 implies the result.

We will prove by lifting to Sn. Using Theorem 1.1.20, let

{hi : π1(O)→ SL±(n+1,R)}

be a sequence of holonomy homomorphisms of real projective structures corresponding
to liftings of elements of Ũ . These are stable and strongly irreducible representations
by Theorem 6.0.4. Let Ωi be the sequence of associated properly convex domains in Sn,
and Ωi/hi(π1(O)) is diffeomorphic to O and has the structure that lifts an element of
CDefE ,lh(O). We assume that {hi} → h algebraically, i.e., for a fixed set of generators
g1, . . . ,gm of π1(O), {hi(g j)}→ h(g j) ∈ SL±(n+1,R) as i → ∞. The limit h is a discrete
representation by Lemma 1.1 of Goldman-Millson [92]. We will show that h is a lifted ho-
lonomy homomorphism of an element of CDefE ,lh(O), and hence h is stable and strongly
irreducible.

Here we are using the definition of convexity for Sn as given in Definition 1.1.1. Since
the Hausdorff metric space dH of compact subsets of Sn is compact, we may assume that
{Cl(Ωi)} → K for a compact convex set K by taking a subsequence if necessary as in
[54]. We take a dual domain Ω∗

i ⊂ Sn∗. Then the sequence {Cl(Ω∗
i )} also geometrically

converges to a convex compact set K∗ by Proposition 1.5.15. (See Section 1.5.4.)
Recall the classification of compact convex sets in Proposition 1.1.4. For any 1-form

α positive on the cone CK , any sufficiently close 1-form is still positive on CK . If K has
an empty interior and properly convex, then we can easily show that K∗ has a nonempty
interior. Also, if K∗ has an empty interior and properly convex, K has a nonempty interior.

(I) The first step is to show that at least one of K and K∗ has nonempty interior. We
divide into four cases (i)-(iv) where the types change for R-ends and T-ends.

(i) To begin, suppose that there exists a radial p-end Ẽ for Ωi and hi and the type
does not become horospherical. We may assume that vẼ,hi

= vẼ,h by conjugating hi by a
bounded sequence of projective automorphisms. Then the mc-p-end neighborhood must
be in K since this is true for all structures in Ωi and holonomy homomorphisms in

HomE ,lh(π1(Ẽ),SL±(n+1,R)).

For each i, hi acts on a lens-cone vẼ,hi
∗Li in Ωi for each p-end Ẽ. By Theorems 5.4.2 and

5.4.3, Li can be chosen to be the convex hull of the closure of the union of attracting fixed
sets of elements of hi(π1(Ẽ)). Hence, h is also in it, and Theorem 5.1.4 shows that there
exists a distanced compact convex set L distanced away from a point x, and the lens-cone
{vẼ,h}∗L−{vẼ,h} has a nonempty interior.

Choose an element g1 ∈ π1(Ẽ) so that h(g1) is positive bi-semi-proximal by Theo-
rem 1.3.12. Then hi(g1) is also positive bi-semi-proximal for sufficiently large i since
{hi(g1)}→ h(g1) as a sequence. We may assume that

{Ahi(g1)}→ A′
h(g1)

⊂ Ah(g1) ⊂ bdL

for attracting-fixed-point sets Ahi(g1) and Ah(g1) and a compact subset A′
h(g1)

since the lim-
its of sequences of eigenvectors are eigenvectors. Since A′

h(g1)
is a geometric limit of a

sequence compact convex sets, it is compact and convex. (See Section 1.3.2.)
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We claim that the convex hull

C H

 ⋃
q∈h(π1(Ẽ))

h(q)A′(h(g1))∪{vẼ}


has a nonempty interior: Suppose not. Then it is in a proper subspace where π1(Ẽ) acts
on. This means that π1(Ẽ) is virtually-factorizable, and Ẽ is a totally geodesic R-end by
Theorem 5.4.3. We choose another g2 with A(h(g2)) is not contained in this subspace by
Proposition 1.4.10. Again, we find A′(h(g2))⊂ A(h(g2)). Now,

C H

 ⋃
q∈h(π1(Ẽ)),g=g1,g2

h(q)A′(h(g))∪{vẼ}


is in a strictly larger subspace where h(π1(Ẽ)) acts on. By induction, we stop at certain
point, and we obtain

C H

 ⋃
q∈h(π1(Ẽ)),g=g1,...,gm

h(q)A′(h(g))∪{vẼ}


that is not contained in a proper subspace.

It is easy to show h(q)A′(h(g)) = A′(h(qgq−1)). There exists a finitely many elements
g1, . . . ,gm in π1(Ẽ) so that the attracting fixed set

C H
(
{a1, . . . ,am,vẼ,h}

)
,a j ∈ A′(h(g j))

has a nonempty interior for some choice of a j.
We have A(h j(gi))⊂ Cl(L j) for each j and i. The sequence {A(h j(gi))} accumulates

only to points of A′(h(g j)) since {h j(gi)} → h(gi). There is a sequence {ai, j}, ai, j ∈
A(h j(gi)), converging to a j ∈ A′(h(g j)) as i → ∞. Lemma 1.1.23 implies that the sequence

{C H ({a1, j, . . . ,am, j,vẼ,hi
})} in Ω j

converges to C H ({a1, . . . ,am,vẼ}) geometrically. Since Cl(Ω j)→ K as j → ∞,

C H ({a1, . . . ,am,vẼ,h})⊂ K,

by Proposition 1.1.7; thus, K has nonempty interior in the case. (i) is accomplished.
(ii) Suppose that there is a lens-shaped totally geodesic p-end Ẽ for Õ and the holo-

nomy group h(π1(Ẽ)), and the type for Ωi and hi(Ẽ) do not become horospherical. Then
the dual Ω∗

i and K∗ have a nonempty interior by above arguments since Ω∗
i has lens-shaped

R-p-ends by Corollary 5.5.7. Now, we do the argument for (i) and use the duality at the
end by Proposition 1.5.15.

(iii) Suppose that there is a lens-shaped R-p-end Ẽ for Õ and the holonomy group
h(π1(Ẽ)), and the type for Ωi and hi(Ẽ) becomes horospherical.

This will be sufficient for (I) since when lens-type T-end changes to a horospherical
R- or T -end, we can use the duality as in (ii).

We have Σ̃Ẽ,h ⊂ Sn−1
vẼ

is a complete affine space as h|π1(Ẽ) is parabolic. We have
properly convex domain or a complete affine space Σ̃Ẽ,hi

⊂ Sn−1
vẼi

. By multiplying the de-

veloping maps by a convergent sequence of elements of SL±(n+ 1,R), we may assume
vẼ = vẼi

.
Recall that the map from the deformation space of real projective structures on a closed

orbifold to the space of representations is a local homeomorphism by Theorem 9.3.10. (See
[49].) Corollary A.1.13 shows that Cl(Σ̃Ẽ,hi

)→ Σ̃Ẽ,h up to a choice of subsequences.
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Now h(π1(Ẽ)) is the algebraic limit hi(π1(Ẽ)). Then P ∩ h(π1(Ẽ)) is a lattice in a
cusp group P . We conjugate P so that it is a standard unipotent cusp group in SO(n,1)⊂
SL±(n+1,R).

We choose any great segment s j with vertex v in the direction of Σ̃Ẽ,h. We may assume
that these are all inside Σ̃Ẽ,hi

since this is true for sufficiently large i. Choose finitely many
l j, j = 1, . . . ,m, so that the directions in the convex domain Σ̃Ẽ,hi

has a convex hull with a
nonempty interior.

Suppose that

(11.3.1) {d-length(l j)}> ε for li, j := Ωi ∩ s j, j = 1, . . . ,m,

for a uniform ε > 0. Let l be the geometric limit of a subsequence {l ji} of {li} with a
nonzero d-length. Then {h ji(g)(l ji)} → h(g)(l) for g ∈ π1(Ẽ). For any finite set F ⊂
π1(Ẽ), the set

{h ji(g)(l ji)|g ∈ F}→ {h(g)(l)|g ∈ F}
geometrically. By Lemma 1.1.23, we have the geometric convergence of the sequence of
convex hulls

{C H (
⋃

g∈F

h ji(g)(l ji))}→ C H (
⋃

g∈F

h(g)(l)).

Since the later set has a nonempty interior by our assumption on d-lengths of li and
h(g),g ∈ F, is in a group conjugate to a cusp group, the convex hull

C H (h ji(π1(Ẽ ji))(s ji))⊂ Ω ji

contains a fixed open ball B for sufficiently large i. This means B ⊂ K showing (I).
Now for the final case, we suppose

(11.3.2) {d-length(l j,i)}→ 0 for l j,i := Ωi ∩ s j, j = 1, . . . ,m as i → ∞.

LEMMA 11.3.6. Let v, v= ((1,0, . . . ,0)) be a fixed point of the standard unipotent cusp
group P and let L be a lattice in P . Let H be a P-invariant hemisphere with v in the
boundary, and let l be the maximal line with endpoints v and v− perpendicular to ∂H with
respect to d. Then there exists a finite subset F of L so that the following holds:

• for any point x ∈ l and a d-perpendicular hyperspace at x bounding a closed
hemisphere Hx,

Ix :=
⋂

g∈F

g(Hx)

is a properly convex domain, and
• as x → v, the parameter {Ix} geometrically converges to {v}.

PROOF. If F is large enough, then {g(Hx)|g ∈ F} is in a general position. We choose
the affine coordinate system of Ho as in Section 7.3.1.1 where we let i0 = n.

The set of outer normal vectors of {g(∂Hx)} in the affine subspace Ho are independent
of the choice of x. Hence, as x → v, the corresponding intersection set must be contained
in any arbitrarily small ball. □

PROOF OF PROPOSITION 11.3.5 CONTINUED. We may assume vẼ,hi
= vẼ,h = v with-

out loss of generality by changing the developing map by a sequence of bounded automor-
phisms gi. Let H denote the P-invariant hemisphere containing K. We assume that Ωi ⊂H
and recall that radial p-end vertices are fixed to be v. We assume without loss of generality
that the direction of a segment l of the d-length π is in Fi always.
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Let εi be the maximum d-length of a maximal segment s′i in Ωi from v in direction of
Fi for i ≥ I. Let F′

i denote the set of endpoints of the maximal segments in Ωi in a direction
of Fi. Then {εi}→ 0 by (11.3.2). A hyperspace perpendicular to l at xi ∈ l bounds a closed
hemisphere H ′

i containing F′
i.

For δi := d(v,xi), we have {δi}→ 0

since otherwise (11.3.1) does not hold. By Lemma 11.3.6, there is a finite set F ⊂ π1(Ẽ)
so that

K̂i :=
⋂

g∈F

h j(g)(H ′
i )∩H

is properly convex for sufficiently large j since {h j(g)}→ h(g),g ∈ F . This set K̂i contains
Cl(Ωi) since H ′

i ⊃ Cl(Ωi).
As {xi}→ v and {g(x′i)}→ v,g ∈ F , it follows that {K̂i}→ {v}: We just need to show

that {hi(g)(∂H ′
i )},g ∈ F, are uniformly bounded away from that of ∂H and ∂H ′

i under the
Hausdorff metric dH . Since {hi(g)(∂H ′

i )} for each g ∈ F geometrically converges to to
h(g)(∂H ′

i ), we are done by Lemma 11.3.6.
Therefore, we conclude that K is a singleton.
By Proposition 1.5.15, {Ω∗

i } geometrically converges to K∗ dual to K as i → ∞. (See
1.5.4.) In case, K is a singleton, K∗ must be a hemisphere by Proposition 1.5.13. We now
conclude that K or its dual K∗ has a nonempty interior.

Thus, by choosing h∗i and h∗ if necessary, we may assume without loss of generality
that K has a nonempty interior. We will show that K is a properly convex domain and this
implies that so is K∗.

(II) The second step is to show K is properly convex.
Assume that h(π1(O)) acts on a convex open domain Ko. We may assume that Ko ⊂A

for an affine subspace A and Ωi ⊂ A as well by acting by an orthogonal κi ∈ O(n+1,R),
where {κi} is converging to I. We can accomplish this by moving Ωi into A. Since {κi}→
I, we still have {Cl(Ωi)} → K by Lemma 1.1.8. Take a ball B2C of d-radius 2C, C > 0, in
K. By Lemma 1.1.10, A contains a d-radius C ball BC ⊂ Ωi for sufficiently large i. Without
loss of generality assume BC ⊂ Ωi for all i. Choose the d-center x0 of BC as the origin in
the affine coordinates.

Let g1, . . . ,gm denote the set of generator of π1(O). Then by extracting subsequences,
we may assume without loss of generality that {hi(g j)} converges to h(g j) for each j =
1, . . . ,m.

LEMMA 11.3.7. For each g j, j = 1, . . . ,m,

(11.3.3) d(hi(g j)(x0),bdΩi)≥C0 for a uniform constant C0.

PROOF. Suppose not. Then there is a sequence of a d-length constant C segment si,
si ⊂ Ωi, with an origin x0 is sent to the segment hi(g j)(si) in Ωi with endpoint hi(g j)(x0)
and lying on the shortest d-length segment from hi(g j)(x0) to bdΩi. Thus, the sequence
of the d-length of hi(g j)(si) is going to zero. This implies that hi(g j) is not in a compact
subset of SL±(n+1,R), a contradiction. □

PROOF OF PROPOSITION 11.3.5 CONTINUED. By estimation from (11.3.3), and the
cross-ratio expression of the Hilbert metric, a uniform constant C satisfies

(11.3.4) dÕi
(x0,hi(g j)(x0))<C.
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By Benzécri [25] (see Proposition 4.3.8 of Goldman [86]), there exists a constant RB > 1
and τi ∈ SL±(n+1,R) so that

B1 ⊂ τi(Ωi)⊂ BRB .

Now, τihi(π1(O))τ−1
i acts on τi(Ωi). By Theorem 7.1 of Cooper-Long-Tillmann [67], we

obtain that τihi(g j)τ
−1
i for j = 1, . . . ,n are in a compact subset of SL±(n+1,R) indepen-

dent of i.
Therefore, up to choosing subsequences, we have {τi(Ωi)} geometrically converges

to a properly convex domain K̂ in BR containing B1 and

{τih(·)τ−1
i : π1(O)→ SL±(n+1,R)}

algebraically converges to a holonomy homomorphism

h′ : π1(O)→ SL±(n+1,R).
And the image of h′ acts on the interior of the properly convex domain K̂.

Suppose that the sequence {τi} is not bounded. Then τi = kidik′i where di is diagonal
with respect to a standard basis of Rn+1 and ki,k′i ∈O(n+1,R) by the KTK-decomposition
of SL±(n+1,R). Then the sequence of the maximum modulus of the eigenvalues of di are
not bounded above. We assume without loss of generality

{ki}→ k,{k′i}→ k′ in O(n+1,R).

Thus, {k′ihi(g j)k−1
i } converges to k′h(g j)k−1 for k′ ∈ O(n+1,R). Since

{kidik′ihi(g j)k′−1d−1
i k−1

i }
is convergent to h′(g j), we obtain

{dik′ihi(g j)k′−1
i d−1

i }→ k−1h′(g j)k for each j.

Thus, {dik′ihi(π1(O))k′−1
i d−1

i } converges algebraically to a group kh′(π1(O))k−1 acting
on k−1(K̂).

Since the sequence of the norms of di is divergent, kh′(π1(O))k−1 is reducible: We
may assume up to a choice of subsequence and a change of coordinates that the diagonal
entries of di satisfy

di,1 ≥ di,2 ≥ ·· · ≥ di,n+1.

Up to a choice of subsequences, there is j so that di,k/di, j ≥ 1 for k ≤ j and {di,k/di, j}→ 0
for k > j. Then {dik′ih(π1(O)k′−1

i d−1
i } being a bounded sequence converges to a matrix

with entries at (k+1, . . . ,n+1)× (1, . . . ,k) are identically zero. (Compare to the proof of
Lemma 1 of [49].)

By Lemma 11.3.1, k−1(K̂)o/kh′(π1(O))k−1 is a strongly tame SPC-orbifold with
horospherical or generalized lens-shaped ends.

By Theorem 6.0.4, the algebraic limit of

{dik′ih(π1(O)k′−1
i d−1

i }
cannot be reducible. Therefore the sequence of the norms of di is uniformly bounded. This
is a contradiction to the unboundedness of τi.

By Lemma 11.3.1, we obtain that Oh := K̂o/h(π1(O)) is a strongly tame SPC-orbifold
with generalized lens-shaped or horospherical R- or T -ends diffeomorphic to O . This
completes the proof for Ũ ⊂ ˜CDefE ,lh(O).

To prove for SDefE ,lh(O), we need additionally Theorems 10.3.1 and 10.3.4 as in
the last paragraph of the proof of Theorem 11.3.3. This completes the proof of Corollary
11.3.5. □
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11.4. General cases without the uniqueness condition: The proof of Theorem 11.1.4.

We will construct a section by the following. Let

HomE ,lh(π1(Ẽ),PGL(n+1,R)) (resp. HomE ,lh(π1(Ẽ),SL±(n+1,R)))
denote the space of representations h fixing a common fixed point p and acting on a lens L
of a lens-cone of form {p}∗L with p ̸∈ Cl(L) or is horospherical with a fixed point p.

Let

HomE ,lh(π1(Ẽ),PGL(n+1,R)) (resp. HomE ,lh(π1(Ẽ),SL±(n+1,R)))
denote the space of representations where h(π1(Ẽ)) for each element h acts on P satisfying
the lens-condition or acts on a horosphere tangent to P. (See Section 9.2.)

We define the sections

sR : HomE ,lh(π1(Ẽ),PGL(n+1,R))→ RPn,

sT : HomE ,lh(π1(Ẽ),PGL(n+1,R))→ RPn∗

(
resp. sR : HomE ,lh(π1(Ẽ),SL±(n+1,R))→ Sn,

sT : HomE ,lh(π1(Ẽ),SL±(n+1,R))→ Sn∗)
by Propositions 5.4.4 and 5.4.5.

PROPOSITION 11.4.1. The maps sR and sT for RPn and RPn∗ (resp. Sn and Sn∗) are
both continuous.

PROOF. We will only prove for RPn. The version for Sn is obvious. Let h be an el-
ement of HomE ,ce,p(π1(Ẽ),PGL(n+ 1,R)). The vertex of a lens-cone is a common fixed
point of all h(π1(Ẽ)). Let F be the set of generators of π1(Ẽ) so that {v} = {w|g(w) =
w,g ∈ F}. Otherwise, we will have a line of fixed points for ΓE and we obtain a con-
tradiction as in the proof of Proposition 5.4.4. Hence, the holonomies of elements of F
determine the vertex. The continuity follows by a sequence argument.

For sT , we take the dual by by Proposition 5.5.5 and prove the continuity. □

LEMMA 11.4.2. We can construct the uniqueness section of lens-type

s : HomE ,lh(π1(O),PGL(n+1,R))→ (RPn)e1 × (RPn∗)e2

PROOF. We can always choose a vertex and the hyperspace by Propositions 5.4.4 and
5.4.5. s is continuous by Proposition 11.4.1. □

PROOF OF THEOREM 11.1.4. Using the uniqueness section of lens-type, we apply
Corollary 11.3.5. □





CHAPTER 12

Nicest cases
This is a chapter now.

We will now present the cases when the theory presented in this monograph works
best.

In Section 12.1, we will discuss the results where the results of this monograph applies.
In Section 12.2, we will end with two examples where the results applies.

12.1. Main results

Let us start with an example:

EXAMPLE 12.1.1. Let M be a complete hyperbolic 3-orbifold and each end orbifold
has a sphere or a disk as the base space. The end fundamental group is generated by a finite
order elements. By Lemma 12.1.2, a properly convex real projective structure on M has
lens-shaped or horospherical radial ends only.

We need the end classification results from Chapters 3, 5, and 7 to prove the following.
Let g ∈ π1(O). Using the choice of representing matrix of g as in Remark 1.1.5, we let
λx(g) denote the eigenvalue of holonomy of g associated with the vector in direction of x
if x is a fixed point of g.

The holonomy group of π1(O) can be lifted to SL±(n+ 1,R) so that λvẼ
(g) = 1 for

the holonomy of every g ∈ π1(Ẽ) where vẼ is a p-end vertex of a p-end Ẽ corresponding
to E. Then we say that E or Ẽ satisfies the unit-middle-eigenvalue condition with respect
to vẼ or the R-p-end structure.

Suppose that E is a T -end. If the hyperspace containing the ideal boundary component
S̃Ẽ of p-end Ẽ of E corresponds to 1 as the eigenvalue of the dual of the holonomy of every
g ∈ π1(Ẽ), then we say we say that E or Ẽ satisfies the unit middle eigenvalue condition
with respect to S̃Ẽ or the T-p-end structure.

LEMMA 12.1.2. Suppose that O is a strongly tame convex real projective orbifold
with radial ends. Assume that the end fundamental group π1(E) of an end E satisfies (NS).
Let E be an R-end, or is a T -end. Suppose that one of the following holds:

• π1(E) is virtually generated by finite order elements or is simple, or
• the end holonomy group of E satisfies the unit middle eigenvalue condition.

Then the following hold:
• the end E is either a properly convex generalized lens-shaped R-end or a lens-

shaped T-end, or is horospherical.
• If the end E furthermore has a virtually abelian end holonomy group, then E is

a lens-shaped R-end, a lens-shaped T-end, or is a horospherical end.

PROOF. We suppose that Õ is a convex domain in of Sn. First, let E be an R-end. The
map

g ∈ ΓẼ 7→ λvẼ
(g) ∈ R+

305
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is a homomorphism. Thus, λvẼ
(g) = 1 for g ∈ ΓẼ since the end holonomy group is simple

or virtually generated by the finite order elements.
Each R-end is either complete, properly convex, or is convex but not properly convex

and not complete by Section 3.1.6.
Suppose that Ẽ is complete. Then Theorem 8.1.4 shows that either Ẽ is horospheri-

cal or each element g, g ∈ π1(Ẽ) has at most two norms of eigenvalues where two norms
for an element are realized. Since the multiplication of all eigenvalues equals 1, we ob-
tain λ

n+1−r
1 (g)λvẼ

(g)r = 1 for some integer r,1 ≤ r ≤ n and the other norm λ1(g) of the
eigenvalues. The second case cannot happen.

Suppose that Ẽ is properly convex. Then the uniform middle eigenvalue condition
holds by Remark 5.3.2 since λvẼ

(g) = 1 for all g. (See Definition 5.1.2.) By Theorem
5.1.5, Ẽ is of generalized lens-type.

Finally, Corollary 8.2.2 rules out the case when Ẽ is convex but not properly convex
and not complete.

Now, let E be a T-end. By dualizing the above, E satisfies the uniform middle eigen-
value condition (see Definition 5.1.3). Theorem 5.5.4 implies the result. [SnS] □

THEOREM 12.1.3. Suppose that O is a strongly tame properly convex real projective
orbifold with R-ends or T-ends. Suppose that each end fundamental group satisfies prop-
erty (NS) and is virtually generated by finite order elements, or is simple or satisfies the
unit middle eigenvalue condition. Then the holonomy is in

Homs
E ,u,lh(π1(O),PGL(n+1,R)).

PROOF. Suppose that E is an R-end. Let Ẽ be a p-end corresponding to E and vẼ be
the p-end vertex. By Lemma 12.1.2, we obtain the R-end is lens-type or horospherical.

We prove the uniqueness of the fixed point under h(π1(Ẽ)): Suppose that x is another
fixed point of h(π1(Ẽ)). Since π1(Ẽ) is as in the premise, the eigenvalue λx(g) for every g∈
π1(Ẽ) associated with x is always 1. In the horospherical case x = vẼ since the cocompact
lattice action on a cusp group fixes a unique point in RPn.

Now consider the lens case. The uniform middle eigenvalue condition with respect to
vẼ and x holds by Remark 5.3.2 since λx(g) = 1 for all g. Lemma 12.1.2 shows that π1(Ẽ)
acts on a lens-cone with vertex at x. Proposition 5.4.4 implies the uniqueness of the p-end
vertex.

Suppose that E is a T -end. The proof of Proposition 5.5.1 shows that the hyperspace
containing S̃Ẽ corresponds to vẼ∗ for the R-p-end Ẽ∗ corresponding to the dual of the T-p-
end Ẽ and vice verse. Hence, the result follows from the R-end part of the proof. □

This was proved by Marquis in Theorem A of [127] when the orbifold is a Coxeter
one.

Theorems 12.1.3, 11.0.8, and 6.0.4 imply the following:

COROLLARY 12.1.4. Let O be a noncompact strongly tame SPC n-dimensional orb-
ifold with R-ends and T-ends and satisfies (IE) and (NA). Suppose that each end fundamen-
tal group is generated by finite order elements or is simple. Suppose each end fundamental
group satisfies (NS). Assume ∂O = /0, and that the nilpotent normal subgroups of every
finite-index subgroup of π1(O) are trivial. Then

CDefE (O) = CDefE ,u,lh(O)
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and hol maps the deformation space CDefE (O) of SPC-structures on O homeomorphic to
a union of components of

reps
E ,u,lh(π1(O),PGL(n+1,R))

which is also a union of components of

repE ,u,lh(π1(O),PGL(n+1,R)) and repE (π1(O),PGL(n+1,R)).

The same can be said for
SDefE (O) = SDefE ,u,lh(O).

These type of deformations from structures with cusps to ones with lens-shaped ends
are realized in our main examples as stated in Section 2.2. We need the restrictions on the
target space since the convexity of O is not preserved under the hyperbolic Dehn surgery
deformations of Thurston, as pointed out by Cooper at ICERM in September 2013.

Virtually abelian groups satisfy (NS) clearly. Since finite-volume hyperbolic n-orbifolds
satisfy (IE) and (NA) (see P.151 of [124] for example), strongly tame properly convex
orbifolds admitting complete hyperbolic structures end fundamental groups generated by
finite order elements will satisfy the premise. Hence, 2h 1 1 and the double of the simplex
orbifold discussed in Section 12.2 do also.

Since Coxeter orbifolds satisfy the above properties, we obtain a simple case:

COROLLARY 12.1.5. Let O be a strongly tame Coxeter n-dimensional orbifold, n≥ 3,
with only R-ends. admitting a finite-volume complete hyperbolic structure. Then

SDefE ,u,lh(O)

is homeomorphic to a union of components of

reps
E ,u,lh(π1(O),PGL(n+1,R))

which is also a union of components of

repE (π1(O),PGL(n+1,R))

Finally,
SDefE ,u,lh(O) = SDefE (O).

12.2. Two specific examples

The example of S. Tillmann is an orbifold on a 3-sphere with singularity consisting of
two unknotted circles linking each other only once under a projection to a 2-plane and a
segment connecting the circles (looking like a linked handcuff) with vertices removed and
all arcs given as local groups the cyclic groups of order three. (See Figure 1.) This is one
of the simplest hyperbolic orbifolds in the list of Heard, Hodgson, Martelli, and Petronio
[97] labeled 2h 1 1. The orbifold admits a complete hyperbolic structure since we can start
from a complete hyperbolic tetrahedron with four dihedral angles equal to π/6 and two
equal to 2π/3 at a pair of opposite edge e1 and e2. Then we glue two faces adjacent to ei
by an isometry fixing ei for i = 1,2. The end orbifolds are two 2-spheres with three cone
points of orders equal to 3 respectively. These end orbifolds always have induced convex
real projective structures in dimension 2, and real projective structures on them have to
be convex. Each of these is either the quotient of a properly convex open triangle or a
complete affine plane as we saw in Lemma 12.1.2.

Porti and Tillmann [139] found a two-dimensional solution set from the complete hy-
perbolic structure by explicit computations. Their main questions are the preservation of
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3

3
3

FIGURE 1. Handcuff orbifold.

FIGURE 2. A convex developing image example of a tetrahedral orb-
ifold of orders 3,3,3,3,3,3.

convexity and realizability as convex real projective structures on the orbifold. Corol-
lary 12.1.4 answers this since their deformation space identifies with SDefE ,u,lh(O) =
SDefE (O).

Another main example can be obtained by doubling a complete hyperbolic Coxeter
orbifold based on a convex polytope. We take a double DT of the reflection orbifold based
on a convex tetrahedron with orders all equal to 3. This also admits a complete hyperbolic
structure since we can take the two tetrahedra to be the regular complete hyperbolic tetra-
hedra and glue them by hyperbolic isometries. The end orbifolds are four 2-spheres with
three singular points of orders 3. Topologically, this is a 3-sphere with four points removed
and six edges connecting them all given order 3 cyclic groups as local groups.
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THEOREM 12.2.1. Let O denote the hyperbolic 3-orbifold DT . We assign the R-
type to each end. Then SDefE (O) equals SDefE ,u,lh(O) and hol maps SDefE (O) as an
onto-map to a component of characters

repE (π1(O),PGL(4,R))

containing a hyperbolic representation which is also a component of

repE ,u,lh(π1(O),PGL(4,R)).

In this case, the component is a cell of dimension 4.

PROOF. A solvable subgroup of PSO(n,1) fixes a point of the boundary of the Klein
ball model B. Since π1(O) is not elementary, a finite-index subgroup of π1(O) has only
trivial normal solvable subgroups. The end orbifolds have zero Euler characteristics, and
all the singularities are of order 3. For each end E, π1(E) is virtually abelian. Hence, π1(E)
satisfies (NS).

Since O admits a complete hyperbolic structure with finite volume, π1(O) is relatively
hyperbolic with respect to its end fundamental groups. (This follows from Theorem 0.1
of Yaman [157] since the group acts on the sphere of infinity of the hyperbolic 3-space
accordingly. ) By Corollary 10.3.7, any properly convex structures on O with R- or T -
ends are strictly convex. By Corollary 12.1.4, SDefE (O) equals SDefE ,u,lh(O). Each of
the ends has to be either horospherical or lens-shaped or totally geodesic radial type. Let
∂E O denote the union of end orbifolds of O .

In [48], we showed that the triangulated real projective structures on the ends deter-
mined the real projective structure on O . First, there is a map SDefE (O)→ CDef(∂E O)
given by sending the real projective structures on O to the real projective structures of the
ends. (Here if ∂E O has many components, then CDef(∂E O) is the product space of the
deformation space of all components.) Let J be the image.

Let µ be a projective structure corresponding to an element of SDefE (O). The uni-
versal cover Õ is identified to a properly convex domain in S3. Each singular geodesic arc
in Õ connects one of the p-end vertices to the another. The developing image of Õ is a
convex open domain and the developing map is a diffeomorphism. The developing images
of singular geodesic arcs form geodesics meeting at vertices transversely. There exists two
convex tetrahedra T1 and T2 with vertices removed from which decomposes Õ . They are
adjacent and their images under π1(O) tessellate Õ .

The end orbifold is so that if given an element of the deformation space, then the
geodesic triangulation is uniquely obtained. Hence, there is a proper map from SDefE (O)
to the space of invariants of the triangulations as in [48], i.e., the product space of cross-
ratios and Goldman-invariant spaces.

Now O is the orbifold obtained from doubling a tetrahedron with edge orders 3,3,3.
We consider an element of SDefE (O). Since it is convex, we triangulate O into two
tetrahedra, and this gives a triangulation for each end orbifold diffeomorphic to S(i)3,3,3,
i = 1,2,3,4, corresponding to four ends, each of which gives us triangulations into two
triangles. We can derive from the result of Goldman [88] and Choi-Goldman [55] that
given projective invariants ρ

(i)
1 ,ρ

(i)
2 ,ρ

(i)
2 ,σ

(i)
1 ,σ

(i)
2 for each of the two triangles satisfying

ρ
(i)
1 ρ

(i)
2 ρ

(i)
3 = σ

(i)
1 σ

(i)
2 , we can determine the structure on S(i)3,3,3 for i = 1,2,3,4 completely.

For each S(i)3,3,3 with a convex real projective structure and divided into two geodesic

triangles, we compute respective invariants ρ
(i)
1 ,ρ

(i)
2 ,ρ

(i)
2 ,σ

(i)
1 ,σ

(i)
2 for one of the triangles
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corresponding to the link of T1:

s2
i + sτ +1,s2

i + siτ +1,s2
i + siτ +1,

ti
(
s2

i + siτ +1
)
, 1

ti

(
s2

i + siτ +1
)(

s2
i + siτ +1

)
(12.2.1)

and for the other triangle corresponding to the link of T2 the respective invariants are

1
s2
i
(s2

i + siτ +1),
1
s2

i
(s2

i + siτ +1),
1
s2

i
(s2

i + siτ +1),

ti
s3
i

(
s2

i + siτ +1
)
,

1
s3

i ti

(
s2

i + siτ +1
)(

s2
i + siτ +1

)
(12.2.2)

where si, ti, i = 1,2,3,4, are Goldman parameters and τ = 2cos2π/3. (See [38].)
Since ∂E O is a disjoint union of four spheres with singularities (3,3,3), CDef(∂E O)

is parameterized by si, ti and hence is a cell of dimension 8. (This can be proved similarly
to [56].)

The set J is given by projective invariants of the (3,3,3) boundary orbifolds satisfying
some equations. By the method of [48] developed by the author, we obtain the equations
that J satisfies. These are

s2
i + siτ +1 = s2

j + s jτ +1, i, j = 1,2,3,4
1
s2

i
(s2

i + siτ +1) =
1
s2

j
(s2

j + siτ +1), i, j = 1,2,3,4

t1t2t3t4
4

∏
i=1

(
s2

i + siτ +1
)
=

1
t1t2t3t4

4

∏
i=1

(
s2

i + siτ +1
)2

4

∏
i=1

ti
s3

i

(
s2

i + siτ +1
)
=

4

∏
i=1

1
s3

i ti

(
s2

i + siτ +1
)2
.

The first and second lines of equations are from matching the cross ratios ρ
(i)
l with ρ

( j)
l for

any pair i, j corresponding to an edge connecting the i-th vertex to the j-vertex in DT and
four faces containing the edge. (See (5) of [48]). The third and fourth lines of equations are
from the equations matching the products ∏

4
i=1 σ

(i)
1 = ∏

4
i=1 σ

(i)
2 for T1 and T2 respectively.

The equation is solvable:

s1 = s2 = s3 = s4 = s, t1t2t3t4 =C(s) for a constant C(s)> 0 depending on s.

Thus J is contained in the solution subspace C, a 4-dimensional cell in CDef(∂E O).
Conversely, given an element of C, we can assign invariants at each edge of the tetra-

hedron and the Goldman σ -invariants at the vertices if the invariants satisfy the equations.
This is given by starting from the first convex tetrahedron and gluing one by one using
the projective invariants (see [48] and [42]): Let the first one by always be the standard
tetrahedron with vertices

[1,0,0,0], [0,1,0,0], [0,0,1,0], and [0,0,0,1]

and we let T2 a fixed adjacent tetrahedron with vertices

[1,0,0,0], [0,1,0,0], [0,0,1,0] and [2,2,2,−1].

Then projective invariants will determine all other tetrahedron triangulating Õ . Given any
deck transformation γ , T1 and γ(T1) will be connected by a sequence of tetrahedrons re-
lated by adjacency, and their pasting maps are wholly determined by the projective invari-
ants, where cross-ratios do not equal 0. Therefore, as long as the projective invariants are
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bounded, the holonomy transformations of the generators are bounded. Corollary 12.1.5
shows that these corresponds to elements of SDefE ,u,lh(O) = SDefE (O). (This method
was spoken about in our talk in Melbourne, May 18, 2009 [42].) Hence, we showed that
SDefE ,u,lh(O) is parameterized by the solution set C. Thus J =C since each element of C
gives us an element of SDefE (O). [SnS] □

The dimension is one higher than that of the deformation space of the reflection 3-
orbifold based on the tetrahedron. Thus we have examples not arising from reflection ones
here as well. See the Mathematica files [39] for a different explicit method of solutions.
Also, see [41] to see how to draw Figure 2.

We remark that the above theorem can be generalized to orders ≥ 3 with hyperideal
ends with similar computations. See [39] for examples to modify orders and so on.





APPENDIX A

Projective abelian group actions on convex domains

We will explore some theories of projective abelian group actions on convex domains,
which is not necessarily properly convex. In Section A.1.1, we show that a free abelian
group action decomposes the space into joins. In Section A.1.2, we discuss convex pro-
jective orbifolds with free abelian holonomy groups. In Lemma A.1.6, we will show a
decomposition similar to the Benoist decomposition for the divisible projective actions on
properly convex domains. We also show that a parameter of orbits of free abelian groups
geometrically converges to an orbit in Lemma A.1.7. In Section A.1.3, we will show that
such actions always immediately deform to the abelian group actions on properly convex
domains. In Section A.1.4, we prove geometric convergences of convex real projective
orbifolds slightly more general than that explored by Benoist. In Section A.2, we give
some justification of why we are using the weak middle eigenvalue conditions.

A.1. Convex real projective orbifolds

We will explore a class of convex real projective orbifolds a little bit more general
than the properly convex ones. Also see Leitner [119], [118], and [120] for a similar
work, where she explores representations of abelian groups; however, these do not act
cocompactly on convex domains.

For our purposes in the monograph, we will mostly work on Sn−1 but sometimes with
RPn−1.

Recall the Cartan decomposition SL±(n,R) = KT K where K = O(n,R) and T is the
group of positive diagonal matrices. Note that the endomorphisms in Mn(R) may have null
spaces.

A Cartan decomposition g = k1,gAgk2,g for k1,g,k2,g ∈ O(n,R) and a diagonal matrix
Ag with nonnegative nonincreading set of diagonals for each element g of Mn(R) exists
since each element is a limit of elements of GL(n,R) admitting a Cartan decomposition.

Each induced projective endomorphism g for Sn−1 may have a nonempty subspace
Vg where it is not defined. We call the projectivization of the null space the undefined
subspace of g. It could be an empty set.

Let Ng be the projectivization of the null space of Ag. Then Vg := k−1
2,gNg is the unde-

fined subspace of f .
Let Mg be the matrix of g written as k1,gÂgk2,g where Âg is the diagonal matrix with

the maximal entry being 1. We call this the normalization of g.
Use the Riemannian metric of Sn−1 to compute the norms of differentials. We will call

these d-norms.

A.1.1. A connected free abelian group with positive eigenvalues only. Recall that
for a matrix A, we denote by |A| the maximum of the norms of entries of A.

We can deform the unipotent abelian representation to diagonalizable ones that are
arbitrarily close to the original one.

313
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LEMMA A.1.1. Let h : Zl → SL±(n,R) be a representation to unipotent elements. Let
g1, . . . ,gl denote the generators. Then given ε > 0 there exists a positive diagonalizable
representation h′ :Zl → SL±(n,R) with matrices satisfying |h′(gi)−h(gi)|< ε, i= 1, . . . , l.
Furthermore, we may choose a continuous parameter of h′t so that h′0 = h and h′t is positive
diagonalizable for t > 0.

PROOF. First assume that every h(gi), i = 1, . . . , l, has matrices that are upper trian-
gular matrices with diagonal elements equal to 1 since the Zariski closure is in a nilpotent
Lie group and Theorem 3.5.4 of [150].

Let ε > 0 be given. We will inductively prove that we can find h′ as above with
eigenvalues of h′(g1) are all positive and mutually distinct. For n = 2, we can simply
change the diagonal elements to positive numbers not equal to 1. Then the group embeds in
Aff(R1). We choose positive constant ai so that |ai−1|< ε . Let gi be given as x 7→ aix+bi.
The commutativity reduces to equations a jbi = aib j for all i, j. Then the solution are given
by bi = a−1

1 aib1 for any given b1. We can construct the diagonalizable representations.
Suppose that the conclusion is true for dimension k − 1. We will now consider a

unipotent homomorphism h : Zl → SL±(k,R). We conjugate so that every h(gi) is upper-
triangular. Since h(gi) is upper triangular, let h1(gi) denote the upper-left (k−1)×(k−1)-
matrix. By the induction hypothesis, we find a positive diagonalizable representation h′1 :
Zl → SL±(k−1,R). Also assume |h′1(gi)−h1(gi)|< ε/2 for i = 1, . . . , l. We change

h(gi) =

 h1(gi) b(gi)

0 1

 to h′(gi) =

 1

λ ′(gi)
1

k−1
h′1(gi) b′(gi)

0 λ ′(gi)


for some choice of h′1(g),b

′(g),λ ′(gi) > 0 for i, j = 1, . . . , l. For commutativity, we need
to solve for b′(gi) for i, j = 1, . . . , l,(

1

λ ′(gi)
1

k−1
h′1(gi)−λ

′(g j)I

)
b′(g j) =

(
1

λ ′(g j)
1

k−1
h′1(g j)−λ

′(gi)I

)
b′(gi).

We denote by

Mi :=

(
1

λ ′(gi)
1

k−1
h′1(gi)−λ

′(g j)I

)
.

Note MiM j = MiM j. By generic choice of λ ′(gi)s, we may assume that Mi are invertible.
The solution is given by

b′(gi) = M(g1)
−1M(gi)b′(g1)

for an arbitrary choices of b′(g1). We choose b′(g1) arbitrarily near b(g1). Here, λ (g1) has
to be chosen generically to make all the eigenvalues distinct and sufficiently near 1 so that
|h′(gi)−h(gi)| < ε , i = 1, . . . , l. We can check the solution by the commutativity. Hence,
we complete the induction steps.

To find a parameter denoted h′t , we simply repeat the induction process building a
parameter of h′t . □

LEMMA A.1.2. Let L be a connected projective abelian group acting on a properly
convex domain K cocompactly and faithfully. Then L is positive diagonal and the domain
is a simplex.

PROOF. L contains a cocompact lattice L′. By the Hilbert metric of Ko, L′ acts prop-
erly discontinuously on Ko. Proposition 1.4.10 applies now. Since L is the Zariski closure
of positive diagonalizable L′, we are done. □
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Let us fix g ∈ A,g ̸= I. The minimal polynomial of g is of form ∏
m
i=1(x−λi) where

each nonreal λi pairs with exactly one other λ j equal to λ̄i. We can write it as

(A.1.1) (x−λ1)
r1 · · ·(x−λs)

rs
(m−s)/2−1

∏
t=0

(x2 −2ℜλs+2t+1x−|λs+2t+1|2)rs+2t+1 .

We define a primary decomposition subspace Ci to be the kernel of

Mi(g) := (g−λiI)ri for i = 1, . . . ,s

and Ct to be the kernel of

Ms+2t+1(g) := (g2 −2ℜλs+2t+1x−|λs+2t+1|2I)rs+2t+1 for t = 0, . . . ,(m− s)/2−1.

(See [101].)

LEMMA A.1.3. Let g ∈ SL±(n+1,R) be a nonidentity element.
• Given a primary decomposition space Ci of g, we have hCi =Ci for any h com-

muting with g.
• Given a primary decomposition subspace C of g and D of h for g,h ̸= I, C∩D

are both h and g invariant provided h and g commute with each other.
• Given a free abelian group A of finite-rank, there exists a maximal collection of

invariant subspaces

C1, . . . ,Cm satisfying Rn+1 =C1 ⊕·· ·⊕Cm

where each C j is g-invariant in a primary decomposition space of every g, g ∈ A.

PROOF. Corollary to Theorem 12 of Section 6.8 in [101] implies the first statement.
Let g1, . . . ,gk denote the generators of A. We obtain C1, . . . ,Cm by taking a primary decom-
position space Ci, j for g j and taking intersections of the arbitrary collections of Ci, j for all
i, j. □

A scalar group is a group acting by sI for s ∈ R and s > 0. A scalar unipotent group
is a subgroup of the product of a scalar group with a unipotent group. Hence, on each A|Ci
is a scalar unipotent group for each i.

LEMMA A.1.4. Let A be a connected free abelian group acting on Rn with positive
eigenvalues only. Then there exists a decomposition Rn =V0 ⊕V1 ⊕·· ·⊕Vm where A acts
as a positive diagonalizable group on V0 and acts as a positive scalar unipotent group on
each Vi for 1 ≤ i ≤ m.

PROOF. We obtain C1, . . . ,Cm by Lemma A.1.3. On Ci, A acts as a scalar group acting
on a one-dimensional space or a scalar unipotent group since the corresponding factor of
the minimal polynomial is (x−λiI)ri . □

PROPOSITION A.1.5. Suppose that Γ is a discrete free abelian group whose Zariski
closure is A. Suppose that elements of Γ have only positive eigenvalues. Then A/Γ is
compact.

PROOF. By Lemma A.1.4, there is a decomposition Rn =V0 ⊕V1 ⊕·· ·⊕Vm where A
acts as a positive diagonalizable group on V0 and acts as a positive scalar unipotent group
on each Vi for 1 ≤ i ≤ m.

Let q= dimV0. Let x1(g), . . . ,xq(g) denote eigenvalues of g, g∈A, for V0 and xq+1(g), . . . ,xq+m(g)
denote respective ones for V1, . . . ,Vm. Let D be a positive diagonalizable group acting as
a scalar group on each V1, . . . ,Vm and positive diagonalizable group on V0 defined as a
subgroup of Rq+m

+ given by the equation x1(g) · · ·xq+m(g) = 1
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There is a homomorphism c : A → D given by sending g to the tuples of eigenvalues
respectively associated with V0 and Vi for i = 1, . . . ,m. Then Γ has a cocompact image in
c(A) under c since c(A) is a connected diagonalizable group that is a Zariski closure of
c(Γ) and c is continuous.

Let K be the kernel of c : A → D which is an algebraic group. This is a unipotent
subgroup of A and contains K∩Γ. Let K1 be the Zariski closure of K∩Γ in K. Since K∩Γ

is normal in Γ, and K1 is the minimal algebraic group containing K ∩Γ, K1 is normalized
by Γ and hence by A.

If K1 is a proper subgroup of K, then there is a proper algebraic subgroup of A con-
taining Γ since A is a product of K and a group isomorphic to c(A). This is a contradiction.

Since K is unipotent, K ∩Γ is cocompact in K. Hence, Γ is cocompact in A. □

A.1.2. Convex real projective structures. One can think of the following lemma
as a classification of convex real projective orbifolds with abelian fundamental groups.
Benoist [16], [19] investigated these in a more general setting.

LEMMA A.1.6. Let Γ be a finitely generated free abelian group acting on a convex
domain Ω of Sn−1 (resp. RPn−1 ) properly and cocompactly. Then the following hold:

(i) the Zariski closure L of a finite index subgroup Γ′ of Γ is so that L/Γ′ is compact,
and L has only positive eigenvalues (resp. a lift of L to SL±(n,R) has ).

(ii) Ω is an orbit of the abelian Lie group L acting properly and freely on it.
(iii) Ω = (A1 ∗ · · · ∗Ap ∗ {p1} ∗ · · · ∗ {pq})o for a complete affine subspace Ai, i =

1, . . . , p, and points p j, j = 1, . . . ,q. Here, ⟨A1⟩, . . . ,⟨Ap⟩, p1, . . . , pq are indepen-
dent.

(iv) L contains a central Lie subgroup Q of rank p+q−1 acting trivially on A j and
pk for j = 1, . . . , p,k = 1, . . . ,q.

PROOF. We will prove for the case Ω ⊂ Sn−1. The other case is implied by this. If Ω

is properly convex, then Proposition 1.4.10 gives us a diagonal matrix group L acting on a
simplex. (i) to (iv) follow in this case.

(i) Assume that Ω is not properly convex.
Now, Γ has no invariant lower-dimensional subspace P meeting Ω: otherwise, Γ acts

on P∩Ω properly so that P∩Ω/Γ is virtually homeomorphic to a lower-dimensional man-
ifold homotopy equivalent to a cover of Ω/Γ by Theorem 1.1.19. This is a contradiction.

The positivity of the eigenvalue will be proved: Let C1, . . . ,Cp+q denote the subspaces
of Γ obtained by Lemma A.1.3 where dimC1, ...,dimCp ≥ 2,dimCp+1 = · · ·= dimCp+q =
1. We also denote C j = {p j−p} for j = p+ 1, . . . , p+ q. Let λ1(g), . . . ,λp(g) denote the
norms of eigenvalues of each element g of L restricted to C1, . . . ,Cp of dimension ≥ 2
respectively. The eigenvalues associated with Cp+1, . . . ,Cp+q of dimension 1 are clearly
positive.

Define
Ŝ j := S(C1)∗ · · · ∗S(C j)∗S(C j+1)∗ · · · ∗S(Cp).

Since L acts transitively on Ω,
Ω∩ Ŝ j = /0.

Let
Π j : Sn−1 − Ŝ j → S(C j), j = 1, . . . , p

denote the projection. Consider Ω j denote the image under Πi. The image is a convex
subset of S(C j) since convex segments go to convex segments or a point under Π. The
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image is open otherwise the dimension of Ω < n. Now Γ acts cocompactly on Ω j since Γ

acts so on Ω the domain of Πi. Then Ω ⊂ Ω1 ∗ · · · ∗Ωp.
Since Ω is contained in an open hemisphere, the corresponding cone is contained in

a half-space in Rn, and it follows that its image Ω j is contained in a hemisphere and is a
convex open domain for each j.

We can consider the action of Γ on C j have the norm of the eigenvalue equal to 1 only
by multiplying by a representation Γ → R+ and we are working on Sn−1. The action of Γ

on C j is orthopotent by Theorem 1.3.7. By Conze-Guivarc’h [62] or Moore [132], there is
an orthopotent flag in S j and hence a proper Γ-invariant subspace. Let Γ j denote the image
of Γ by the restriction homomorphism to S(C j). Since Γ j is abelian, Γ j contains a uniform
lattice L′

j in the Zariski closure of Γ j. Since L′
j is discrete, Theorem 1.3.7 shows that L′

j
is virtually unipotent and so is its Zariski closure. Hence Γ j is virtually unipotent. (See
Theorem 3 of Fried [80].) Let Γ′

j be the unipotent subgroup of Γ j of finite index. We can
take Γ′ :=

⋂p
j=1 Π

∗−1
j (Γ′

j). The finite index subgroup Γ′ of Γ has only positive eigenvalue
at S(C j) for each j, j = 1, . . . , p. Also, the Zariski closure Z j of Γ′

j is isomorphic to Rn j

for some n j.
We assume that Γ′ is torsion-free by takine a finite index subgroup by Selberg’s lemma,

i.e, Theorem 1.1.19. The Zariski closure L′ of Γ is in Z1×·· ·×Zp and hence is free abelian.
L′/Γ is a closed manifold by Proposition A.1.5. We take a connected component L of L′

and let Γ′ = L∩Γ. Now, L/Γ′ is a manifold, and Ω/Γ′ is a closed manifold. Since they are
both K(Γ′,1)-spaces, it follows that dimL = dimΩ = n−1. This proves (i).

(ii) We will now let Γ to be Γ′ above without loss of generality. Suppose that p = 1
and q = 0, or suppose that the associated eigenvalue of each g ∈ Γ in C j is independent
of j. Since Ω is a convex domain in an affine subspace in Sn−1, Ω is in a complete affine
subspace. We can change Γ to be unipotent by changing scalars. A unipotent group acts
on a half-space in Rn since its dual must fix a point in Rn∗ being solvable. Thus Γ acts
on an affine subspaceAn−1 in Sn−1, and Γ acts as an affine transformation group ofAn−1.
Proposition T of [90] proves our result.

Otherwise, it must be that Ω is not complete affine but not properly convex. There ex-
ists a great sphere Si−1 in the boundary of Ω where L acts on and is the common boundary
of i-dimensional affine spaces foliating Ω by Proposition 1.1.4 as in Section 7.1.1. There
is a projective projection

ΠSi−1 : Sn−1 −Si−1 → Sn−i−1.

Then the image Ω1 of Ω is properly convex. and Ω is the inverse image Π
−1
Si−1(Ω1). Since

L acts on Ω1, it follows that L acts on Ω. Since dimL = dimΩ and Γ acts properly with a
compact fundamental domain, L acts properly and cocompactly on Ω. (See Section 3.5 of
[149].)

Let N denote the kernel of L going to a connected Lie group L1 acting on Ω1 properly
and cocompactly.

1 → N → L → L1 → 1.

By Lemma A.1.2, Ω1 is a simplex. Hence, L1 is a positive diagonalizable group. Since
Ω1/L1 is compact, L1 acts simply transitively on Ω1 by Lemma 2.5 of [21]. dimL1 = n−
i−1. Thus, dimN = i and the abelian group N acts on each complete affine i-dimensional
affine space Al that is a leaf. Since the action of N is proper, N acts on Al transitively by
the proof of Lemma 2.5 of [21]. The action is simple since dimAl ≤ dim l = i. Hence,
L acts transitively on Ω. Since the action of L is proper, L acts simply transitively by the
dimension count.
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(iv) By Lemma A.1.4 and (i), we decompose Rn into subspaces Rn =V1⊕·· ·⊕Vp⊕V0
where Vj corresponds to C j for j = 1, . . . , p, V0 corresponds to Cp+1 ∗ · · · ∗Cp+q, L acts on
V0 as a positive diagonalizable linear group and L acts on Vj as elements of an abelian
positive scalar unipotent group for j = 1, . . . , p. (Here V0 can be 0 and Vi for i ≥ 1 equals
C j for some j. )

Since L acts on V0 as a positive diagonalizable group, it fixes points p1, . . . , pq in
general position in Sq−1 := S(V ) with q = dimV0. We claim that L contains an abelian
Lie subgroup Q of rank p+ q− 1 acting trivially on each Ω j, j = 1, . . . , p, and fixing pi,
i = 1, . . . ,q. Suppose that Ω is properly convex. Then Ω is the interior of a simplex. The
cocompactness of a lattice of L shows that L contains a discrete free abelian central group
of rank p+q−1 by the last part of Proposition 1.4.10. The central group is contained in
Q. Since L is the Zariski closure of the lattice, Q is a subgroup of L.

Suppose that Ω is not properly convex. We deform a lattice of L to a diagonalizable one
by a generalization of Lemma A.1.1 to the direct sum of scalar unipotent representations,
and use the limit argument.

Actually, Q is the maximal diagonalizable group with over vectors in directions of
p1, . . . , pq and eigenspaces Vj, j = 1, . . . , p. This again follows by the limit argument. This
proves (iv).

(iii) We choose a generic point ((⃗x)), ((⃗x)) ∈ Ω, in the complement of S(V0), S(Vj) for
j = 1, . . . ,m. Since these are independent spaces, x⃗ = x⃗0 +∑

m
i= j x⃗ j where x⃗0 ∈V0, x⃗ j ∈Vj.

We choose a parameter of element ηt of Q fixing V0 or Vj for some j with largest norm
eigenvalues and {ηt} converging to 0-maps on other subspaces as t → ∞. By Theorem
1.3.13, we obtain a projection to V0 or Vj for each j as a limit in S(Mn(Rn)), and ((⃗x0)) ,((⃗x j))
are in the closure of L(((x))).

Since Π j(L(x)) = L(Π j(x)), we obtain

(A.1.2) L(((⃗x)))⊂ L(((⃗x0)))∗L(((⃗x1)))∗ · · · ∗L(((⃗xm))).

From the above paragraph, we can show that L(((⃗x j))) is contained in Cl(L(((⃗x)))). Hence,

(A.1.3) Cl(L(((x))))⊃ L(((⃗x0)))∗L(((⃗x1)))∗ · · · ∗L(((⃗xm))).

Since L acts transitively on Ω, L acts so on the projection Ω j under Π j. Hence,
L(((⃗x))) = Ω and L(((⃗x j))) = Ω j. By convexity of the domain Cl(Ω), (Cl(Ω))o = Ω. We
obtain

Ω = ({p1}∗ · · · ∗ {pq}∗Ω1 ∗ · · · ∗Ωm)
o.

Recall from above that L|Ω j is a unipotent abelian group and hence has a distal action.
The proof of Theorem 2 of [80] applies here since L|Ω j contains a cocompact lattice, and
it follows that L(⃗x j) is a complete affine space in S(Vj). This proves (iii). [SnT]

□

LEMMA A.1.7. Let t0 ∈ I for an interval I. Suppose that we have a parameter of
compact convex domains △t ⊂ Sn−1 for t < t0, t ∈ I, and a transitive group action Φt :
L ×△o

t → △o
t , t ∈ I by a connected free abelian group L of rank n− 1 for each t ∈ I.

Suppose that Φt depends continuously on t and Φt is given by a continuous parameter
of homomorphisms ht : L → SL±(n,R). Then {△t} → △t0 geometrically where △t0 is a
convex domain, and L acts transitively on △o

t0 .
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PROOF. Let L ∼= Rn−1 have coordinates (z1, . . . ,zn−1). Φt(g, ·) : Sn−1 → Sn−1 is rep-
resented as a matrix

(A.1.4) ht(g) = exp(Ht(
n−1

∑
i=1

zi(g)ei))

where {Ht : Rn−1 → sl(n,R)} is a uniformly bounded collection of linear maps.
Since Φt0 is an isomorphism, we may assume that some open set is contained in an

orbit of Φt0(L) for a point x0. Since Φt → Φt0 algebraically, we may assume without loss
of generality that

⋂
t∈I △o

t ̸= /0 and contains an open neighborhood of x0 by taking a smaller
I containing t0.

Let ∆t0 denote the interior of a geometric limit of Cl(∆ti) for some subsequence ti → t0
as we can see from Section 1.1.2. By Proposition 1.1.9, ∆t0 is a convex open set.

Any point x ∈△o
t0 equals Φt0(g,x0) for g ∈ L. Therefore,

{Φt(g,x0)} ∈ △o
t → Φt0(g,x0) as t → t0.

Hence, every point of △t0 is the limit of a path γ(t) ∈△o
t for t < t0. Hence, Φt0(L)(x0) is

contained in ∆t0 by (1.1.1).
Now we show that ∆o

t0 is a unique open orbit of L under Φt0 .
First suppose that ∆t is properly convex for t ∈ I −{t0}. Suppose that ∆′

t0 contains
more than two open orbits under Φt0 . Then there exists a point y in the interior of ∆′

t0 and
in an orbit of dimension < n. By (iv) of Lemma A.1.6, there exists a one parameter group
of element of form gs ∈ L,s ∈ R fixing each point of a hyperplane P passing y and having
a largest norm eigenvalue at another point x of multiplicity one outside P. (To see, we just
need to consider the diagonalizable group acting trivially on each of the subspaces and find
the kernel acting trivially on the join producing P.)

Let B(y) denote a compact ball which is contained in ∆′
t0 and in ∆t for sufficiently

close t to t0. For sufficiently close t to t0, g still has the largest a largest norm eigenvalue
of multiplicity one and a g-invariant plane Pt meeting the interior of B(y). Then acting by
gs,s ∈ R, we see that ∆t cannot be properly convex. This is a contradiction. Hence, ∆o

t0 is
an orbit.

Suppose now that ∆t is not properly convex for t in J −{t0} for some interval J ⊂ I.
Then Cl(∆t) = Si−1

t ∗Kt for a properly convex domain Kt by Proposition 1.1.4. L acts
on a great sphere Si−1

t in the boundary of ∆t . Now, Si−1
t is the common boundary of i-

dimensional affine spaces foliating ∆t by Proposition 1.1.4 as in Section 7.1.1. We may
assume without loss of generality that Si−1

t is a fixed sphere Si−1 acting by an element gt
where {gt} converging to I as t → t0. There is a projection

ΠSi−1 : Sn−1 −Si−1 → Sn−i−1.

Then we consider ΠSi−1(Kt)⊂ Sn−i−1. Now, the discussion reduces to the above by taking
a subgroup L′ ⊂ L acting transitively on the interior of ΠSi−1(Kt) for t ∈ J−{t0}.

For each i-hemisphere in ∆o
t for t near t0 with boundary Si−1, L acts transitively. We

may assume that this is true for t = t0 by the limit argument. Hence, we show that ∆t0 is an
orbit. □

A.1.3. Deforming convex real projective structures.

LEMMA A.1.8. Let µ be a real projective structure on a closed orbifold M with a
developing map dev : M̃ → Sn−1 (resp. RPn−1) is not injective. Then for any structure µ ′

sufficiently close to µ , its developing map dev′ is not injective.
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PROOF. We prove for Sn−1. We take two open sets U1 and U2 respectively containing
two points x,y ∈ M̃ with dev(x) = dev(y) where dev|Ui is an embedding for each i =
1,2. Then for any developing map dev′ for µ ′ perturbed from dev under the Cr-topology,
dev′(U1)∩dev(U2) ̸= /0. Hence, dev′ is not injective. [SnS] □

A convex real projective structure µ0 on an orbifold Σ is virtually immediately de-
formable to a properly convex real structure if there exists a parameter µt of real projective
structures on a finite cover Σ̂ of Σ so that Σ̂ with induced structures µ̂t is properly convex
for t > 0.

PROPOSITION A.1.9. A convex real projective structure on a closed (n−1)-orbifold
M with virtually free abelian holonomy subgroup of a finite index is always virtually im-
mediately deformable to a properly convex real projective structure.

PROOF. Again, we prove for Sn−1. Let Zl denote the fundamental group of a fi-
nite cover M′ of M. Let h ∈ Hom(Zl ,SL±(n,R)) be the restriction of the holonomy ho-
momorphism to Zl . Nearby every h, there exists a positively diagonalizable holonomy
h′ : Zl → SL±(n,R) by Lemmas A.1.1 and A.1.6. By the deformation theory of [49], h′′

is realized as a holonomy of a real projective manifold M′′ diffeomorphic to M′. Also, the
universal cover of M′ is a union of orbits of an abelian Lie group L by Benoist [16]. Here,
h′(Zl) is a lattice in L by Lemma A.1.6.

By premise, h′ is deformable to h′′ where h′′(Zl) acts on properly convex domain
cocompactly. By Lemma A.1.10, M′′ is a properly convex real projective orbifold. [SnT]

□

Let us recall a work of Benoist: Let M be a real projective (n−1)-orbifold with nilpo-
tent holonomy. (Here we are not working with orbifolds.) Let N be the nilpotent identity
component of the Zariski closure of the holonomy group, Benoist [16], [19] showed that
M̃ decomposes into a union of connected open submanifolds Di, i ∈ I for an index set I,
so that dev : Di → dev(Di) is a diffeomorphism to an orbit of a nilpotent Lie group N.
The brick number of M is the number of the (n− 1)-dimensional open orbits that map to
mutually distinct connected open strata in M.

LEMMA A.1.10. Let M be a closed (n− 1)-orbifold. Let (M,µ) be a convex real
projective orbifold with a virtually abelian fundamental group. Suppose µ is deformed to
a continuous parameter µt of real projective structures so that µ0 = µ . Let ht : π1(M)→
SL±(n,R) (resp. PGL(n,R)), t ∈ [0,1] = I, be a continuous family of the associated ho-
lonomy homomorphism with devt : M̃ → Sn−1 (resp. RPn). Suppose µt has the holonomy
group ht(π1(M)) with following properties for t > 0:

(A): it is virtually diagonalizable for or, more generally, it acts on some properly
convex domain Dt , or

(B): it acts properly on a complete affine space Dt

where Dt has no proper ht(π1(M))-invariant open domain.
Then (M,µt) is properly convex or is complete affine for t > 0.

PROOF. Again, we prove for Sn−1. For t = 0, dev0 is a diffeomorphism to a complete
affine space or a properly convex domain by our conditions.

Define the following sets:

• A is the subset of t satisfying (A) and µt is a properly convex structure, and
• B is the subset of t for (B).
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We will decompose [0,1] = A∪B.
By Lemma A.1.7, the set Â of points of I satisfying (A) is open. By Koszul [115], the

set A is open and A ⊂ Â. We have Â∪B = [0,1].
(A) Suppose that we have an open connected subset U with U ⊂ Â and t0 ∈ Cl(U)

with properly convex or complete affine µt0 . Then we claim U ⊂ A.
Let t ∈U . Since the holonomy group ht(π1(M)) is virtually abelian, a finite cover M′

of M is octantizable by Proposition 2 of [16]. devt maps to a union of orbits of an abelian
Zariski closure ∆t of a finite index abelian subgroup Ht of h(π1(M′)) in Sn−1 by [19]. He
also shows that ∆t acts on M̃.

By our assumption for ht , ht(π1(M′)) acts on a properly convex domain in Sn−1. ∆t is
positive diagonalizable by Lemma A.1.2. Now orbits of ∆t are convex simplexes in Sn−1

by Section 3.1 of Benoist [19] where he explains the classification of such structures by
Smillie [144] and [145].

We claim that devt cannot map to a more than one orbit of ∆t : Suppose not. We
take a finite cover M′′ of M so that M′′ with induced µt has a brick number > 1. We can
find a parameter {µt} for induced real projective structures of µt on M′′ converging to a
real projective structure µt0 on M′ in the Cr-sense, and a compact fundamental domain
Ft of M̃ obtained by perturbing a compact fundamental domain F of M̃ for µt0 . Since F
maps into an open orbit, Ft maps into an open orbit for sufficiently small t by Lemma
A.1.7. However, this means that Ft is in an orbit of M̃. (In other words, a sequence of
real projective structures with more than one bricks cannot converge to a properly convex
structure or a complete affine structure.) Since the orbits of ∆t on Sn−1 are properly convex,
we conclude that µt ∈ A for a sufficiently small |t − t0| by Theorem 1.4.15. Hence, U ∩A
is a nonempty open set.

Also, we claim that U is in A: for any sequence {ti} converging to t ′0 in U in Â, choose
a point x0 in the developing image of devti for sufficiently large i since µti are sufficiently
Cr-close. Then ∆ti(x0)→ ∆t ′0

(x0) by Lemma A.1.7. Since M̃ with µti develops into ∆ti(x0),
the fundamental domain of M̃ with µt ′0

develops into ∆t ′0
(x0), and hence devt ′0

develops into
∆t ′0

(x0). The developing map is a diffeomorphism to ∆t ′0
(x0) by Theorem 1.4.15. Hence,

t ′0 ∈ A also. Thus, U ∩A is open and closed and hence U ⊂ A.
Hence, for connected open U , U ⊂ Â, with t0 ∈ Cl(U) for properly convex or complete

affine µt0 , we have U ⊂ A.
(B) Let I′ denote the subset of t in [0,1] consisting of t with µt satisfying conclusions

of the lemma. Since µ0 is properly convex or complete affine, I′ is not empty. Also, I′

contains all components of Â meeting it by the above argument. Also, A′ = I′∩ Â is open.
We will show that I′ is open and closed in [0,1] and hence I′ = [0,1]:
First, we show that I′ is open. Also, for t0 ∈ I′∩B, we claim that a neighborhood is in

I′: Otherwise, there is a sequence {ti} for ti ̸∈ I′ converging to t0 with ti ∈ I and devti is not
a diffeomorphism to a complete affine space where hti acts on.

• If ti ∈ Â for infinitely many i, then ti ∈ A ⊂ I′ for sufficiently large i by the same
argument as the fourth paragraph above. This is a contradiction.

• Assume now ti ∈ B for sufficiently large i. Proposition 2 of [16] shows that M̃ de-
composes into orbits of an abelian group that is the Zariski closure of hti(π1(M)).
By our condition, open orbits are open hemispheres. Since devti is not a diffeo-
morphism to an orbit, M̃ has more than two open orbits. Also, M̃ does not have
a compact fundamental domain contained in an orbit since otherwise by devti
must map into an orbit. We choose a compact fundamental domain F for devt0 ,
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which can be perturbed to a compact fundamental domain Ft which is inside an
open orbit. Since M̃ is a union of images of Ft , M̃ is inside one orbit. This is a
contradiction.

Hence, we showed that I′ is an open subset of I.
Now, we show that I′ is closed: For any boundary point t0 of I′ in Â, we have t0 ∈ I′

since I′ contains a component of Â it meets.
For any boundary point t0 of I′ that is in B, we have devt0 must be injective by Lemma

A.1.8 since devt is injective for t < t0 or t > t0 for t in an open interval with boundary point
t0. Hence, the image of devt0 meets a complete affine subspace invariant under the action
of ht0(π1(M)). Since the image of devt for t ∈ I′ is in a hemisphere or a compact properly
convex domain Di, the image of devt0 is in a hemisphere or a properly convex domain that
is the geometric limit of Di up to a choice of subsequences. Hence, t0 ∈ I′.

Thus, I′ is open and closed. This completes the proof. [SnT] □

LEMMA A.1.11. Let Σ be a properly convex closed orbifold with a structure µt , t ∈
[0,1]. Let devt be a continuous parameter of developing maps for µt . Then for t in a open
subset of [0,1],

Cl(devt(Σ̃)) = S1 ∗ · · · ∗Smt

for properly convex domains S1, . . . ,Smt where each S j,t span a subspace Pj,t . The finite-
index subgroup of ht(π1(Σ)) acting on Pj,t acts strongly irreducible for each t. Further-
more, mt ,dimS j,t are constant and Pj,t , j = 1, . . . ,mt are always independent, and Pj,t forms
a continuous parameter in the Grassmannian spaces G(n,dimPj,t) up to reordering.

PROOF. For an open susbet O of [0,1], devt , t ∈O, is a diffeomorphism by Porposition
5.3.11. The decomposition follows from Proposition 1.4.10. There is a virtual center Z,
a free abelian group of rank m1, mapping to a positive diagonalizable group Zt acting
trivially on each S j,t . By Theorem 1.1 of [21], an infinite-order virtually central element
cannot have nontrivial action on S j,t since otherwise the Zariski closure of the subgroup
of ht(π1(Σ)) acting on Pj,t cannot be simple as claimed immediately after that theorem.
Hence, any infinite-order virtually central elements are in a maximal free abelian group
of rank m1. Hence, for each t, there are subspaces S j,t for j = 1, . . . ,m1 so that the above
decomposition hold. Now, we need to show that the dimensions are constant.

We decompose I into mutually disjoint subsets In1,...,nm1
where

dimS j,t = n j where n1 + · · ·+nm1 +m1 = n+1 for n1 ≤ n2 ≤ ·· · ≤ nm1

by reordering the indices. Then each of these sets is closed as we can see from a sequence
argument since the above rank argument shows that there cannot be further decomposition
in the limit increasing the rank of the virtual center. Since I is connected, there is only one
such set equal to I. Now, the conclusion follows up to reordering. □

We generalize Proposition A.1.10:

COROLLARY A.1.12. Suppose that a real projective orbifold Σ is a closed (n− 1)-
orbifold with the structure µ . Let µt , t ∈ [0,1], be a parameter of projective structures on Σ

so that µ0 is properly convex or complete affine and µ1 = µ . Let ht denote the associated
holonomy homomorphisms.

• Suppose that the holonomy group ht(π1(Σ)) in PGL(n,R) (resp. SL±(n,R) ) acts
on a properly convex domain or a complete affine subspace Dt .

• Suppose Dt is the minimal ht(π1(Σ))-invariant convex open domain.
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• We require that π1(Σ) to be virtually abelian if Dt0 is complete affine for at least
one t0.

Then Σ is also properly convex or complete affine where the following hold:

• a developing map devt is a diffeomorphism to Rt(Dt) for every t ∈ [0,1]
• where Rt is a uniformly bounded projective automorphism for each t and is a

composition of reflections commuting with one another.
• Furthermore, Σ is properly convex if so is Dt .

PROOF. Again, we prove in Sn−1. If π1(Σ) is virtually abelian, then it follows from
Proposition A.1.10

Now, suppose that π1(Σ) is not virtually abelian. Then Dt is properly convex for every
t, t ∈ I, by the premise.

The set A where µt is properly convex is open by Koszul [114]. Let t0 be the supremum
of the connected component A′ of A containing 0. There is a developing map devt : Σ̃ →
Sn−1 for t ∈ A is a diffeomorphism to a properly convex domain D′

t where D′
t = Rt(Dt) for

a projective automorphism Rt by Lemma 1.4.16.
Since associated developing map devt maps into D′

t for t < t0, devt |K for a compact
fundamental domain F ⊂ Σ̃ maps into a compact subset of D′o

t for t < t0. Since devt : Σ̃

is injective, devt0 : Σ̃ → Sn−1 is also injective by Lemma A.1.8. By the injectivity and the
invariance of domain, devt0 is a diffeomorphism to an open domain Ω. Since every point of
the image of devt0 is approximated by the points in the image D′o

t of devt for t < t0. Hence,
Cl(Ω) is contained in the geometric limit of a convergent subsequence of any sequence
Cl(D′

ti) by Proposition 1.1.7. By Lemma 1.4.16, Ω is a properly convex domain since the
holonomy group acts on a properly convex domain Dt0 and Ω = Rt0(Dt0) for a projective
automorphism Rt0 that is a composition of reflections commuting with one another.

Hence, A is also closed, and A = [0,1]. By Lemma A.1.11 the uniform boundedness of
Rt follows since the subspaces Pj,t are continuous and Rt are either I or A on it. [SnT] □

A.1.4. Geometric convergence of convex real projective orbifolds. Note that the
third item of the premise below is automatically true by Theorem 8.1.2 if Σ is an end-
orbifold of a properly convex affine n-orbifold for any t.

COROLLARY A.1.13. Suppose that Σ is a closed (n− 1)-orbifold. We are given a
path µt , t ∈ [0,1], of convex RPn−1-structures on Σ equipped with the Cr-topology, r ≥ 2.
Suppose that µ0 is properly convex or complete affine.

• Suppose that the holonomy group ht(π1(Σ)) in PGL(n,R) (resp. SL±(n,R) ) acts
on a properly convex domain or a complete affine subspace Dt .

• Suppose Dt is the minimal holonomy invariant domain.
• We require that if µt is complete affine for at least one t, then the holonomy group

is virtually abelian.

Then the following holds:

• We can find a family of developing maps devt to RPn−1 (resp. in Sn−1) contin-
uous in the Cr-topology and a continuous family of holonomy homomorphisms
ht : Γ → Γt so that Kt := Cl(devt(Σ̃)) is a continuous family of convex domains
in RPn−1 (resp. in Sn−1) under the Hausdorff metric topology of the space of
closed subsets of RPn−1 (resp. Sn−1).

• In other words, given 0 < ε < 1/2 and t0, t1 ∈ [0,1], we can find δ > 0 such that
if |t0 − t1|< δ , then Kt1 ⊂ Nε(Kt0) and Kt0 ⊂ Nε(Kt1).
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• Also, given 0< ε < 1/2 and t0, t1 ∈ [0,1], we can find δ > 0 such that if |t0−t1|<
δ , then ∂Kt1 ⊂ Nε(∂Kt0) and ∂Kt0 ⊂ Nε(∂Kt1) where we assume devt maps to
Sn−1 exclusively here.

• Finally, µt is always virtually immediately deformable to a properly convex struc-
ture.

PROOF. We will prove for Sn−1. Suppose first that π1(Σ) is not virtually abelian. Then
Dt is never a complete affine space and hence is always properly convex by the premise.
By Lemma A.1.10, devt is an embedding to the interior of Kt for each t.

First, for any sequence {ti} converging to t0, we can choose a subsequence {ti j} so
that {Kti j

} converges to a compact convex set K∞ in the Hausdorff metric. ht0(π1(Σ
′)) acts

on K∞ by Corollary 1.4.17.
By Lemma A.1.11, we define Kl,t :=Pl,t ∩Kt where ht(π1(Σ)) acts strongly irreducibly

on Pl,t , and Kt = K1,t ∗ · · · ∗Km1 . We obtain Kl,ti j
→ Kl as j → ∞ for a compact convex

set Kl in a subspace Pl,t0 where a finite-index subgroup of ht0(π1(Σ)) acts on by Lemma
A.1.11 and Proposition 1.1.7. Proposition 1.4.10 shows that the action on Pl,t0 by π1(Σ

′)
is irreducible. Hence, Kl must be properly convex by Proposition 1.4.1. We have K∞ ⊂
K1 ∗ · · · ∗Km by Proposition 1.1.7 since Kti j

⊂ K1,ti j
∗ · · · ∗Km,ti j

for each j. Hence, K∞ is
properly convex.

Now, for any sequence {t ′i} covering to t0, suppose that a convergent subsequence
{Kt ′i j

} converges to K′
∞. Then we claim that K∞ = K′

∞: Now, K′
∞ is properly convex also.

Choose a torsion-free finite-index subgroup Γ′ of ht0(π1(Σ)) by Theorem 1.1.19. Ko
∞/Γ′

and K′o
∞ /Γ′ are homotopy equivalent. Since devti and devt ′i

are close, we may assume that
Ko

∞ ∩K′o
∞ ̸= /0. Lemma 1.4.16 shows that Ko

∞ = K′o
∞ . This implies the first item for this case.

Suppose now that Γ is virtually abelian. Then Ωt is determined by the generators of
the free abelian subgroup Γ′ of a finite index with only positive eigenvalues by Lemma
A.1.6. Γ′ determines the connected abelian Lie group ∆t containing ht(Γ

′) and Ωt is an
orbit of ∆t by Lemma A.1.6. Now Lemma A.1.7 implies the first item.

The second item follows from the first one. The third one can be deduced by Theorem
1.1.11. The fourth item follows by Proposition A.1.9. [SnT] □

REMARK A.1.14. Of course, we wish to generalize Lemma A.1.10 and Corollaries
A.1.12 and A.1.13 for fully general cases without the restriction on the domains of actions
starting from any properly convex projective orbifold and show the similar results. Then
we can allow NPNC-ends into the discussions. We leave this as a question of whether one
can achieve such results.

A.2. The justification for weak middle eigenvalue conditions

THEOREM A.2.1. Let O be a properly convex real projective orbifold with ends. Let
ΣẼ be an end orbifold of an R-p-end Ẽ of O with the virtually abelian end-fundamental
group π1(Ẽ).

• Suppose that µi be a sequence of properly convex structure on an R-p-end neighbor-
hood UẼ of Ẽ corresponding to a generalized lens-shaped R-p-ends satisfying the
uniform middle eigenvalue conditions.

• Suppose that µi limits to µ∞ in the Cr-topology, r ≥ 2.
Then µ∞ satisfies the weak middle eigenvalue condition for Ẽ. Furthermore, the holonomy
group for µ∞ virtually satisfies the transverse weak middle eigenvalue condition for Ẽ if it
is NPNC and π1(Ẽ) is virtually abelian.
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PROOF. Assume first that Õ ⊂ Sn. We may assume that the p-end vertex vẼ is in-
dependent of µi by conjugation of the holonomy homomorphism. Let hi : π1(ΣẼ) →
SL±(n+1,R)vẼ

. Since these satisfy the uniform middle eigenvalue conditions, we have

C−1cwl(g)< log
(

λ1(hi(g))
λvẼ

(hi(g))

)
<Ccwl(g),C > 1,g ∈ π1(ΣẼ)

where C is a constant which may depend on hi. Let h∞ denote the holonomy homomor-
phism for µ∞, which is an algebraic limit of hi. By taking limits, we obtain that h∞ satisfies
the weak middle eigenvalue condition.

Suppose now that µ∞ is NPNC. For convenience, we may assume without loss of
generality that π1(Ẽ) is free abelian. Let Γ denote h∞(π1(Ẽ)).

By Lemma A.1.6, Σ̃E is the interior of a strict join of hemispheres and a properly
convex domain

H1 ∗ · · · ∗Hm ∗K0 ⊂ Sn−1
vẼ

where
• Γ|H j, j = 1, . . . ,m, has the Zariski closure a unipotent Lie group for a finite index

subgroup Γ of h∞(π1(Ẽ)),
• Γ|K0 is a diagonalizable group acting so, and
• Γ has a center Q of rank m+dimK0 −1 acting trivially on each Hi, i = 1, . . . ,m

and fixing the vertices of K0.
Given any i-dimensional hemisphere V of Sn−1

vẼ
for 0 ≤ i ≤ n−1, there exists unique

i+ 1-dimensional hemisphere V̂ in Sn in the direction of V from vẼ and containing vẼ in
∂V̂

We denote by Ĥi the hemispheres in Sn corresponding to the directions of Hi for i =
1, . . . ,m and p̂i the great segments in Sn corresponding to the directions vertices p1, . . . , pk
of K0. Let g ∈ h(π1(Ẽ)). Since a CA-lens for hi(π1(Ẽ)) contains the points affiliated with
the largest norm of eigenvalues for h j(g) for each g ∈ π1(Ẽ), a limiting argument shows
that points in Ĥo

i or p̂i must be affiliated with the largest norm λ1(h(g)) of the eigenvalues.
(Of course, these are not all such points necessarily)

By Proposition 1.1.4, the maximal dimensional great sphere Si0−1
∞ in bdΣ̃Ẽ ⊂ Sn−1

vẼ

corresponding the boundary of complete affine leaves in Σ̃Ẽ equals ∂ Ĥ1 ∗ · · · ∗∂ Ĥm. Since
these points are not in the directions of ∂ Ĥ1 ∗ · · · ∗ ∂ Ĥm, the desired inequality λ Tr

vẼ
(g) ≥

λvẼ
(g) holds. [SnT] □
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R: The real number field
R+ : The set of positive real numbers
C : The complex number field
A : The antipodal map Sn → Sn.
d: The Fubini-Study metric on Sn. 6
Hom(G,H): The set of homomorphisms G → H for two groups G,H.
rep(G,H): The set of conjugacy classes of homomorphisms G → H for two groups

G,H.
| · |: The maximal norm of the entries of a matrix. p.25
||·||: The Euclidean metric on a vector space over R, (also we use ||·||E for emphasis)

p.21
||·||fiber.: A fiberwise metric on a vector bundle over an orbifold p.82
π1(·): The orbifold fundamental group of an orbifold
Z (·): The Zariski closure of a group p.30
Z(·): The center of a group p.30
Aut(K): The group of projective automorphisms of a set K p.12
RPn: The n-dimensional projective space. p.5
RPn∗: The dual n-dimensional projective space. p.36
An: The n-dimensional affine space p.11
Sn: The sphere. p.3
pSn : The double covering map Sn → RPn. p. 3
Sn∗: The dual sphere. p.29
Π: Rn+1 −{O}→ RPn projection p.10
Π′: Rn+1 −{O}→ Sn projection p.11
bdAg

Ω:

bdAg
Ω := {(x,H)|x ∈ bdΩ,x ∈ H,

H is an oriented sharply supporting hyperspace of Ω} ⊂ Sn ×Sn∗. p. 37

ΠAg: projection ΠAg : bdAg
Ω → bdΩ given by (x,H) 7→ x. p. 37

∂M: manifold or orbifold boundary of a manifold or orbifold M p.3
bdX: topological boundary of X in an ambient space p.3
bdXY : topological boundary of Y in an ambient space X p.3
Mo: the manifold or orbifold interior of a manifold or orbifold M or the relative

interior of a convex domain in a projective or affine subspace. p.3
P(V ): the projectivization of a vector space V . p. 5
S(V ): the sphericalization of a vector space V . p. 5
pq: the geodesic segment in RPn or Sn connecting p and q not antipodal to p p.4
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pzq: the geodesic segment in Sn connecting p and q antipodal to p and passing z.
p.4

()∗: Duals of vector spaces or convex sets or linear groups. p.36
()†: The proper-subspace dual of a properly convex domain in a subspace. p.37
()E : The subscript denotes that the representation space or the character space is

restricted by the condition that each end holonomy group to have a fixed point
for R-ends or to have a holonomy group invariant hyperspace satisfying the lens-
condition for T-ends. p.233

()ce: The subscript denotes that the representation space or the character space or
the deformation space is restricted by the condition that the ends be lens-shaped
R-ends or lens-shaped T-ends only or the corresponding condition for the end
holonomy groups. p.238

()u: The subscript denotes that the representation space or the character space or
the deformation space is restricted by the end holonomy group having a unique
fixed point for R-ends or having a unique end holonomy invariant hyperplane
satisfying the lens-condition for T-ends. p.234

()s: The superscript denotes that the representation space or the character space or
the deformation space is restricted by the stability condition. p.238

()sV
: The subscript denotes that the deformation has holonomy in an open subset

V of the character space and the end is determined by the fixing section sV .
p.276
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64(6):2299–2377, 2014.

[69] M. Crampon and L. Marquis. Le flot géodésique des quotients géométriquement finis des géométries de
Hilbert. Pacific J. Math., 268(2):313–369, 2014.
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bottom component, 64
boundary

augmented, 37, 134
ideal, 60
manifold or orbifold, 4
topological, 4

C(·), 10, 16
CA-lens, 61, 65

generalized, 65
CDefE ,lh(O), 273
CDefE ,sU ,lh(O), 279
CDefE ,u,lh(O), 273, 278
C-eigenvector, 17
central dilatational extension, 36
C H (·), 14
character

stable, 233
character space, 233
character variety, 233
Cl(·), 3
Cλ (·), 17
closure

augmented, 40
commutant, 31
compactification of SL±(n+1,R), 24
compatibility condition for the R-end structure, 62
compatiblity of end with Ō ., 60
complete affine line, 11
complete affine space, 11
cone, 10, 64

convex, 10
cone over a totally-geodesic submanifold, 65
convergence

geometrically, 6
convergence sequence, 25
convergent

set-convergent, 26
convex

strictly, 141, 144
hypersurface, 29

convex hull, 14
convex segment, 4
convex set for Sn, 4
convex subset, 11

properly, 11
Coxeter group, 48
Coxeter orbifold

orderable, 49
Coxeter orbifold structure, 48
Cr-topology, 49, 244, 246, 249, 289, 323
cusp group, 66, 216, 300

i0-dimensional, 216
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i0-dimensional partial, 216
standard, 172
unipotent, 66, 167

cwl(·), 104

D(·), 38
d, 6
D(·), 49
(·)†, 37
DefE (O), 232, 244
DefE ,sU ,lh(O), 279
deformation space, 49, 232, 233, 244

topology, 232, 233, 244
Defs

E ,lh(O), 273
developing map, 10, 12

end-projectivization, 242, 243
lifting, 12

development pair, 10, 12
dH , 6
dilatation, 15

scalar, 15
direction, 39
distanced action, 109
divide, 131
dividing group, 37
DAg

Ω
(·), 38

dO , 260
dÕ , 260
DAg

Ω(·), 134

DP(P̂), 49
dO(2) , 268
dual cones, 36
dual domains, 36
dual fixed-point section, 245, 275
dual group, 36
dual groups, 39
dual sets, 39
duality

Vinberg, 36
duality map, 38, 134

Ehresmann-Thurston map, 244, 251
Ehresmann-Thurston principle, 273, 277
Ehresmann-Thurston-Weil principle, 273, 277
eigen-1-form, 233
eigenvalue

transverse, 165
elementary annulus, 60
ellipsoid, 66, 72
elliptic, 20
elliptic element, 261
elliptic metric, 6
end, 59

bending, 74
CA, 71
compactification, 232
complete affine, 71
condition

IE, 141, 277
infinite end index, 141
NA, 141, 277
nonparallel end, 141
NS, 162

convex but not properly convex and not
complete affine, 71

convex hull, 145
cusp, 66, 216
ε-mc-p-end neighborhood, 150
end vector field, 14
generalized lens-shaped, 65
holonomy group, 66

quasi-joined, 195
horospherical, 66, 216, 217
hyperideal, 50, 72
ideal boundary component, 61, 62
joined

generalized, 168
lens condition, 234
lens-shaped, 65
limit set, 115, 143
mc-p-end neighborhood, 149
neighborhood

concave, 104
lens-shaped, 65

nonproperly convex and noncomplete end, 159
NPNC, 71, 159
p-end neighborhood, 60
p-end vertex, 62
p-ideal boundary component, 62
parallel, 14
PC, 71
pre-horospherical, 217
properly convex, 71
pseudo

vertex, 62
quasi-joined, 161, 195
radial, 62

compactification, 232
completion, 62

shaving, 259
structure

determine, 275
radial, 12, 62
totally geodesic, 61

totally geodesic, 15, 60
compactification, 232
completion, 61
ideal boundary, 12

type-R, 231
type-T , 231
type-R, 62
type-T, 60

end fundamental group, 60
end neighborhood, 59
end orbifold

totally geodesic, 61
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end vertex, 64
end-neighborhood

compatible, 60, 62

F∗({gi}), 26
F̂∗({gi}), 26
factorizable

non-virtually, 31, 104
virtually, 31, 104

fiberwise metric, 82
fixed-point section, 244, 275
fixing section, 245, 275
foot of the perpendicular, 261
F p(gi), 26

geodesic, 5
geometric structure, 10
great segment, 4, 11, 262
group

dual, 36
group of affine transformations, 11

handcuff orbifold, 307
Hausdorff distance, 6
hemisphere, 11
Hessian metric, 280
Hex metric, 270
higher convergence group, 24
Hilbert metric, 8, 260
hol, 244, 251, 273, 277
hol′, 244
holonomy, 12
holonomy group, 12
holonomy homomorphism, 10, 12

lifting, 12
HomE (π1(O),PGL(n+1,R)), 234
HomE (π1(Ẽ),PGL(n+1,R)), 142
HomE (π1(Ẽ),SL±(n+1,R)), 142
HomE ,lh(π1(O),PGL(n+1,R)) , 238
HomE ,par(π1(E),PGL(n+1,R)), 237
HomE ,RL(π1(E),PGL(n+1,R)), 237
HomE ,TL(π1(E),PGL(n+1,R)), 238
HomE ,u(π1(O),PGL(n+1,R)), 234
Homs

E ,lh(π1(O),PGL(n+1,R)), 238
Homs

E ,u(π1(O),PGL(n+1,R)), 234
Homs

E ,u,lh(π1(O),PGL(n+1,R)), 238
horoball, 66

orbifold, 66
horosphere, 66
hyperideal extension, 72
hyperspace, 6

supporting, 6
hypersurface

convex polyhedral, 39
totally geodesic, 12

I2, 108
ideal boundary component, 59
i-dimensional complete affine subspace, 11

IE, 141, 277
independent subspaces, 5
infinitesimally projectively rigid, 53
irreducible

strongly, 31
isotopy, 232, 232, 241
isotopy-equivalence space, 232, 243
isotopy-lift, 232
I(Ẽ), 145

join, 4
affine form, 44
strict, 4

Klein model, 12
Koszul-Vinberg function, 280, 287
Kuiper completion, 61

L (·), 79
⟨A⟩, 11
Λ∗Ag, 91
λvẼ

(·), 104, 215
ΛẼ , 114
λẼ (·), 78

λ
Si0

∞
max(·), 165

λ
Si0

∞

min(·), 165
λ Tr

max(·), 165
λ Tr

min(·), 165
λx(·), 305
lengthK(g), 104, 164
lens, 61, 64, 65

cocompactly acted, 61, 65
cone, 64

generalized, 65
generalized, 65

cocompactly acted, 65
strict, 122

orbifold, 61
strict, 122

lens-shaped
strict, 122

lifting projective structure, 13
linear part of holonomy, 106
linear-part homomorphism, 79
L1, 106

map
contracting, 78
expanding, 78

middle eigenvalue condition, 215
uniform, 78, 104
unit, 305
weak, 215

transverse, 165

N2(·), 87
NA, 141, 277
N∗(·), 25
N̂∗(·), 25
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neighborhoo
tubular, 10

neutralized section, 86
nonnegative translation condition , 186
NS, 162

orbifold, 9
boundary, 9
covering, 9
good, 10
homeomorphism, 145
triangulated, 15

orientation
dual, 42

Ô(n+1, i0), 172
orthopotent, 19
∗∗, 4

P(·), 5
p-end, 60, 66

convex hull, 144
holonomy group, 66
ideal boundary component, 61
lens-shaped, 65
limit set, 115
neighborhood

concave, 104
lens-shaped, 65

vertex, 62, 66
p-end fundamental group, 60
parabolic group, 66

standard, 172
parabolic subgroup, 215
parameter of real projective structures, 280
∂ , 4
∂SI(Ẽ), 145
Φt , 81
Φ̃t , 81
Π, 11
ΠΩ, 80
ΠAg, 37
Π′, 11
ΠK , 160
Π∗

K , 160
Π′, 11
Πv, 107
pO , 9, 144
polynomial growth, 18
pre-horoball, 64
pre-horosphere, 64
primary decomposition theorem, 17
projection, 4
projective automorphism, 11
projective geodesic, 11
projective invariant, 310
projective map, 11
projectively rigid relative to the mirrors, 50
properly convex affine action, 77
proximal, 20

positive, 20
pseudo-end, 60

neighborhood
concave, 104

pseudo-end fundamental group, 60

R-end
bending, 74
generalized lens-shaped, 65
lens-shaped, 65
neighborhood

generalized lens-shaped, 65
lens-shaped, 65

pre-horospherical, 65
R-p-end

generalized lens-shaped, 65
lens-shaped, 65
totally geodesic cone-shaped, 65

R∗({gi}), 26
R̂∗({gi}), 26
radiant affine manifold, 15
radiant flow diffeomorphism, 16
real primary space, 17
real primary subspace, 17
real projective structure, 12

lifting, 13
regular hexagon, 270
relative eigenvalue, 219
relative hyperbolicity, 265
repE ,lh(π1(O),PGL(n+1,R)) , 238
repE ,u(π1(O),PGL(n+1,R)), 237
repE ,u,lh(π1(O),PGL(n+1,R)), 278
representation

stable, 233
strongly irreducible, 233

reps
E ,lh(π1(O),PGL(n+1,R)), 238

reps
E ,u(π1(O),PGL(n+1,R)), 237

reps
E ,u,lh(π1(O),PGL(n+1,R)), 239, 278

restricted deformation space, 49
Rµ (·), 17
Rp(gi), 26
RPn, 10
RPn−1

x , 39
R-type, 231
Rv(Õ), 107
rv(·), 284
RvẼ

(Õ), 66
Rx(·), 39, 64

S(·), 5
S (·), 69
SDefE ,lh(O), 273
SDefE ,sU ,lh(O), 279
SDefE ,u,lh(O), 273, 278
SE , 62
S([m+1,n+1]), 25
section, 244, 275

fixed-point, 244, 275
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dual, 245, 275
fixing, 245, 275

Selberg’s lemma, 13
semi-proximal, 20

positive, 20
sequence

augmented, 40
set-convergent, 26
ΣE , 66
ΣẼ , 66
Σ̃Ẽ , 66, 107
SL±(n+1,R), 5
Sn, 5
Sn∗, 29
Sn−1

v , 107
Sn−1

vẼ
, 66

Sn−1
x , 39

S([1,m]), 25
span, 11
SPC-structure, 141, 144

strict, 141, 144
stable properly-convex real projective structure,

141, 144
SẼ , 62
S̃Ẽ , 62
strongly irreducible, 11
strongly tame, 9
suborbifold

neat, 10
subspace, 5, 11
sum, 4
suporting hyperspace, 6

sharply, 6
supporting, 6
supporting hemisphere, 6

sharply, 6
supporting hyperspace

asymptotic, 78
suspended horoball orbifold, 16
sV , 245
s(1)V , 244

s(2)V , 245
syndetic hull, 69, 201

T-end
lens-shaped, 61
neighborhood

lens, 61
T-p-end

lens-shaped, 61
neighborhood

lens, 61
tangent bundle, 79
T (n+1,n− i0), 183
top component, 64
triangle condition, 105, 126
triple invariant, 52
trival one-dimensional cone, 64

T -type, 231
tube domain, 107
tubular action, 107, 108

properly, 108
Tv(·), 107

uniform middle eigenvalue condition, 78, 104
uniform positive translation condition, 187
uniqueness section, 278, 279
unit middle eigenvalue condition, 305
unit tangent bundle, 79
unit-norm-eigenvalued, 19
UΩ, 80
upper-left part, 170
UΣ, 80

V, 79, 81
Ṽ, 79
vertex condition, 234
Vinberg duality diffeomorphism, 40

augmented, 40
virtual center, 30, 104
virtually immediately deformable, 320
V−, 81
V+, 81
vẼ , 66
V0, 81

word length
conjugate, 104

(X ,G)-structure, 10

Z(·) , 30
Z (·), 111
Zariski closure, 111
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